首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leukoencephalopathy with vanishing white matter (VWM) is one of the most prevalent inherited white-matter disorders, especially in Caucasian populations. VWM is unusual because of its sensitivity to febrile infections and minor head trauma. The basic defect of this enigmatic brain disease resides in the regulation of initiation of protein synthesis. Recently, undue activation of the unfolded-protein response has emerged as an important factor in the pathophysiology of VWM. Here, we discuss the mechanisms that might be responsible for the selective involvement of the brain white matter in VWM. At present, VWM research is in need of an animal model to study disease mechanisms and therapeutic interventions.  相似文献   

2.
The eukaryotic translation initiation factor eIF2B promotes mRNA translation as a guanine nucleotide exchange factor (GEF) for translation initiation factor 2 (eIF2). Endoplasmic reticulum (ER) stress-mediated activation of the kinase PERK and the resultant phosphorylation of eIF2’s alpha subunit (eIF2α) attenuates eIF2B GEF activity thereby inducing an integrated stress response (ISR) that defends against protein misfolding in the ER. Mutations in all five subunits of human eIF2B cause an inherited leukoencephalopathy with vanishing white matter (VWM), but the role of the ISR in its pathogenesis remains unclear. Using CRISPR-Cas9 genome editing we introduced the most severe known VWM mutation, EIF2B4A391D, into CHO cells. Compared to isogenic wildtype cells, GEF activity of cells with the VWM mutation was impaired and the mutant cells experienced modest enhancement of the ISR. However, despite their enhanced ISR, imposed by the intrinsic defect in eIF2B, disrupting the inhibitory effect of phosphorylated eIF2α on GEF by a contravening EIF2S1/eIF2αS51A mutation that functions upstream of eIF2B, selectively enfeebled both EIF2B4A391D and the related severe VWM EIF2B4R483W cells. The basis for paradoxical dependence of cells with the VWM mutations on an intact eIF2α genotype remains unclear, as both translation rates and survival from stressors that normally activate the ISR were not reproducibly affected by the VWM mutations. Nonetheless, our findings support an additional layer of complexity in the development of VWM, beyond a hyperactive ISR.  相似文献   

3.

Background

Mutations in any of the five subunits of eukaryotic translation initiation factor 2B (eIF2B) can lead to an inherited chronic-progressive fatal brain disease of unknown aetiology termed leucoencephalopathy with vanishing white matter (VWM). VWM is one of the most prevalent childhood white matter disorders, which markedly deteriorates after inflammation or exposure to other stressors. eIF2B is a major housekeeping complex that governs the rate of global protein synthesis under normal and stress conditions. A previous study demonstrated that Eif2b5R132H/R132H mice suffer delayed white matter development and fail to recover from cuprizone-induced demyelination, although eIF2B enzymatic activity in the mutant brain is reduced by merely 20%.

Principal Findings

Poor astrogliosis was observed in Eif2b5R132H/R132H mice brain in response to systemic stress induced by peripheral injections of lipopolysaccharide (LPS). Even with normal rates of protein synthesis under normal conditions, primary astrocytes and microglia isolated from mutant brains fail to adequately synthesise and secrete cytokines in response to LPS treatment despite proper induction of cytokine mRNAs.

Conclusions

The mild reduction in eIF2B activity prevents the appropriate increase in translation rates upon exposure to the inflammatory stressor LPS. The data underscore the importance of fully-functional translation machinery for efficient cerebral inflammatory response upon insults. It highlights the magnitude of proficient translation rates in restoration of brain homeostasis via microglia-astrocyte crosstalk. This study is the first to suggest the involvement of microglia in the pathology of VWM disease. Importantly, it rationalises the deterioration of clinical symptoms upon exposure of VWM patients to physiological stressors and provides possible explanation for their high phenotypic variability.  相似文献   

4.
Vanishing white matter (VWM) is a recessive neurodegenerative disease caused by mutations in translation initiation factor eIF2B and leading to progressive brain myelin deterioration, secondary axonal damage, and death in early adolescence. Eif2b5R132H/R132H mice exhibit delayed developmental myelination, mild early neurodegeneration and a robust remyelination defect in response to cuprizone‐induced demyelination. In the current study we used Eif2b5R132H/R132H mice for mass‐spectrometry analyses, to follow the changes in brain protein abundance in normal‐ versus cuprizone‐diet fed mice during the remyelination recovery phase. Analysis of proteome profiles suggested that dysregulation of mitochondrial functions, altered proteasomal activity and impaired balance between protein synthesis and degradation play a role in VWM pathology. Consistent with these findings, we detected elevated levels of reactive oxygen species in mutant‐derived primary fibroblasts and reduced 20S proteasome activity in mutant brain homogenates. These observations highlight the importance of tight translational control to precise coordination of processes involved in myelin formation and regeneration and point at cellular functions that may contribute to VWM pathology.

  相似文献   


5.
Childhood ataxia with central nervous system hypomyelination (CACH), also called vanishing white matter (VWM) leukoencephalopathy, is a fatal genetic disease caused by mutations in eukaryotic initiation factor 2B (eIF2B) genes. The five subunits eIF2B factor is critical for translation initiation under normal conditions and regulates protein synthesis in response to cellular stresses. Primary fibroblasts from CACH/VWM patients and normal individuals were used to measure basal eIF2B activity as well as global protein synthesis and ATF4 induction in response to stress in the endoplasmic reticulum. We show that although the cells expressing mutant eIF2B genes respond normally to stress conditions by reduced global translation rates, they exhibit significantly greater increase in ATF4 induction compared to normal controls despite equal levels of stress and activity of the upstream eIF2α kinase. This heightened stress response observed in primary fibroblasts that suffer from minor loss of basal eIF2B activity may be employed as an initial screening tool for CACH/VWM leukodystrophy.  相似文献   

6.
Leukoencephalopathy with vanishing white matter (VWM) is one of the most prevalent inherited childhood white matter disorders, which caused by mutations in each of the five subunits of eukaryotic translation initiation factor 2B (EIF2B1-5). In our study, 34 out of the 36 clinically diagnosed children (94%) were identified to have EIF2B1-5 mutations by sequencing. 15 novel mutations were identified. CNVs were not detected in patients with only one mutant allele and mutation-negative determined by gene sequencing. There is a significantly higher incidence of patients with EIF2B3 mutations compared with Caucasian patients (32% vs. 4%). c.1037T>C (p.Ile346Thr) in EIF2B3 was confirmed to be a founder mutation in Chinese, which probably one of the causes of the genotypic differences between ethnicities. Our average 4.4 years-follow-up on infantile, early childhood and juvenile VWM children suggested a rapid deterioration in motor function. Episodic aggravation was presented in 90% of infantile cases and 71.4% of childhood cases. 10 patients died during the follow-up. The Kaplan-Meier curve showed that the median survival time is 8.83 ± 1.51 years. This is the largest sample of children in a VWM follow-up study, which is helpful for a more depth understanding about the natural course.  相似文献   

7.
The yeast two-hybrid screen has been used to identify potential regions of interaction of the largest regulatory subunit, , of phosphorylase kinase (PhK) with two fragments of its protein substrate, glycogen phosphorylase b (Phb). One fragment, corresponding to residues 17-484 (PhbN"), contained the regulatory domain of the protein, but in missing the first 16 residues was devoid of the sole phosphorylation site of Phb, Ser14; the second fragment corresponded to residues 485-843 (PhbC) and contained the catalytic domain of Phb. Truncation fragments of the subunit were screened for interactions against these two substrate fragments. PhbC was not found to interact with any constructs; however, PhbN" interacted with a region of (residues 864-1014) that is near the phosphorylatable region of that subunit. PhbN" was also screened for interactions against a variety of fragments of the catalytic subunit of PhK; however, no interactions were detected, even with fulllength . Our results support the idea that amino acid residues proximal to the convertible serine of Phb are important for its specific interaction with the catalytic subunit of PhK, but that regions distinct from the convertible serine residue of Phb and from the catalytic domain of PhK may also be involved in the interaction of these two proteins.  相似文献   

8.
Leukoencephalopathy with vanishing white matter (VWM) is a severe inherited human neurodegenerative disorder that is caused by mutations in the genes for the subunits of eukaryotic initiation factor 2B (eIF2B), a heteropentameric guanine nucleotide exchange factor that regulates both global and mRNA-specific translation. Marked variability is evident in the clinical severity and time course of VWM in patients. Here we have studied the effects of VWM mutations on the function of human eIF2B. All the mutations tested cause partial loss of activity. Frameshift mutations in genes for eIF2Bepsilon or eIF2Bbeta lead to truncated polypeptides that fail to form complexes with the other subunits and are effectively null mutations. Certain point mutations also impair the ability of eIF2Bbeta or -epsilon to form eIF2B holocomplexes and also diminish the intrinsic nucleotide exchange activity of eIF2B. A point mutation in the catalytic domain of eIF2Bepsilon impairs its ability to bind the substrate, while two mutations in eIF2Bbeta actually enhance eIF2 binding. We provide evidence that expression of VWM mutant eIF2B may enhance the translation of specific mRNAs. The variability of the clinical phenotype in VWM may reflect the multiple ways in which VWM mutations affect eIF2B function.  相似文献   

9.
Vanishing white matter disease (VWM) is a heritable leukodystrophy linked to mutations in translation initiation factor 2B (eIF2B). Although the clinical course of this disease has been relatively well described, the cellular consequences of EIF2B mutations on neural cells are unknown. Here we have established cell cultures from the brain of an individual with VWM carrying mutations in subunit 5 of eIF2B (encoded by EIF2B5). Despite the extensive demyelination apparent in this VWM patient, normal-appearing oligodendrocytes were readily generated in vitro. In contrast, few GFAP-expressing (GFAP+) astrocytes were present in primary cultures, induction of astrocytes was severely compromised, and the few astrocytes generated showed abnormal morphologies and antigenic phenotypes. Lesions in vivo also lacked GFAP+ astrocytes. RNAi targeting of EIF2B5 severely compromised the induction of GFAP+ cells from normal human glial progenitors. This raises the possibility that a deficiency in astrocyte function may contribute to the loss of white matter in VWM leukodystrophy.  相似文献   

10.
Protein fusion technology has emerged as one of the important strategies to increase the level of expression and half-life of therapeutic proteins in heterologous expression systems. Granulocyte colony-stimulating factor (G-CSF) is a hematopoietic growth factor and is clinically used against neutropenia. Enhanced expression and stability of G-CSF were achieved in Pichia pastoris by the way of constructing a fusion protein with human serum albumin (HSA). The strategy involved polymerase chain reaction (PCR) amplification of fragments corresponding to codon-optimized G-CSF and domain 3 of HSA. Overlapping PCR was used to obtain the full-length fused gene (1,184?bp) with a 15-bp linker sequence comprising of 4 Gly and 1 Ser residues. Extracellular expression was carried out downstream of α-factor secretion signal sequence under the control of alcohol oxidase 1 promoter using pPICZαB. Excreted protein in the range of 110–380?mg?L?1 was observed among the transformants. Effect of aeration and temperature was investigated in one of the transformants (35) overexpressing fusion protein and levels of G-CSF enhanced by 1.8-fold and 2.3-fold, respectively. Assay of biological activity indicated the fusion protein to retain similar cell proliferation activity as the commercial G-CSF preparation.  相似文献   

11.
The 970 loop (helix 31) of Escherichia coli 16S ribosomal RNA contains two modified nucleotides, m2G966 and m5C967. Positions A964, A969, and C970 are conserved among the Bacteria, Archaea, and Eukarya. The nucleotides present at positions 965, 966, 967, 968, and 971, however, are only conserved and unique within each domain. All organisms contain a modified nucleoside at position 966, but the type of the modification is domain specific. Biochemical and structure studies have placed this loop near the P site and have shown it to be involved in the decoding process and in binding the antibiotic tetracycline. To identify the functional components of this ribosomal RNA hairpin, the eight nucleotides of the 970 loop of helix 31 were subjected to saturation mutagenesis and 107 unique functional mutants were isolated and analyzed. Nonrandom nucleotide distributions were observed at each mutated position among the functional isolates. Nucleotide identity at positions 966 and 969 significantly affects ribosome function. Ribosomes with single mutations of m2G966 or m5C967 produce more protein in vivo than do wild-type ribosomes. Overexpression of initiation factor 3 specifically restored wild-type levels of protein synthesis to the 966 and 967 mutants, suggesting that modification of these residues is important for initiation factor 3 binding and for the proper initiation of protein synthesis.  相似文献   

12.
Abstract

The Wnt/β-catenin pathway plays an important regulatory role in cancer signaling and cell regenerative mechanisms. Its suppression has long been considered as an important challenge of anticancer treatment and management. The poly(ADP-ribose) polymerase (PARP) family represented as a new class of therapeutic targets with diverse potential disease indications. Tankyrase (TNKS) is considered to be a potential target for the intervention of various cancers. The main objective of the work is to explore the molecular and quantum mechanics of the drug-like compounds and to identify the potential inhibitors for TNKS protein using the structure and ligand-based virtual screening from several databases and to explore the binding pocket and interactions of active residues. The screened compounds were further filtered using binding-free energy calculation and molecular dynamics simulation studies. The results have provided a strong molecular knowledge of TNKS and offered top hit potent inhibitors. The identified lead compounds LC_40781, LC_40777, LC_39767, LC_8346, NCI_682438, and NCI_721141 were observed to have potent activity against TNKS protein. The hydrogen bonding of compounds with Asp1198, His1201, Tyr1203 in TNKS1 and Gly1032, Ser1068 in TNKS2 are the key interactions plays a major role in binding energy. Therefore, the outcome of the study would help for further validation and provides valuable information to guide the future TNKS-specific inhibitor designing.

Communicated by Ramaswamy H. Sarma  相似文献   

13.
14.
The eukaryotic translation initiation factor 2A (eIF2A) was identified as a factor that stimulates the binding of methionylated initiator tRNA (Met-tRNA i Met ) to the 40S ribosomal subunit, but its physiological role remains poorly defined. Recently, eIF2A was shown to be involved in unconventional translation initiation from CUG codons and in viral protein synthesis under stress conditions where eIF2 is inactivated. We determined the crystal structure of the WD-repeat domain of Schizosaccharomyces pombe eIF2A at 2.5 Å resolution. The structure adopts a novel nine-bladed β-propeller fold. In contrast to the usual β-propeller proteins, the central channel of the molecule has the narrower opening on the bottom of the protein and the wider opening on the top. Highly conserved residues are concentrated in the positively-charged top face, suggesting the importance of this face for interactions with nucleic acids or other initiation factors.  相似文献   

15.
《Free radical research》2013,47(12):1426-1442
Abstract

Herein we have demonstrated that both superoxide dismutase (SOD) mimic, cationic Mn(III) meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin (MnTnHex-2-PyP5+), and non-SOD mimic, anionic Mn(III) meso-tetrakis(4-carboxylatophenyl)porphyrin (MnTBAP3?), protect against oxidative stress caused by spinal cord ischemia/reperfusion via suppression of nuclear factor kappa B (NF-κB) pro-inflammatory pathways. Earlier reports showed that Mn(III) N-alkylpyridylporphyrins were able to prevent the DNA binding of NF-κB in an aqueous system, whereas MnTBAP3? was not. Here, for the first time, in a complex in vivo system—animal model of spinal cord injury—a similar impact of MnTBAP3?, at a dose identical to that of MnTnHex-2-PyP5+, was demonstrated in NF-κB downregulation. Rats were treated subcutaneously at 1.5 mg/kg starting at 30 min before ischemia/reperfusion, and then every 12 h afterward for either 48 h or 7 days. The anti-inflammatory effects of both Mn porphyrins (MnPs) were demonstrated in the spinal cord tissue at both 48 h and 7 days. The downregulation of NF-κB, a major pro-inflammatory signaling protein regulating astrocyte activation, was detected and found to correlate well with the suppression of astrogliosis (as glial fibrillary acidic protein) by both MnPs. The markers of oxidative stress, lipid peroxidation and protein carbonyl formation, were significantly reduced by MnPs. The favorable impact of both MnPs on motor neurons (Tarlov score and inclined plane test) was assessed. No major changes in glutathione peroxidase- and SOD-like activities were demonstrated, which implies that none of the MnPs acted as SOD mimic. Increasing amount of data on the reactivity of MnTBAP3? with reactive nitrogen species (RNS) (.NO/HNO/ONOO?) suggests that RNS/MnTBAP3?-driven modification of NF-κB protein cysteines may be involved in its therapeutic effects. This differs from the therapeutic efficacy of MnTnHex-2-PyP5+ which presumably occurs via reactive oxygen species and relates to NF-κB thiol oxidation; the role of RNS cannot be excluded.  相似文献   

16.
In cancer, de novo pathway plays an important role in cell proliferation by supplying huge demand of purine nucleotides. Aminoimidazole ribonucleotide synthetase (AIRS) catalyzes the fifth step of de novo purine biosynthesis facilitating in the conversion of formylglycinamidine ribonucleotide to aminoimidazole ribonucleotide. Hence, inhibiting AIRS is crucial due to its involvement in the regulation of uncontrollable cancer cell proliferation. In this study, the three-dimensional structure of AIRS from P. horikoshii OT3 was constructed based on the crystal structure from E. coli and the modeled protein is verified for stability using molecular dynamics for a time frame of 100 ns. Virtual screening and induced fit docking were performed to identify the best antagonists based on their binding mode and affinity. Through mutational studies, the residues necessary for catalytic activity of AIRS were identified and among which the following residues Lys35, Asp103, Glu137, and Thr138 are important in determination of AIRS function. The mutational studies help to understand the structural and energetic characteristics of the specified residues. In addition to Molecular Dynamics, ADME properties, binding free-energy, and density functional theory calculations of the compounds were carried out to find the best lead molecule. Based on these analyses, the compound from the NCI database, NCI_121957 was adjudged as the best molecule and could be suggested as the suitable inhibitor of AIRS. In future studies, experimental validation of these ligands as AIRS inhibitors will be carried out.  相似文献   

17.
In this study, we collected 540 soil samples from northeast China and isolated the wild-type strain of Bacillus thuringiensis (Bt) by identifying and cloning 9 Bt strains that expressed the secreted insecticidal protein (Sip) gene. We selected the strain QZL38 for further study. The sip gene was identified from the Bt strain QZL38 using polymerase chain reaction (PCR). We sequenced a 1095-base pair fragment of DNA that encodes 364 amino acid residues of a 41.18?kDa pro-toxin and compared it with the registered Sip1Ab protein amino acid residue sequence. The sequence was submitted to GenBank with the accession no. KP231523, and the gene was named sip1Ab. The Sip1Ab protein expressed in Escherichia coli showed insecticidal activity against Colaphellus bowringi Baly, with an LC50 of 1.051?μg?mL?1. To identify the active fragment of the Sip1Ab toxin, four pairs of primers with different truncation positions were designed, and the recombinant proteins were expressed in E. coli. The truncated Sip protein expressed in E. coli showed insecticidal activity against C. bowringi Baly. The insecticidal activity of the recombinant proteins against C. bowringi Baly from the Sip1Ab signal peptide after removal of 30 amino acid residues showed an LC50 of 1.078?μg?mL?1. Sip proteins may play an important role in the prevention and control of the C. bowringi Baly.  相似文献   

18.
Porphyra haitanensis (T. J. Chang & B. F. Zheng) is an important economic alga found off the southern coast of China. It has evolved a strong tolerance against stress, which is an important survival characteristic. Cyclophilin has been shown to be involved in the stress response of plants and algae. To investigate the tolerance against stress in Porphyra, we isolated the cyclophilin PhCYP18 gene (Accession number JQ413239 ) and measured its expression over different generations and stress conditions. In P. haitanensis, cyclophilin PhCYP18 accumulated more in the filamentous sporophyte generation than in the blade gametophyte generation. This difference was thought to be due to harsh environments and a gene dosage effect. It has been found, however, that PhCYP18 expression was dysregulated in blades under high salt stress, strong irradiance stress and multifactorial stress compared to blades under normal conditions. Moreover, the changes were not linearly related to the degree of stress. It was therefore thought that PhCYP18 actively responded to stress situations and induced strong stress tolerance, which is evident in P. haitanensis.  相似文献   

19.
ThepK a values of His-38 and His-50 of the heparin-binding protein, bovine platelet factor 4, are 5.6 and 6.5, respectively, as determined by1H NMR spectroscopy. The1H NMR resonance of His-38 of bovine platelet factor 4 which exhibits the lowerpK a value is perturbed upon heparin binding to a greater degree than the resonance of His-50. Human platelet factor 4 contains the homologous residues His-23 and His-35. ThepK a values of the two histidine residues of human platelet factor 4 are 5.3 and 6.4. The1H NMR resonance of the histidine of human platelet factor 4 exhibiting the lowerpK a value also is perturbed upon heparin binding to a greater degree than the histidine resonance exhibiting the higherpK a , thereby suggesting comparable heparin-protein interactions in bovine and human platelet factor 4.  相似文献   

20.
We determined the binding sites of curcumin (cur), resveratrol (res), and genistein (gen) with milk β-lactoglobulin (β-LG) at physiological conditions. Fourier transform infrared spectroscopy, circular dichroism, and fluorescence spectroscopic methods as well as molecular modeling were used to determine the binding of polyphenol–protein complexes. Structural analysis showed that polyphenols bind β-LG via both hydrophilic and hydrophobic contacts with overall binding constants of Kcurcumin–β-LG?=?4.4 (±?.4)?×?104 M?1, Kresveratrol–β-LG?=?4.2 (±?.2)?×?104 M?1, and Kgenistein–β-LG?=?1.2 (±?.2)?×?104?M?1. The number of polyphenol molecules bound per protein (n) was 1 (cur), 1.1 (res), and 1 (gen). Molecular modeling showed the participation of several amino acid residues in polyphenol–protein complexation with the free binding energy of ?12.67 (curcumin–β-LG), ?12.60 (resveratrol–β-LG), and ?10.68?kcal/mol (genistein–β-LG). The order of binding was cur?>?res?>?gen. Alteration of the protein conformation was observed in the presence of polyphenol with a major reduction of β-sheet and an increase in turn structure, causing a partial protein structural destabilization. β-LG might act as a carrier to transport polyphenol in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号