首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine the size and subunit structure of the pancreatic cholecystokinin (CCK) receptor, 125I-CCK33 was covalently cross-linked to its receptor on mouse pancreatic acinar plasma membranes utilizing the bifunctional cross-linker disuccinimidyl suberate. When CCK was cross-linked at pH 7.4 to either purified plasma membranes or to isolated pancreatic acini and then followed by preparation of plasma membranes, the major labeled protein band revealed by polyacrylamide gel electrophoresis was Mr = 120,000 in the absence of reducing agent and Mr = 80,000 in the presence of reducing agent. A similar banding pattern was also observed when different cross-linkers, ethylene glycol bis(succinimidyl succinate) or dithiobis (succinimidyl propionate), were employed. At pH 6.0, where CCK binding to its receptors is optimal, the labeling pattern was similar to that seen at 7.4, although the two bands were more heavily labeled. Both the binding of CCK to its receptors on plasma membranes and the appearance of the two cross-linked proteins on gels were inhibited in a parallel manner by increasing concentrations of unlabeled CCK8; similar results were observed with dibutyryl cyclic GMP, a competitive inhibitor of CCK binding and action. The data indicate, therefore, that the CCK receptor possesses subunit structure whereby an Mr = 76,000 binding subunit is linked to an Mr = 40,000 nonbinding subunit by a disulfide bond.  相似文献   

2.
Neurotensin receptors from plasma membranes of rat gastric fundus smooth muscle were specifically and covalently labeled either by using the photoreactive analogue 125I-labeled azidobenzoyl (Trp11)-neurotensin or by cross-linking (monoiodo-Tyr3)neurotensin to the membrane preparation by means of disuccinimidyl suberate. Analysis of plasma membranes by sodium dodecylsulfate-polyacrylamide gel electrophoresis and autoradiography revealed that the same protein band with an apparent molecular weight of 110,000 was specifically labeled by both methods. This band consisted of a single chain protein since its apparent size was found to be the same with or without reduction of membrane samples before electrophoresis. Only neurotensin and its biologically active analogues were able to protect plasma membranes against specific labeling of the protein band of molecular weight 110,000. Comparison of these results with those obtained from rat brain synaptic membranes shows that although rat central and peripheral neurotensin receptors exhibit similar specificities towards a series of neurotensin analogues, their subunit structures are different.  相似文献   

3.
Previous studies have indicated that turkey erythrocyte and rat liver membranes contain endogenous alpha beta heterodimeric insulin receptors in addition to the disulphide-linked alpha 2 beta 2 heterotetrameric complexes characteristic of most cell types. We utilized 125I-insulin affinity cross-linking to examine the structural properties of insulin receptors from rat liver and turkey erythrocyte membranes prepared in the absence and presence of sulphydryl alkylating agents. Rat liver membranes prepared in the absence of sulphydryl alkylating agents displayed specific labelling of Mr 400,000 and 200,000 bands, corresponding to the alpha 2 beta 2 heterotetrameric and alpha beta heterodimeric insulin receptor complexes respectively. In contrast, affinity cross-linking of membranes prepared with iodoacetamide (IAN) or N-ethylmaleimide identified predominantly the alpha 2 beta 2 heterotetrameric insulin receptor complex. Similarly, affinity cross-linking and solubilization of intact turkey erythrocytes in the presence of IAN resulted in exclusive labelling of the alpha 2 beta 2 heterotetrameric insulin receptor complex, whereas in the absence of IAN both alpha 2 beta 2 and alpha beta species were observed. Turkey erythrocyte alpha 2 beta 2 heterotetrameric insulin receptors from IAN-protected membranes displayed a 3-4-fold stimulation of beta subunit autophosphorylation and substrate phosphorylation by insulin, equivalent to that observed in intact human placenta insulin receptors. Turkey erythrocyte alpha beta heterodimeric insulin receptors, prepared by defined pH/dithiothreitol treatment of IAN-protected membranes, were also fully competent in insulin-stimulated protein kinase activity compared with alpha beta heterodimeric human placenta receptors. In contrast, endogenous turkey erythrocyte alpha beta heterodimeric insulin receptors displayed basal protein kinase activity which was insulin-insensitive. These data indicate that native turkey erythrocyte and rat liver insulin receptors are structurally and functionally similar to alpha 2 beta 2 heterotetrameric human placenta insulin receptors. The alpha beta heterodimeric insulin receptors previously identified in these tissues most likely resulted from disulphide bond reduction and denaturation of the alpha 2 beta 2 holoreceptor complexes during membrane preparation.  相似文献   

4.
Insulin receptors derived from highly purified rat liver plasma membranes and Golgi membranes showed differences in insulin-mediated receptor autophosphorylation, even though their insulin-binding characteristics were similar. This difference was related to the generation of a Mr-84,000 fragment of the Mr-90,000 beta subunit of the plasma-membrane receptor, a fragment that was not present in the receptor from Golgi membranes, in the absence of a change in the insulin-binding alpha subunit. When autophosphorylation activity was based on insulin binding, the activity of the plasma-membrane-derived insulin receptor was decreased to 25-30% that of the Golgi-derived receptor. Endoglycosidase F digestion produced changes in the Mr values for both species, but they were not converted into a single subunit, thereby suggesting differences in the protein component of the two subunits. Although the proteinase inhibitors phenylmethanesulphonyl fluoride, ovomucoid and aprotinin failed to block the formation of the Mr-84,000 fragment, the presence of iodoacetamide or EDTA during liver homogenization markedly inhibited fragment generation and allowed the plasma-membrane insulin receptor to retain an autophosphorylation activity comparable with that present in insulin receptors from Golgi membranes. Thus a thiol-sensitive, cation-dependent, degrading activity has been identified that can uncouple the insulin-binding activity of the plasma-membrane insulin receptor from its tyrosine kinase activity.  相似文献   

5.
The association of agonists with muscarinic receptors in membranes from bovine brain was affected only slightly by guanine nucleotides. However, solubilization of these membranes with deoxycholate and subsequent removal of detergent resulted in a preparation of receptors with increased affinity for agonists and a large increase in response to guanine nucleotides. Chromatography of deoxycholate extracts of membranes on DEAE-Sephacel resulted in the separation of receptors from 95% of the guanine nucleotide-binding activity. Guanine nucleotides had no effect on the binding of agonists to these resolved receptors. The effect of guanine nucleotides was restored after the addition of either of two purified guanine nucleotide-binding proteins from bovine brain. One of these proteins, presumably brain GI, is composed of subunits with the same molecular weights (alpha, 41,000; beta, 35,000; gamma, 11,000) and functions as the inhibitory guanine nucleotide-binding protein isolated from liver. The other protein, termed Go, is a novel guanine nucleotide-binding protein that possesses a similar subunit composition (alpha, 39,000; beta, 35,000; gamma, 11,000) but whose function is not yet known. Addition of either protein to the resolved receptor preparation increased agonist affinity by at least 10-20-fold, and low concentrations of guanine nucleotides specifically reversed this effect. Reconstitution of receptors with the resolved subunits of Go demonstrates that the beta subunit alone had no effect on agonist binding, but that this subunit does appear to enhance the effects observed with the alpha subunit alone.  相似文献   

6.
We have investigated the structure of dopamine (DA) D2 receptors present in an estrone-induced, prolactin (PRL)-secreting, DA-sensitive adenoma and in two PRL-secreting and DA-insensitive transplantable tumors 7315a and MtTW15, in order to identify better the anomalies present in DA-resistant lactotrophs. D2 receptors were found in both a high- and a low-affinity state in adenomatous lactotrophs as shown by displacement studies with the agonist N-propylnorapomorphine (NPA), but only in the low-affinity state in the two DA-resistant tumors. Treatment with the alkylating agent N-ethylmaleimide induced a disappearance of the high-affinity state of the D2 receptor in the adenoma and a reduction in receptor concentration, but did not have any effect on the affinity of receptors present in DA-resistant tumors. Moreover, target size analysis and radiation inactivation studies of D2 receptors, using membranes preincubated with NPA and [3H]spiperone as ligand or using [3H]NPA as ligand on membranes preparations, have shown the presence of distinct structural differences between adenomatous and tumoral D2 receptors and between the two tumoral receptors themselves; these results suggest that the normal functional unit of the D2 receptor is a dimer associated with a guanine nucleotide-binding protein (G protein) subunit and that tumoral D2 receptors may exist in various polymeric forms unassociated with G proteins. The anomalies found to be present in tumoral D2 receptor complexes may be responsible for the insensitivity of these tumors to dopaminergic agonists' inhibitory activity on PRL release and tumor growth.  相似文献   

7.
Brain CCK receptors are structurally distinct from pancreas CCK receptors   总被引:3,自引:0,他引:3  
Brain and pancreas cholecystokinin (CCK) receptors differ markedly in their selectivity for CCK analogs. To determine the size and subunit structure of the brain CCK receptor and compare it to that of the pancreas, 125I-CCK33 was covalently cross-linked with ultraviolet light to its receptor on mouse brain particles and purified pancreatic plasma membranes. When CCK was crosslinked to brain membranes, a single consistent major labeled protein band of Mr = 55,000 was observed in both the presence and the absence of DTT. These data with brain receptors contrast to results with pancreatic receptors where two bands of Mr = 120,000 and 80,000 are labeled in the absence and presence of DTT, respectively. These studies indicate, therefore, that the brain and pancreas CCK receptors are structurally and functionally distinct.  相似文献   

8.
Specific binding of [3H]N-propylnorapomorphine [( 3H]NPA) to 3,4-dihydroxyphenylethylamine (dopamine) D-2 receptors was investigated in rat striatum in vitro. For various dopamine receptor substances, the rank order of potency to inhibit [3H]NPA binding was spiroperidol greater than or equal to NPA greater than LY 171555 greater than SCH 23390 greater than SKF 38393. A single high-affinity binding site was found in membranes prepared in either Tris-citrate buffer or imidazole buffer; the affinity constants were 0.11 and 0.76 nM, respectively. The number of receptors (33 pmol/g wet weight) was independent of whether the membranes were prepared in Tris-citrate buffer or imidazole buffer and was similar to the number of receptors estimated by [3H]spiroperidol binding to dopamine receptors. Irradiation inactivation of frozen whole rat striata showed a monoexponential loss of [3H]NPA binding sites without a change in the binding affinity. The target size of the [3H]NPA binding site was 81,000 daltons, which shows that the functional molecular entity to bind the dopamine D-2 agonist was smaller than the molecular entity to bind the dopamine D-2 antagonist [3H]spiroperidol (target size, 137,000 daltons).  相似文献   

9.
Characterization and Regulation of Insulin Receptors in Rat Brain   总被引:9,自引:7,他引:2  
An in vitro receptor binding assay, using filtration to separate bound from free [125I]insulin, was developed and used to characterize insulin receptors on membranes isolated from specific areas of rat brain. The kinetic and equilibrium binding properties of central receptors were similar to those of hepatic receptors. The binding profiles in all tissues were complex and were consistent with binding in multiple steps or to multiple sites. Similar binding properties were found among receptors in olfactory tubercle/bulb, cerebral cortex, hippocampus, striatum, hypothalamus, and cerebellum. High affinity [125I]insulin binding sites (KD = 3-11 nM) were distributed evenly between membranes isolated from P1 and P2 fractions of these brain areas, with the exception of the olfactory tubercle in which binding to P2 membranes was four-fold greater (Bmax = 150 fmol/mg protein). One difference between insulin receptors in brain and peripheral target tissues, however, was observed. Following exposure to 0.17 microM insulin for 3 h at 37 degrees C, the number of specific [125I]insulin binding sites on adipocytes decreased by 40%, while the number of binding sites on minces of cerebral cortex/olfactory tubercle remained constant. The results suggest that although the binding characteristics of central and peripheral insulin receptors are similar, these receptors do not appear to be regulated in the same manner.  相似文献   

10.
1. The irradiation-inactivation procedure was used to study changes in the state of association of the protein components of adenylate cyclase in intact rat liver plasma membranes by measurement of alterations in the target size determined from the catalytic activity of the enzyme. 2. A decrease in target size at 30 degrees C in response to p[NH]ppG (guanosine 5'-[betagamma-imido]triphosphate) or GTP was demonstrated, which we take to reflect the dissociation of a regulatory subunit. The effect of GTP is potentiated by glucagon. This effect is not observed at 0 degrees C. 3. An increase in target size was observed in response to glucagon in the absence of guanine nucleotides, which we take to reflect the association of glucagon receptor with adenylate cyclase. 4. We propose a model for the activation of adenylate cyclase by glucagon in which the binding of the hormone to its receptor causes an initial association of the receptor with the catalytic unit of the enzyme and a regulatory subunit to form a ternary complex. The subsequent activation of the adenylate cyclase results from the dissociation of the ternary complex to leave a free catalytic unit in the activated state. This dissociation requires the binding of a guanine nucleotide to the regulatory subunit. 5. The effects of variation of temperature on the activation of adenylate cyclase by glucagon and guanine nucleotides were examined and are discussed in relation to the irradiation-activation data. 6. The effectiveness of hormones, guanine nucleotides and combinations of hormone and guanine nucleotides as activators of adenylate cyclase in both rat liver and rat fat-cell plasma membranes was studied and the results are discussed in relation to the model proposed, which is also considered in relation to the observations published by other workers.  相似文献   

11.
The epidermal growth factor (EGF) receptor mediates the induction of a transformed phenotype in normal rat kidney (NRK) cells by transforming growth factors (TGFs). The ability of EGF and its analogue TGF-alpha to induce the transformed phenotype in NRK cells is greatly potentiated by TGF-beta, a polypeptide that does not interact directly with binding sites for EGF or TGF-alpha. Our evidence indicates that TGF-beta purified from retrovirally transformed rat embryo cells and human platelets induces a rapid (t 1/2 = 0.3 h) decrease in the binding of EGF and TGF-alpha to high-affinity cell surface receptors in NRK cells. No change due to TGF-beta was observed in the binding of EGF or TGF-alpha to lower affinity sites also present in NRK cells. The effect of TGF-beta on EGF/TGF-alpha receptors was observed at concentrations (0.5-20 pM) similar to those at which TGF-beta is active in promoting proliferation of NRK cells in monolayer culture and semisolid medium. Affinity labeling of NRK cells and membranes by cross-linking with receptor-bound 125I-TGF-alpha and 125I-EGF indicated that both factors interact with a common 170-kD receptor structure. Treatment of cells with TGF-beta decreased the intensity of affinity-labeling of this receptor structure. These data suggest that the 170 kD high-affinity receptors for EGF and TGF-alpha in NRK cells are a target for rapid modulation by TGF-beta.  相似文献   

12.
The level of hCG/LH receptor has been shown to undergo marked changes during the life span of rat corpus luteum. To evaluate whether these fluctuations are due to changes in the receptor subunit structure or receptor protein content, the 125I-hCG binding activity and the receptor subunit structure were determined during different time periods of pseudopregnancy. The maximum 125I-hCG binding activity was observed on day 7, after which it decreased by 20 and 45% on day 11 and day 14, respectively. The Scatchard analysis of 125I-hCG binding data showed that the decrease in binding activity was caused by a change in the number of binding sites rather than a change in the binding affinity. The LH/hCG receptor in ovarian membranes obtained on days 7, 11 and 14 were then characterized by the method of affinity cross-linking. All four subunits of the LH/hCG receptor were detected in the ovarian membranes at all stages while the intensity decreased parallel to a decrease in hCG binding from day 7 to day 14. These results suggest that the decrease in 125I-hCG binding activity in rat ovarian membranes from day 7 to day 14 of pseudopregnancy is due to a decrease in receptor concentration rather than a change in the receptor subunit structure.  相似文献   

13.
Using the non-denaturing detergent 3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propane sulfonate (Chaps), cholecystokinin (CCK) receptors were solubilized from rat pancreatic membranes as a reversible complex with the CCK 31-39 nonapeptide 125I-labelled by the Bolton and Hunter reagent. Bound ligand dissociation from this soluble complex was similar to that from the membranous receptors of origin and the marked increase in the rate of dissociation induced by GTP was preserved in the soluble state, indicating that the solubilized CCK receptors remained functionally coupled with the guanine nucleotide regulatory site modulating the affinity for CCK. In fact, two guanine nucleotide regulatory proteins, Ns and Ni, coexisted in the soluble complex as established by identifying the 42-kDa subunit of Ns and the 40-kDa subunit of Ni, after ADP-ribosylation by cholera toxin and Bordetella pertussis toxin, respectively.  相似文献   

14.
125I-Insulin binding to rat liver plasma membranes initiated two processes that occurred with similar time courses: an increase of receptor affinity for hormone and degradation of the Mr 135,000 alpha subunit of the insulin receptor to a fragment of Mr 120,000. Inhibitors of serine proteinases prevented alpha subunit degradation without affecting the affinity change. This shows that the change of affinity is not produced by receptor proteolysis and that the intact alpha subunit of the insulin receptor can exist as a higher or lower affinity species. Hormone binding was much more rapid than receptor proteolysis and the initial rate of alpha subunit degradation was independent of the concentration of occupied lower affinity receptors. Only persistent hormone binding and the accumulation of higher affinity insulin-receptor complexes led to significant receptor proteolysis. As the incubation time between 125I-insulin and membranes increased, the rate at which hormone dissociated from Mr 135,000 complexes diminished, whereas hormone dissociated from Mr 120,000 complexes slowly after brief or extended incubations. These observations suggest that 125I-insulin binds to membranes to form low affinity complexes that are not substrates for proteolysis. A slow conformational change produces higher affinity hormone-receptor complexes that are selectively degraded. Thus, the conversion between states of affinity may play a role in the regulation of receptor proteolysis and, consequently, insulin action in cells.  相似文献   

15.
Fat cells from the hypothyroid rat fail to synthesize cyclic AMP in response to beta-adrenergic agonists, although possessing normal amounts of beta-adrenergic receptors (R) and catalytic adenylate cyclase activity. Membranes of hypothyroid rat fat cells contain Mr = 42,000 (major form), 46,0000, and 48,000 (minor forms) peptides of the stimulatory guanine nucleotide-binding regulatory component (Ns) radiolabeled in the presence of cholera toxin and [32P]NAD+. Maps of fragments generated by partial proteolysis of these radiolabeled peptides are virtually identical in hypothyroid and euthyroid preparations. Two-dimensional gel electrophoresis showed that the size and charge of the Mr = 42,000, 46,000, and 48,000 radiolabeled peptides are similar in euthyroid and hypothyroid rat fat cell membranes. Extracts of hypothyroid rat fat cell membranes express normal amounts of Ns activity as measured by their ability to reconstitute the adenylate cyclase of membranes of S49 mouse lymphoma cyc- mutant cells which lack functional Ns activity. Hybridization of hypothyroid rat fat cells with donor membranes of normal rat fat cells, rat hepatocytes, or S49 cyc- cells restores the beta-adrenergic response of these fat cells. Pretreating the donor membranes with a beta-adrenergic antagonist covalent label blocks the ability of these membranes to restore the response of the cells. Rat hepatocytes pretreated with a beta-adrenergic antagonist covalent label do not accumulate cyclic AMP in response to isoproterenol. Hybridization of these receptor-deficient hepatocytes with fat cell ghosts of euthyroid rats restores beta-adrenergic stimulation of cyclic AMP accumulation, whereas hybridization with fat cell ghosts of hypothyroid rat does not restore this response. Ns of pigeon erythrocyte membranes radiolabeled with cholera toxin and [32P]NAD+, extracted in cholate, and reconstituted with fat cell membranes interacts with fat cell R. The ability of R to interact with Ns of pigeon erythrocyte membranes is impaired when the reconstitution is performed with membranes from the hypothyroid rat fat cell. Hypothyroidism appears to affect the ability of R to interact productively with Ns, without affecting either R number or Ns structure and function.  相似文献   

16.
Molecular characteristics of receptors for atrial natriuretic factor   总被引:1,自引:0,他引:1  
Specific, high-affinity receptors for atrial natriuretic factor (ANF) have been identified on membranes from a variety of tissues and cultured cells. By affinity labeling procedures, radioactivity from 125I-labeled ANF was specifically incorporated into three different polypeptides of ca. 120,000, 70,000, and 60,000 daltons, which may represent the binding subunits of ANF receptors. These polypeptides were present in varying amounts in different target tissues. In rat adrenal membranes, the 120,000- and 70,000-dalton peptides were specifically labeled whereas in A10 rat smooth muscle cells, only the 60,000-dalton peptide was labeled. Membranes from rat kidney and rabbit aorta contain all three peptides. Gel filtration chromatography of solubilized receptors suggested that intact ANF receptors are large molecular complexes with apparent molecular masses in the range of 250,000-350,000 daltons. The differential labeling pattern observed with the various tissues suggested that there might be at least two different receptors composed of unique ANF-binding polypeptides.  相似文献   

17.
S Gammeltoft  M Fehlmann  E Van Obberghen 《Biochimie》1985,67(10-11):1147-1153
Insulin receptors in rat and human central nervous system have been identified by binding of 125I-insulin on purified synaptic plasma membranes; affinity labelling of receptors by chemical cross-linking 125I-insulin; or phosphorylation of receptors with [gamma-32P]ATP. Brain insulin receptors showed significant differences in their binding characteristics and subunit structure when compared with receptors in other tissues like adipose and liver cells: absence of negatively cooperative interactions; a distinct binding specificity i.e. porcine proinsulin, coypu insulin and insulin-like growth factor I and II showed 2-5 times higher binding affinity in brain than in other cell types; a smaller molecular size of the brain receptor alpha-subunit than in other tissues (Mr approximately 115,000 instead of 130,000). In contrast, the size (Mr approximately 94,000) and function of the insulin receptor beta-subunit kinase was identical with that described in other cells. We conclude, that insulin receptors in mammalian brain represent a receptor subtype which may mediate growth rather than metabolic activity of insulin.  相似文献   

18.
The target size for opioid receptor binding was studied after manipulations known to affect the interactions between receptor and GTP-binding regulatory proteins (G-proteins). Addition of GTP or its analogs to the binding reaction, exposure of intact cells to pertussis toxin prior to irradiation, or treatment of irradiated membranes with N-ethylmaleimide did not change the target size (approximately equal to 100 kDa) for opioid receptors in NG 108-15 cells and rat brain. These data suggest that the 100-kDa species does not include an active subunit of a G-protein or alternatively that GTP does not promote the dissociation of the receptor-G-protein complex. The presence of Na+ (100 mM) in the radioligand binding assay induced a biphasic decay curve for agonist binding and a flattening of the monoexponential decay curve for a partial agonist. In both cases the effect was explained by an irradiation-induced loss of the low affinity state of the opioid receptor produced by the addition of Na+. This suggests that an allosteric inhibitor that mediates the effect of sodium on the receptor is destroyed at low doses of irradiation, leaving receptors which are no longer regulated by sodium. The effect of Na+ on target size was slightly increased by the simultaneous addition of GTP but was not altered by pertussis toxin treatment. Thus, the sodium unit is distinct from G-proteins and may represent a new component of the opioid receptor complex. Assuming a simple bimolecular model of one Na+ unit/receptor, the size of this inhibitor can be measured as 168 kDa.  相似文献   

19.
Moran JM  Enna SJ  McCarson KE 《Life sciences》2001,68(19-20):2287-2295
GABA(B) receptors are heterodimers coupled to G-proteins. The present study was undertaken to investigate activation of GABA(B) receptors in cerebral cortex and spinal cord using [35S]GTPgammaS binding assays, a direct measure of G-protein activity. The results revealed that the GABA(B) agonist baclofen stimulates GTPgammaS binding in cerebral cortex, with an ED50 of 50microM. This response is blocked by the GABA(B) receptor antagonist CGP 55845A (100nM). In contrast, baclofen-stimulated GTPgammaS binding was not observed in adult spinal cord tissue under similar incubation conditions, or after varying magnesium, calcium, GDP, [35S]GTPgammaS, or membrane concentrations in the assay medium. Stimulation of adult rat spinal cord muscarinic receptors did result in a concentration-related increase in [35S]GTPgammaS binding. Baclofen-stimulated GTPgammaS binding in adult spinal cord did not appear after peripheral inflammation, despite significant increases in GABA(B) subunit mRNA levels. As opposed to adult, appreciable GTPgammaS binding was observed in membranes prepared from spinal cords of rats within the first 14 days of postnatal development, suggesting that GABA(B) receptor function in the rat spinal cord is developmentally regulated. The results indicate that GABA(B) receptors may not be coupled to G-proteins in the adult rat spinal cord, or couple in a way that differs from that in newborns or adult cerebral cortex.  相似文献   

20.
We transfected rat pheochromocytoma (PC12) cells with a cDNA encoding chicken integrin beta 1 subunit. The chicken integrin beta 1 subunit produced in stable transfectants associated with two major alpha subunits of rat integrins to form interspecific chimeric receptors. These receptors mediated cell spreading and initial neurite outgrowth on laminin as did corresponding endogenous integrins, although they were slightly less effective in inducing cell adhesion to laminin. These results indicate that chicken integrin beta 1 may functionally substitute for beta 1 subunit of rat integrins in PC12 cells. Apparently, the structure of the integrin beta 1 subunit is highly conserved in the evolution of these species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号