首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background: Compared to adults, children maybe more highly exposed to toxic substances in drinking water because they consume more water per unit of body weight. The U.S. Environmental Protection Agency (USEPA) has developed new guidance for selecting age groups and age-specific exposure factors for assessing children's exposures and risks to environmental contaminants. Research Aim: To demonstrate the application and importance of applying age-specific drinking water intake rates, health reference values, and exposure scenarios when assessing drinking water exposures because these approaches illustrate the potential for greater potential for adverse health effects among children. Methods: manganese, an essential nutrient and neurotoxicant, was selected as a case study and chemical of potential concern for children's health. A screening-level risk assessment was performed using age-specific drinking water intake rates and manganese concentrations from U.S. public drinking water systems. Results: When age-specific drinking water intake rates are used to calculate dose, formula-fed infants receive the highest dose of manganese from drinking water compared to all other age groups. Estimated hazard quotients suggest adverse health effects are possible. Use of USEPA's standardized childhood age groups and childhood exposure factors significantly improves the understanding of childhood exposure and risks.  相似文献   

2.
Risk assessments were conducted for N,N-diethyl-meta-toluamide (DEET), triclosan, and acetaminophen to evaluate the risk from exposure to trace levels of these chemicals through drinking water consumption. We estimated exposure to these chemicals through drinking water consumption by generating distributions for key exposure parameters using Monte Carlo analysis. Body weight and water consumption was modeled using data from the U.S. Environmental Protection Agency (USEPA) Exposure Factor Handbook. Water concentrations were derived from reported concentrations in streams. Dose-response was evaluated through extensive literature searches for toxicology data for each chemical. Acceptable daily intakes (ADIs) were then derived from the available toxicology data. The exposure distributions were compared to the ADIs to evaluate the potential risk to the population from drinking water exposure. ADIs of 0.100, 0.153, and 0.05 mg/kg-day were derived for DEET, acetaminophen and triclosan, respectively. The maximum estimated exposures (0.082, 0.834, and 0.193 μ g/kg/day for DEET, acetaminophen, and triclosan, respectively) were at least 100-fold lower than the corresponding ADIs. Based on these assessments, we conclude that there is minimal risk to human health from exposure to these chemicals at the reported concentrations in U.S. streams.  相似文献   

3.
This study evaluated cancer risk and non-cancer human health hazard from exposure to the toxicants such as As, Cu, Pb, Zn, Mn, and CN in water from a southwestern river system in Ghana that drains through gold mining areas, using 108 water samples collected with random sampling techniques and analyzed in accordance with standard methods of chemical analysis outlined by the U.S. Environmental Protection Agency (USEPA). The concentrations of Cu and Zn were within World Health Organization and USEPA guideline values; Mn, free cyanide, As, and Pb values in most cases either exceeded USEPA and WHO values or both. The concentrations of the toxicants were used as input parameters in the cancer and non-cancer study that was conducted in line with USEPA risk assessment guidelines. The results of As cancer health risk revealed higher risk cases in two locations (Potroase and Dominase); non-cancer health risk for As was higher in 10 of the 14 locations, with other metals being of health concern at few locations in the study area. In conclusion, the findings of this study hold several policy implications as residents of mining communities still depend on these water bodies as their source of drinking water.  相似文献   

4.
Abstract

Shallow groundwater contaminated with nitrates may result in human health risks. Groundwater quality in the Beni Amir irrigation perimeter in Tadla plain, Morocco, is influenced by agriculture and farming-related activities. This study was carried out to assess the nitrate contamination of groundwater for drinking purposes by comparing it to Moroccan and WHO guidelines, and by estimating the potential human health effect of nitrates using the model recommended by the USEPA. The results showed that the nitrate content of groundwater fall between 0 and 82.08?mg L?1 (mean 24.73?mg L?1), with 38.10% of groundwater samples exceed the Moroccan and WHO limits for drinking. Groundwater nitrates mainly originated from intensive agricultural practices. The health effects of oral exposure to nitrate are higher than those of dermal exposure. For non-carcinogenic risks, 57.14% of samples showed hazard index (HI) values >1, indicating potential risks. The non-carcinogenic risk for infant and female are higher than that for females and males. The results of this study will offer a health risk reference for local residents and can help to propose suitable management ensuring safe drinking water.  相似文献   

5.
Historical concentrations of trichloroethylene (TCE) and other chemicals in drinking water at the U.S. Marine Corps Base at Camp Lejeune, NC, were sufficiently elevated to raise potential health concerns. The 1952–1984 mean TCE concentration (138 µg/L) exceeded the U.S. Environmental Protection Agency's (USEPA's) current maximum contaminant level (MCL) of TCE by 28-fold, with the corresponding dose (3.9E–03 mg/kg-day) exceeding all three candidate USEPA reference dose (RfD) values by 8- to 11-fold. Today, TCE hazard quotients (HQs) of 8–11 compel immediate action by USEPA. The mean dose also exceeds the supporting RfD values for toxic nephropathy and increased kidney weight, as well as the point of departure (POD) for toxic nephropathy. Furthermore, the estimated doses for 34% of the 9-month rolling averages exceed the POD for the highest RfD value for fetal heart defects. The incidences of nephropathy and fetal heart defects should be thoroughly evaluated among those who were exposed. Long-term follow-up will be required to assess potential health effects for the 500,000 to 1 million people who may have used the contaminated water at Camp Lejeune or were exposed in utero. This should serve as a cautionary tale for the thousands of Department of Defense sites across the USA (and other similarly contaminated sites elsewhere in the world) that are commonly contaminated with chemicals such as those at Camp Lejeune, where necessary sampling should be conducted to identify and mitigate any likely ongoing (or future) exposures of potential health concern.  相似文献   

6.
Arsenic is widely distributed in the environment by natural and human means. The potential for adverse health effects from inorganic arsenic depends on the level and route of exposure. To estimate potential health risks of inorganic arsenic, the apportionment of exposure among sources of inorganic arsenic is critical. In this study, daily inorganic arsenic intake of U.S. adults from food, water, and soil ingestion and from airborne particle inhalation was estimated. To account for variations in exposure across the U.S., a Monte Carlo approach was taken using simulations for 100,000 individuals representing the age, gender, and county of residence of the U.S. population based on census data. Our analysis found that food is the greatest source of inorganic arsenic intake and that drinking water is the next highest contributor. Inhalation of airborne arsenic-containing particles and ingestion of arsenic-containing soils were negligible contributors. The exposure is best represented by the ranges of inorganic arsenic intake (at the 10th and 90th percentiles), which were 1.8 to 11.4 µg/day for males and 1.3 to 9.4 µg/day for females. Regional differences in inorganic arsenic exposure were due mostly to consumption of drinking water containing differing inorganic arsenic content rather than to food preferences.  相似文献   

7.
Abstract

This study was performed to measure arsenic (As) contents in groundwater/drinking water of high schools and its effects on human health. Chronic daily intake, hazardous quotient (HQ), carcinogenic risk (CR), hazardous index (HI), and carcinogenic indices (CI) for oral and dermal exposure to arsenic were calculated. Samples were taken from high schools in four tehsils of Multan. As contents ranged from 3.25 to 184?µg/l and 99% samples exceeded World Health Organization safe limit (10?µg/l). HQ for Multan city (1.70) and for Multan Saddar (1.38) exceeded USEPA permissible toxic risk value (1.0). CR in four tehsils for oral (0.0001–0.0003) and dermal exposure (0.0000049–0.000011) exceeded USEPA limit (10?6). HI for tehsil Multan city (1.75) and Multan Saddar (1.42) exceeded the limit (1.0). CI for four tehsils ranged from 0.00022 to 0.0008 exceeding USEPA limit (10?6) indicating high chronic and carcinogenic health risk to exposed population. Results indicated that groundwater of district Multan is not fit for human consumption due to excessive arsenic contamination. It invites attention of water supplying agency and educational authorities to take steps for provision of arsenic free safe drinking water to students and local area peoples.  相似文献   

8.
The oxygenate methyl tertiary butyl ether (MTBE) has been added to reformulated gasoline in the U.S. to meet national ambient air quality standards. Although MTBE has provided significant health benefits in terms of reduced criteria and toxic air pollutants, detections of MTBE in some groundwater and drinking water sources have raised concerns about potential environmental contamination and human exposures. In this paper, we examine the frequency and concentration of MTBE detections in drinking water sources in California from 1995 to 1999, and provide a preliminary analysis of the distribution of household exposures to MTBE from water-related activities. Using published data on the toxicity and possible cancer hazard posed by MTBE, we estimate the likely cancer and non-cancer risks for the general population in California from past and potential future MTBE exposures. More highly exposed subgroups were also addressed. Our findings indicate that less than 2% of all sampled drinking water sources in California had detectable levels of MTBE in 1999, with average MTBE drinking water concentrations ranging from 0.09 to 4.9?ppb for this year. Both the detection rate for MTBE and average MTBE concentrations have remained relatively stable since 1995, despite increased sampling of drinking water sources in California. The probabilistic exposure analysis suggests that drinking water exposures to MTBE are unlikely to pose a significant health risk for the general population or more highly exposed individuals in California.  相似文献   

9.
The current U.S. Environmental Protection Agency's (USEPA's) risk analysis on the Integrated Risk Information System (IRIS) for arsenic in drinking water is based on an epidemiological study of skin cancer in Taiwan. Assumptions used in the USEPA application of the multistage-Weibull model for risk estimation were varied to assess the effect on predicted risk of skin cancer to the U.S. population at arsenic concentrations of 1 to 50?µg/L in drinking water. Among the assumptions tested, the only notable change in risk estimates was a reduction when the arsenic concentration used as representative for Taiwan villages in the low range (<300?µg/L) was increased to the 75th percentile (245?µg/L) in place of the mean used in the USEPA analysis (170?µg/L), but the representative value for Taiwan villages in the high range (≥600?µg/L) was not increased simultaneously to the 75th percentile. Additionally, a simulation study was conducted using records of arsenic measurements in wells from the same period and region of Taiwan as the original study. The exposure-response curve estimated from 60 villages (60 data points) differed only marginally from the outcome when data were summarized into four data points (as in the USEPA skin cancer analysis). Briefly discussed are differences between the study area of Taiwan and the U.S. in nutritional status and consumption of inorganic arsenic in food that might bias predicted U.S. skin cancer risks.  相似文献   

10.
The presence of radon in drinking water causes radiation-related health hazards both through inhalation and ingestion. In the present study, 28 drinking water samples from natural flowing springs, freshwater ponds, and deep hand pumps were analyzed in the fault zone of Reasi region of Jammu &; Kashmir. Radon measurement was performed using the RAD7 electronic device for radon content determination. Average mean values of these samples vary from 2.80 ± 0.78 to 74.37 ± 2.76 Bq l?1. Nineteen drinking water samples analyzed have radon levels in excess of USEPA recommended maximum contamination level of 11.1 Bq l?1. The annual effective dose from radon in water due to its ingestion and inhalation per individual has also been calculated. Uranium concentration in these water samples was also analyzed for a possible correlation between different types of rocks and values of radon in water. Results obtained have been compared with the results of earlier investigators for mean radon concentration and mean annual effective dose for radon in water from different regions of northern India and Pakistan. It has been found that radon levels in a significant number of water samples collected from the region of fault line are higher than USEPA recommendations. A positive correlation is observed between the depth of the water source and the values of radon levels in water samples collected from these sources. Measurements of radon concentration in these water samples were also performed with a Smart Radon Monitor designed by Bhabha Atomic Research Centre, Trombay, Mumbai, India, for a comparative analysis.  相似文献   

11.
A safety characterization specific to children was performed for methyl ethyl ketone (MEK) according to the guidelines of the Voluntary Children's Chemical Evaluation Program (VCCEP). The characterization indicates that MEK exposures are not expected to pose an acute or chronic risk to children. Hazard information, summarized as per the VCCEP Tier structure, indicated no need for additional studies. All exposure pathways potentially relevant to children were considered, including child contact with environmental media, food, drinking water, parental transfer to child (human milk or dermal contact), direct consumer product use, and presence during product use. The assessment found that exposures from anthropogenic sources that children may encounter on a daily basis are very low, and in particular well below the chronic inhalation and oral health benchmarks (RfC and RfD) derived by the U.S. Environmental Protection Agency (USEPA). Indoor uses of consumer products can result in higher acute exposures, but these are short-lived and also fall below chronic benchmarks adjusted to an acute timeframe. In addition, MEK is rapidly metabolized and excreted, thus acute exposures do not lead to an increase in body burden over time. The USEPA concluded the VCCEP submission sufficiently characterized potential risks to children, and that no additional toxicity tests were needed for MEK.  相似文献   

12.
High and low levels of fluoride in drinking waters have been considered as a major public health issue in recent years. This cross-sectional study was conducted over five consecutive years (from 2012 to 2016) in the water distribution network of Mashhad city, Iran with the objectives of determining levels of fluoride and to perform health risk assessment among residents in the study area. Water samples were taken from 30 stations and were analyzed using UV-visible spectrophotometer. The mean annual concentrations of fluoride in all stations during five years of consecutive study were lower than the respective maximum permissible limits (1.5 mg/L) in water as regulated by the WHO. The human health risk assessment was performed by calculating the chronic daily intake and hazard quotient (HQ) of fluoride through human oral intake for adults (men and women) and children for each year during a five-year study. Health risk analysis in this study presented that the non-carcinogenic risk associated with fluoride exposure through drinking water in Mashhad was mostly acceptable because the mean HQ values of fluoride were lower than 1.  相似文献   

13.
Gestational exposure to pesticides may adversely affect fetal development and birth outcomes. However, data on fetal exposure and associated health effects in newborns remain sparse. We measured a variety of pesticides and metabolites in maternal urine, maternal serum, cord serum, amniotic fluid, and meconium samples collected at the time of cesarean delivery from 150 women in central New Jersey, USA. Women who used pesticides at home had higher concentrations of pesticides or metabolites in cord serum [e.g., dacthal (p = .007), diethyltoluamide (p = .043), and phthalimide (p = .030)] than those who did not use pesticides, suggesting that residential use of pesticides may contribute to overall exposure as assessed by biomonitoring. Except for orthophenylphenol, the concentrations of most pesticides in biological matrices of this study population were either comparable to or lower than the levels reported in previous studies and in the U.S. general population. The daily exposure estimates of two representative organophosphorus insecticides (chlorpyrifos and diazinon) were lower than most regulatory protection limits (USEPA oral benchmark dose10/100, USEPA reference oral dose, or ATSDR minimal risk levels); however, they were near or at the USEPA's population-adjusted doses for children and women. No abnormal birth outcomes or other clinical endpoints were noted in those newborns who had higher concentrations of orthophenylphenol during the perinatal period.  相似文献   

14.
Purpose

As knowledge grows of the potentially harmful effects of chemicals in widespread use, emerging contaminants have become a major source of concern and uncertainty for public health officials and water quality managers. Perfluorinated alkyl substances, often referred to as perfluorinated compounds, have come under recent scrutiny and are present in groundwater at many sites across the USA. We examine the life cycle impacts of treating drinking water at one such site.

Methods

We assembled life cycle models for groundwater treatment and bottled water delivery to residents of Wright-Patterson Air Force Base, Ohio, where wells were recently taken out of service due to concerns related to perfluoroalkyl and polyfluoroalkyl substance (PFAS) contamination. Two treatment methods, granular activated carbon filtration and ion-exchange columns, were modeled under a range of contaminant concentrations covering three orders of magnitude: 0.7, 7.0, and 70 μg/L PFAS. On-site infrastructure, operations, and adsorbent cycling were included in models. Impacts of bottled water production and supply were assessed using two data sets reflecting a range of production and supply chain assumptions. Uncertainty in input data was captured using Monte Carlo simulations.

Results and discussion

Results show that for contaminant concentrations below 70 μg/L, the dominant contributor to life cycle impacts is electricity use at the treatment facility. Production, reactivation, and disposal of treatment media become major sources of impact only at very high PFAS concentrations. Though the life cycle impacts of bottled water are up to three orders of magnitude higher than remediated groundwater on a volumetric basis, supplementing a contaminated water supply with bottled drinking water may result in lower life cycle human health impacts when only a small proportion of the total population is vulnerable.

Conclusions

These results provide quantitative data and proposed scenarios for water quality managers and risk management officials in developing plans to address PFAS contamination and emerging contaminants in general. However, more information on the direct human health effects of these poorly understood pollutants is needed before the trade-offs in life cycle health impacts can be comprehensively assessed.

  相似文献   

15.
This study was aimed to examine the risk of chronic arsenic (As) exposure for the residents living in Nui Phao, Thai Nguyen in the northern Vietnam. Groundwater, vegetables, human hair, and nail samples were collected from volunteers living in Nui Phao. The results revealed that 75% of the groundwater samples had As exceeding the World Health Organization (WHO) drinking water guideline of 10 µg L?1. The result of As concentration for most of the vegetable samples was greater than the WHO/FAO safe (0.1?mg kg?1). The result of hair and nail samples in this study showed that 3.5 and 20% of the samples had As concentration exceeding the level of As toxicity in hair and nails, respectively. The result of health risks indicated that the potential health risk of As contamination is greater for groundwater than vegetables. The total hazard quotient (HQ) value through vegetables ingestion and drinking water exceeded 1.0 suggesting potential health risk for local residents. The calculation of potential carcinogenic risk through both consumption of vegetables and drinking water was low cancer risk in adults. Other food sources and the exposure pathways are needed to exactly assess health risks in this area.  相似文献   

16.
Quantification of uranium in drinking water has great significance considering its effects on human health. Drinking water samples collected from different sources, viz., hand pumps, tube-wells, and public water supply from Sonipat and Panipat districts of Haryana, India have been analyzed for uranium and other physico-chemical parameters. Uranium concentration in water samples was measured using Pulsed LED Fluorimeter. Uranium concentration in collected water samples ranges from 9.1 to 155.1 µg/L in Sonipat district and 14.9 to 123.3 µg/L in Panipat district. It was inferred from the data that uranium concentration in some water samples was higher than WHO &; USEPA recommended limit of 30 µg/L. The mean cancer risk due to uranium in drinking water in Sonipat and Panipat districts was found to be 1.40 × 10?4 and 1.63 × 10?4, respectively, which is lower than the maximum permissible limit (<10?3). Total Dissolve Salts (TDS) in water samples of some villages in Sonipat district was higher than permissible limits for drinking prescribed by WHO &; BIS.  相似文献   

17.
The aim of the study is to assess the probabilistic non-cancer and cancer risks by recreational bathing in Tres Arroyos creeks (southeastern Buenos Aires Province, Argentina). In these waters, hazardous substances (heavy metals, pesticides) have been detected, possibly related to agricultural activities. To assess such risk, USEPA models in aggregated (exposure through accidental oral water intake and dermal contact simultaneously) and cumulative approaches (combined exposure to more than one substance) were applied, performed for bathers of 5, 10, 15, and 20 years old. The results show that chronic bathing in these waters is not harmful at the concentrations and the exposure scenarios considered. Arsenic was the riskiest substance for both non-cancer and cancer effects, affecting mainly the youngest age group, and the accidental water intake during bathing was the most relevant pathway of exposure. On the other hand, the study highlights the key role of the frequency and duration of the bath event. We discuss the results in light of a previous paper of our authorship concluding that the health risk assessment is a valid alternative to analyze recreational water quality, which, unfortunately, is unused by water management agencies in Argentina.  相似文献   

18.
In 1976, the US Environmental Protection Agency (USEPA) published the results of a national survey that showed that chloroform and other trihalomethanes (THMs) were ubiquitous in chlorinated drinking water. Also in 1976, the US National Cancer Institute published results linking chloroform to cancer in laboratory animals, thus giving rise to an important public health issue. Although numerous disinfection by-products (DBPs) have been reported in the literature since that time, with more than 700 confirmed species to date, only a small number have been addressed in either quantitative or health effects studies. The DBPs that have been quantified in drinking water are generally present at low to mid μg/l levels or below. Approximately 50% of the total organic halide (TOX) formed during the chlorination of drinking water and more than 50% of the assimilable organic carbon (AOC) formed during ozonation of drinking water is still not accounted for and little is known about the potential toxicity of many of the vast number of DBPs present in drinking water. The presence of free chlorine is a prerequisite to THM formation. Therefore, a robust understanding of the mechanisms of both chlorine decay and THM formation are fundamental to the management of THMs in water supply systems. This paper presents a review of work undertaken to improve our understanding of these key phenomena and highlights areas of vulnerability in our knowledge and so recommends areas of future research.  相似文献   

19.
Perchlorate Chemistry: Implications for Analysis and Remediation   总被引:16,自引:0,他引:16  
Since the discovery of perchlorate in the ground and surface waters of several western states, there has been increasing interest in the health effects resulting from chronic exposure to low (parts per billion [ppb]) levels. With this concern has come a need to investigate technologies that might be used to remediate contaminated sites or to treat contaminated water to make it safe for drinking. Possible technologies include physical separation (precipitation, anion exchange, reverse osmosis, and electrodialysis), chemical and electrochemical reduction, and biological or biochemical reduction. A fairly unique combination of chemical and physical properties of perchlorate poses challenges to its analysis and reduction in the environment or in drinking water. The implications of these properties are discussed in terms of remediative or treatment strategies. Recent developments are also covered.  相似文献   

20.
A comprehensive, quantitative risk assessment is presented of the toxicological risks from buried Exxon Valdez subsurface oil residues (SSOR) to a subpopulation of sea otters (Enhydra lutris) at Northern Knight Island (NKI) in Prince William Sound, Alaska, as it has been asserted that this subpopulation of sea otters may be experiencing adverse effects from the SSOR. The central questions in this study are: could the risk to NKI sea otters from exposure to polycyclic aromatic hydrocarbons (PAHs) in SSOR, as characterized in 2001–2003, result in individual health effects, and, if so, could that exposure cause subpopulation-level effects? We follow the U.S. Environmental Protection Agency (USEPA) risk paradigm by: (a) identifying potential routes of exposure to PAHs from SSOR; (b) developing a quantitative simulation model of exposures using the best available scientific information; (c) developing scenarios based on calculated probabilities of sea otter exposures to SSOR; (d) simulating exposures for 500,000 modeled sea otters and extracting the 99.9% quantile most highly exposed individuals; and (e) comparing projected exposures to chronic toxicity reference values. Results indicate that, even under conservative assumptions in the model, maximum-exposed sea otters would not receive a dose of PAHs sufficient to cause any health effects; consequently, no plausible toxicological risk exists from SSOR to the sea otter subpopulation at NKI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号