首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An atlas of protein-protein interactions across mouse tissues   总被引:1,自引:0,他引:1  
  相似文献   

2.
赵燕  周俭民 《植物学报》2020,55(1):69-75
蛋白质-蛋白质相互作用在真核生物的各项生命活动中发挥重要作用。与其它蛋白质互作研究技术相比,借助于烟草(Nicotiana benthamiana)瞬时表达系统的萤火素酶互补实验(LCA)具有简单、灵敏、可靠、高效和低背景等优点,并可轻松扩展为大规模蛋白质互作的筛选和验证研究。该文介绍了萤火素酶互补实验的具体操作过程,通过2种数据收集方法来定性并定量分析生物发光或发光强度,从而检测植物目标蛋白之间的相互作用。  相似文献   

3.
4.
Elucidation of molecular mechanisms underlying hostpathogen interactions is important for control and treatment of infectious diseases worldwide. Within the last decade, mass spectrometry (MS)-based proteomics has become a powerful and effective approach to better understand complex and dynamic host-pathogen interactions at the protein level. Herein we will review the recent progress in proteomic analyses towards bacterial infection of their mammalian host with a particular focus on enteric pathogens. Large-scale studies of dynamic proteomic alterations during infection will be discussed from the perspective of both pathogenic bacteria and host cells.  相似文献   

5.
  1. Download : Download high-res image (101KB)
  2. Download : Download full-size image
Highlights
  • •Guidelines for studying protein complexes via co-fractionation mass spectrometry.
  • •A novel procedure for profiling gold standard protein complexes in CF-MS data.
  • •Recommendations for efficient CF-MS fractionation collection.
  • •Scoring metric recommendations for precise and sensitive CF-MS data analysis.
  相似文献   

6.
  1. Download : Download high-res image (260KB)
  2. Download : Download full-size image
Highlights
  • •Proximity-dependent biotinylation (PDB) approaches involve fusion of a bait with an enzyme.
  • •BioID (biotin protein ligase) and APEX (peroxidase) are distinct enzymes used in PDB.
  • •Past, present and future development and applications of PDB are discussed.
  • •We review labeling mechanisms and kinetics to provide guidance for experimental design.
  • •We discuss controls and considerations for data interpretation.
  相似文献   

7.
蛋白质作为生命活动的执行者,其功能往往体现在与其他蛋白质的相互作用中,研究蛋白-蛋白相互作用对于人们深入了解和预防传染病、靶向治疗多基因疾病、阐明蛋白质的分子作用机制及各种复杂的生命现象具有重要意义。目前,有多种技术被用来研究蛋白间的相互作用,研究难点在于实时捕获瞬时或弱蛋白质间的相互作用,质谱技术(mass spectrometry, MS)可在某种程度上解决该难点。由于质谱技术可研究简单的蛋白质复合物再到大规模的蛋白质组实验,基于质谱技术研究蛋白质间相互作用被越来越多地应用于科学研究中。综述了蛋白质间相互作用检测方法的研究进展,重点介绍了氢氘交换质谱法和化学交联质谱法研究蛋白质间相互作用的优缺点及其应用,最后对基于质谱技术研究蛋白质间相互作用进行了总结与展望,以期为深入开展相关研究提供借鉴。  相似文献   

8.
Introduction: The threat bacterial pathogens pose to human health is increasing with the number and distribution of antibiotic-resistant bacteria, while the rate of discovery of new antimicrobials dwindles. Proteomics is playing key roles in understanding the molecular mechanisms of bacterial pathogenesis, and in identifying disease outcome determinants. The physical associations identified by proteomics can provide the means to develop pathogen-specific treatment methods that reduce the spread of antibiotic resistance and alleviate the negative effects of broad-spectrum antibiotics on beneficial bacteria.

Areas covered: This review discusses recent trends in proteomics and introduces new and developing approaches that can be applied to the study of protein-protein interactions (PPIs) underlying bacterial pathogenesis. The approaches examined encompass options for mapping proteomes as well as stable and transient interactions in vivo and in vitro. We also explored the coverage of bacterial and human-bacterial PPIs, knowledge gaps in this area, and how they can be filled.

Expert commentary: Identifying potential antimicrobial candidates is confounded by the complex molecular biology of bacterial pathogenesis and the lack of knowledge about PPIs underlying this process. Proteomics approaches can offer new perspectives for mechanistic insights and identify essential targets for guiding the discovery of next generation antimicrobials.  相似文献   


9.
Using a bioinformatic approach, we analyzed the correspondence in genetic distance matrices between all possible pairwise combinations of 82 photosynthetic genes in 10 species of cyanobacteria. Our analysis reveals significant correlations between proteins linked in a conserved gene order and between structurally identified interacting protein scaffolds that coordinate the binding of cofactors involved in photosynthetic electron transport. Analyses of amino acid substitution rates suggest that the tempo of evolution of genes encoding core metabolic processes in the photosynthetic apparatus is highly constrained by protein-protein, protein-lipid, and protein-cofactor interactions (collectively called "protein interactions"). These interactions are critical for energy transduction, primary charge separation, and electron transport and effectively act as an internal selection pressure governing the conservation of clusters of photosynthetic genes in oxygenic prokaryotic photoautotrophs. Consequently, although several proteins within the photosynthetic apparatus are biophysically and physiologically inefficient, selection has not significantly altered the genes encoding these essential proteins over billions of years of evolution. In effect, these core proteins have become "frozen metabolic accidents."  相似文献   

10.
The in vivo identification and characterization of protein-protein interactions (PPIs) are essential to understand cellular events in living organisms. In this review, we focus on protein complementation assays (PCAs) that have been developed to detect in vivo protein interactions as well as their modulation or spatial and temporal changes. The uses of PCAs are increasing, spanning different areas such as the study of biochemical networks, screening for protein inhibitors and determination of drug effects. Emphasis is given to approaches that rely on signals of spectroscopic nature (i.e. fluorescence or luminescence), the ones that are more directly related to bioimaging.  相似文献   

11.
The role of electrostatic interactions in stabilization of the thrombin-hirudin complex has been investigated by means of two macroscopic approaches: the modified Tanford-Kirkwood model and the finite-difference method for numerical solution of the Poisson-Boltzmann equations. The electrostatic potentials around the thrombin and hirudin molecules were asymmetric and complementary, and it is suggested that these fields influence the initial orientation in the process of the complex formation. The change of the electrostatic binding energy due to mutation of acidic residues in hirudin has been calculated and compared with experimentally determined changes in binding energy. In general, the change in electrostatic binding energy for a particular mutation calculated by the modified Tanford-Kirkwood approach agreed well with the experimentally observed change. The finite-difference approach tended to overestimate changes in binding energy when the mutated residues were involved in short-range electrostatic interactions. Decreases in binding energy caused by mutations of amino acids that do not make any direct ionic interactions (e.g., Glu 61 and Glu 62 of hirudin) can be explained in terms of the interaction of these charges with the positive electrostatic potential of thrombin. Differences between the calculated and observed changes in binding energy are discussed in terms of the crystal structure of the thrombin-hirudin complex.  相似文献   

12.
  1. Download : Download high-res image (339KB)
  2. Download : Download full-size image
Highlights
  • •New quality assessment metrics to evaluate proteome-wide cross-linking mass spectrometry (XL-MS) data sets.
  • •New “MS3-centric” cross-link search engine named MaXLinker with high sensitivity and specificity.
  • •More than 9300 cross-links from our human proteome-wide XL-MS study.
  • •Orthogonal experimental validation of novel interactions identified in our study.
  相似文献   

13.
Mass spectrometry (MS) is becoming increasingly popular in the field of structural biology for analyzing protein three-dimensional-structures and for mapping protein–protein interactions. In this review, the specific contributions of chemical crosslinking and native MS are outlined to reveal the structural features of proteins and protein assemblies. Both strategies are illustrated based on the examples of the tetrameric tumor suppressor protein p53 and multisubunit vinculin-Arp2/3 hybrid complexes. We describe the distinct advantages and limitations of each technique and highlight synergistic effects when both techniques are combined. Integrating both methods is especially useful for characterizing large protein assemblies and for capturing transient interactions. We also point out the future directions we foresee for a combination of in vivo crosslinking and native MS for structural investigation of intact protein assemblies.  相似文献   

14.
聂爱华 《生命科学》2010,(10):1053-1068
蛋白质-蛋白质相互作用在多种细胞功能中具有重要的作用。靶向蛋白质-蛋白质相互作用已经成为新药发现的重要策略,但发现能阻断蛋白质-蛋白质相互作用的小分子药物是一个巨大的挑战。尽管如此,近年来人们还是发现了许多能调控蛋白质-蛋白质相互作用的小分子。该文主要总结了在病毒进入、细胞凋亡通路和神经退行性疾病等方面的蛋白质-蛋白质相互作用小分子抑制剂的研究进展。  相似文献   

15.
  1. Download : Download high-res image (248KB)
  2. Download : Download full-size image
Highlights
  • •Used affinity-enrichable, isotopically coded, and MS-cleavable crosslinker.
  • •Targeted acquisition strategy based on isotopic-coding described and evaluated.
  • •Novel data analysis pipeline developed provides improved crosslink identification.
  • •Large dataset reveals hundreds of mitochondrial protein-protein interactions.
  相似文献   

16.
蛋白质相互作用既是蛋白质执行功能的主要方式,也是细胞功能调控网络的结构基础。蛋白质间异常的相互作用及其连锁网络的紊乱是引起许多病理改变的原因。作为功能基因组和蛋白质组研究的重要内容,规模化蛋白质相互作用研究已成为近年国际上研究的热点之一。文章综述了当前规模化蛋白质相互作用研究中的常用技术和常用蛋白质相互作用数据库,研究者可根据研究需要和技术特点利用这些资源。  相似文献   

17.
刘佳  蔡禄  邢永强 《生物信息学》2010,8(4):341-343,346
蛋白质是一切生命活动的物质基础,研究蛋白质的相互作用有助于理解生物过程的分子机制,阐明疾病的分子机理。本文依据蛋白质序列组分特征,应用基于多样性增量的二次判别分析方法,对人类的1 963对蛋白质相互作用进行了预测。自洽检验的各项预测指标均在79%以上,且交叉检验的总精度也大于60%,表明本算法可以用于蛋白质相互作用预测。  相似文献   

18.
A better understanding of the molecular mechanisms underlying disease is key for expediting the development of novel therapeutic interventions. Disease mechanisms are often mediated by interactions between proteins. Insights into the physical rewiring of protein–protein interactions in response to mutations, pathological conditions, or pathogen infection can advance our understanding of disease etiology, progression, and pathogenesis and can lead to the identification of potential druggable targets. Advances in quantitative mass spectrometry (MS)‐based approaches have allowed unbiased mapping of these disease‐mediated changes in protein–protein interactions on a global scale. Here, we review MS techniques that have been instrumental for the identification of protein–protein interactions at a system‐level, and we discuss the challenges associated with these methodologies as well as novel MS advancements that aim to address these challenges. An overview of examples from diverse disease contexts illustrates the potential of MS‐based protein–protein interaction mapping approaches for revealing disease mechanisms, pinpointing new therapeutic targets, and eventually moving toward personalized applications.  相似文献   

19.
Imaging protein-protein interactions in living cells   总被引:7,自引:0,他引:7  
The complex organization of plant cells makes it likely that the molecular behaviour of proteins in the test tube and the cell is different. For this reason, it is essential though a challenge to study proteins in their natural environment. Several innovative microspectroscopic approaches provide such possibilities, combining the high spatial resolution of microscopy with spectroscopic techniques to obtain information about the dynamical behaviour of molecules. Methods to visualize interaction can be based on FRET (fluorescence detected resonance energy transfer), for example in fluorescence lifetime imaging microscopy (FLIM). Another method is based on fluorescence correlation spectroscopy (FCS) by which the diffusion rate of single molecules can be determined, giving insight into whether a protein is part of a larger complex or not. Here, both FRET- and FCS-based approaches to study protein-protein interactions in vivo are reviewed.  相似文献   

20.
真核细胞内多种无膜及有膜细胞器为各种生物学过程的发生提供场所.被膜细胞器通过它们之间的膜接触位点所进行的信息交流和物质交换是维持生命活动所必需的.绘制活细胞中细胞器或膜接触位点等处的蛋白质组图谱,将有助于解析这些部位的生物学功能及作用机制,并为研究细胞器相互作用提供基础.但由于无膜细胞器或膜接触位点很难分离纯化,传统的生化方法难以系统解析其中的蛋白质组.最近报道的几种基于酶类的蛋白质邻近标记技术,则为系统分析上述空间受限的蛋白质组这一难题提供了有效的解决方案.通过将能催化产生活性自由基(最常见的是生物素及其衍生物的自由基)的酶连接到目标蛋白上,可对其邻近的蛋白质组进行共价标记,从而使后者的分离和鉴定成为可能,并可以运用于活细胞中的动态标记.我们在此综述了几种最新的邻近标记策略的原理及应用,并对它们的优势与局限性进行了比较,以期为细胞器互作的蛋白质组学研究提供参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号