首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
RPC53 is shown to be an essential gene encoding the C53 subunit specifically associated with yeast RNA polymerase C (III). Temperature-sensitive rpc53 mutants were generated and showed a rapid inhibition of tRNA synthesis after transfer to the restrictive temperature. Unexpectedly, the rpc53 mutants preferentially arrested their cell division in the G1 phase as large, round, unbudded cells. The RPC53 DNA sequence is predicted to code for a hydrophilic M(r)-46,916 protein enriched in charged amino acid residues. The carboxy-terminal 136 amino acids of C53 are significantly similar (25% identical amino acid residues) to the same region of the human BN51 protein. The BN51 cDNA was originally isolated by its ability to complement a temperature-sensitive hamster cell mutant that undergoes a G1 cell division arrest, as is true for the rpc53 mutants.  相似文献   

3.
4.
Ruthenium(III) complexes are increasingly attracting the interest of researchers due to their promising pharmacological properties. Recently, we reported that the cis-(dichloro)tetrammineruthenium(III) chloride compound has cytotoxic effects on murine sarcoma 180 (S-180) cells. In an effort to understand the mechanism responsible for their cytotoxicity, study we investigated the genotoxicity, cell cycle distribution and induction of apoptosis caused by cis-(dichloro)tetrammineruthenium(III) chloride in S-180 tumour cells. cis-(dichloro)tetrammineruthenium(III) chloride treatment induced significant DNA damage in S-180 cells, as detected by the alkaline comet assay. In the cell cycle analysis, cis-(dichloro)tetrammineruthenium(III) chloride caused an increase in the number of cells in G1 phase, accompanied by a decrease in the S and G2 phases after 24 h of treatment. In contrast, the cell cycle distribution of S-180 cells treated with cis-(dichloro)tetrammineruthenium(III) chloride for 48 h showed a concentration-dependent increase in the sub-G1 phase (indicating apoptosis), with a corresponding decrease in cells in the G1, S and G2 phases. In addition, cis-(dichloro)tetrammineruthenium(III) chloride treatment induced apoptosis in a time-dependent manner, as observed by the increased numbers of annexin V-positive cells. Taken together, these findings strongly demonstrate that DNA damage, cell cycle changes and apoptosis may correlate with the cytotoxic effects of cis-(dichloro)tetrammineruthenium(III) chloride on S-180 cells.  相似文献   

5.
6.
7.
研究盘基网柄菌(Dictyostelium discoideum)细胞周期的相关问题可以为真核生物细胞周期调控研究提供理论基础。细胞计数和细胞倍增时间计算的结果表明,突变allC细胞的倍增时间为2.36 h,仅为KAx-3细胞倍增时间的1/3。进一步利用流式细胞术测定两种细胞的细胞周期,并结合实时荧光定量PCR技术测定cycB1和cdk1基因的相对表达量的比值,我们发现,培养16 h的allC细胞处于G2期的数目(1.51%)显著少于KAx-3细胞(16.61%)(P0.05)。allC细胞和KAx-3细胞的细胞周期素B1(cyclinB1,cycB1)基因相对表达量分别是2.5和0.24(P0.05),两者相差10倍。两种类型细胞中处于G2期的细胞数目差异十分明显,cycB1的相对表达量也存在显著差异,表明cycB1的过表达可能在一定程度上影响allC细胞的细胞周期正常的调控机制,与突变细胞的G2期异常有一定关系,但具体机制仍需进一步探究。  相似文献   

8.
9.
10.
The role of RNA polymerase III (Pol III) in developing vertebrates has not been examined. Here, we identify a causative mutation of the second largest Pol III subunit, polr3b, that disrupts digestive organ development in zebrafish slim jim (slj) mutants. The slj mutation is a splice-site substitution that causes deletion of a conserved tract of 41 amino acids in the Polr3b protein. Structural considerations predict that the slj Pol3rb deletion might impair its interaction with Polr3k, the ortholog of an essential yeast Pol III subunit, Rpc11, which promotes RNA cleavage and Pol III recycling. We engineered Schizosaccharomyces pombe to carry an Rpc2 deletion comparable to the slj mutation and found that the Pol III recovered from this rpc2-Δ yeast had markedly reduced levels of Rpc11p. Remarkably, overexpression of cDNA encoding the zebrafish rpc11 ortholog, polr3k, rescued the exocrine defects in slj mutants, indicating that the slj phenotype is due to deficiency of Rpc11. These data show that functional interactions between Pol III subunits have been conserved during eukaryotic evolution and support the utility of zebrafish as a model vertebrate for analysis of Pol III function.  相似文献   

11.
The role of RNA polymerase III (Pol III) in developing vertebrates has not been examined. Here, we identify a causative mutation of the second largest Pol III subunit, polr3b, that disrupts digestive organ development in zebrafish slim jim (slj) mutants. The slj mutation is a splice-site substitution that causes deletion of a conserved tract of 41 amino acids in the Polr3b protein. Structural considerations predict that the slj Pol3rb deletion might impair its interaction with Polr3k, the ortholog of an essential yeast Pol III subunit, Rpc11, which promotes RNA cleavage and Pol III recycling. We engineered Schizosaccharomyces pombe to carry an Rpc2 deletion comparable to the slj mutation and found that the Pol III recovered from this rpc2-Δ yeast had markedly reduced levels of Rpc11p. Remarkably, overexpression of cDNA encoding the zebrafish rpc11 ortholog, polr3k, rescued the exocrine defects in slj mutants, indicating that the slj phenotype is due to deficiency of Rpc11. These data show that functional interactions between Pol III subunits have been conserved during eukaryotic evolution and support the utility of zebrafish as a model vertebrate for analysis of Pol III function.  相似文献   

12.
13.
We have analysed the YJR043c gene of Saccharomyces cerevisiae, previously identified by systematic sequencing. The deletion mutant (yjr043cΔ) shows slow growth at low temperature (15° C), while at 30° C and 37° C the growth rate of mutant cells is only moderately affected. At permissive and nonpermissive temperatures, mutant cells were larger and showed a high proportion of large-budded cells with a single duplicated nucleus at or beyond the bud neck and a short spindle. This phenotype was even more striking at low temperature, the mutant cells becoming dumbbell shaped. All these phenotypes suggest a role for YJR043C in cell cycle progression in G2/M phase. In two-hybrid assays, the YJR043c gene product specifically interacted with Poll, the catalytic subunit of DNA polymerase α. The pol1-1 /yjr043cΔ double mutant showed a more severe growth defect than the pol1-1 single mutant at permissive temperature. Centromeric plasmid loss rate elevated in yjr043cΔ. Analysis of the sequence upstream of the YJR043c ORF revealed the presence of an MluI motif (ACGCGT), a sequence associated with many genes involved in DNA replication in budding yeast. The cell cycle phenotype of the yjr043cΔ mutant, the evidence for genetic interaction with Pol1, the presence of an MluI motif upstream and the elevated rate of CEN plasmid loss in mutants all support a function for YJR043C in DNA replication. Received: 22 July 1998 / Accepted: 22 September 1998  相似文献   

14.
Inosine (I) at position 34 (wobble position) of tRNA is formed by the hydrolytic deamination of a genomically encoded adenosine (A). The enzyme catalyzing this reaction, termed tRNA A:34 deaminase, is the heterodimeric Tad2p/ADAT2.Tad3p/ADAT3 complex in eukaryotes. In budding yeast, deletion of each subunit is lethal, indicating that the wobble inosine tRNA modification is essential for viability; however, most of its physiological roles remain unknown. To identify novel cell cycle mutants in fission yeast, we isolated the tad3-1 mutant that is allelic to the tad3(+) gene encoding a homolog of budding yeast Tad3p. Interestingly, the tad3-1 mutant cells principally exhibited cell cycle-specific phenotype, namely temperature-sensitive and irreversible cell cycle arrest both in G(1) and G(2). Further analyses revealed that in the tad3-1 mutant cells, the S257N mutation that occurred in the catalytically inactive Tad3 subunit affected its association with catalytically active Tad2 subunit, leading to an impairment in the A to I conversion at position 34 of tRNA. In tad3-1 mutant cells, the overexpression of the tad3(+) gene completely suppressed the decreased tRNA inosine content. Notably, the overexpression of the tad2(+) gene partially suppressed the temperature-sensitive phenotype and the decreased tRNA inosine content, indicating that the tad3-1 mutant phenotype is because of the insufficient I(34) formation of tRNA. These results suggest that the wobble inosine tRNA modification is essential for cell cycle progression in the G(1)/S and G(2)/M transitions in fission yeast.  相似文献   

15.
16.
S-phase and DNA damage promote increased ribonucleotide reductase (RNR) activity. Translation of RNR1 has been linked to the wobble uridine modifying enzyme tRNA methyltransferase 9 (Trm9). We predicted that changes in tRNA modification would translationally regulate RNR1 after DNA damage to promote cell cycle progression. In support, we demonstrate that the Trm9-dependent tRNA modification 5-methoxycarbonylmethyluridine (mcm?U) is increased in hydroxyurea (HU)-induced S-phase cells, relative to G? and G?, and that mcm?U is one of 16 tRNA modifications whose levels oscillate during the cell cycle. Codon-reporter data matches the mcm?U increase to Trm9 and the efficient translation of AGA codons and RNR1. Further, we show that in trm9Δ cells reduced Rnr1 protein levels cause delayed transition into S-phase after damage. Codon re-engineering of RNR1 increased the number of trm9Δ cells that have transitioned into S-phase 1 h after DNA damage and that have increased Rnr1 protein levels, similar to that of wild-type cells expressing native RNR1. Our data supports a model in which codon usage and tRNA modification are regulatory components of the DNA damage response, with both playing vital roles in cell cycle progression.  相似文献   

17.
The cdc6 mutants of Schizosaccharomyces pombe have been classified as being defective in progression through the G2 phase of the cell cycle. We cloned an S. pombe gene that could complement the temperature-sensitive growth of the cdc6-23 mutant. Unexpectedly, the cloned gene was allelic to pol3, which encodes the catalytic subunit of DNA polymerase δ. Integration mapping confirmed that cdc6 and pol3 are identical. The cdc6-23 mutant carries one amino acid substitution in the conserved N3 region of Pol3. Received: 17 October 1996 / Accepted: 19 November 1996  相似文献   

18.
19.
BAD, a member of the Bcl-2 protein family, promotes mitochondria-dependent apoptosis. Here, we report that BAD dissociates from 14-3-3zeta at each G2/M phase of proliferating lymphoid cells. The cell cycle-dependent dissociation of BAD was associated with phosphorylation at Ser-128, whereas mutant S128A-BAD, in which Ser-128 was converted to alanine, remained associated with 14-3-3zeta throughout the cell cycle. Although the cell cycle-dependent dissociation of BAD per se did not induce apoptosis, growth factor deprivation induced prompt apoptosis at the G2/M phase but not at the G1 phase. In cells expressing S128A-BAD, growth factor deprivation-induced apoptosis was markedly delayed and was accompanied by a delayed dephosphorylation of growth factor-dependent regulatory serine residues. These results indicate that BAD induces apoptosis upon detecting the coincidence of G2/M phase and growth factor deprivation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号