首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Migration is a complex process in which cells move in a given direction either in response to changes in the extracellular environment or as a consequence of an intrinsic propensity for directional movement. Migration plays key roles in many physiological and pathological processes, including development, angiogenesis, tissue regeneration and metastasis. An important role in migration is played by caveolin-1 and caveolae. Caveolae compartmentalize intracellular signalling pathways to orchestrate cell migration. Caveolin-1 presents a polarized distribution in migrating cells and is linked to the cytoskeleton, and changes in its expression modulate migration. Although there are some discrepancies regarding the regulatory effect of caveolin-1, most studies show that it promotes cell movement and polarity. The importance of caveolin-1 has recently been reinforced by studies with Cav1(-/-) cells, which indicate that it establishes polarity during directional migration by coordinating Src kinase and Rho GTPase signalling.  相似文献   

2.
Members of the caveolin protein family are implicated in the formation of caveolae and play important roles in a number of signaling pathways and in the regulation of various proteins. We employ complementary spectroscopic methods to study the structure of the caveolin scaffolding domain (CSD) in caveolin-1 fragments, while bound to cholesterol-rich membranes. This key domain is thought to be involved in multiple critical functions that include protein recognition, oligomerization, and cholesterol binding. In our membrane-bound peptides, residues within the flanking intramembrane domain (IMD) are found to adopt an α-helical structure, consistent with its commonly believed helical hairpin conformation. Intriguingly, in these same peptides, we observe a β-stranded conformation for residues in the CSD, contrasting with earlier reports, which commonly do not reflect β-structure. Our experimental data based on solid-state NMR, CD, and FTIR are found to be consistent with computational analyses of the secondary structure preference of the primary sequence. We discuss how our structural data of membrane binding Cav fragments may match certain general features of cholesterol-binding domains and could be consistent with the role for CSD in protein recognition and homo-oligomerization.  相似文献   

3.
The study of function and regulation of the phenotype of alveolar type I (AT I) epithelial cells is limited by the rareness of suitable cell lines or primary cultures of this cell type. We describe in the present study the type I-like rat epithelial cell line R3/1. This cell line displays in vitro a phenotype with several characteristic features of AT I cells. R3/1 cells were analysed for mRNA and protein content of markers related to the AT I cell type (T1, ICAM-1, connexin-43, caveolins-1 and -2) and AT II phenotypes [surfactant proteins (SPs) A, B, C and D]. The mRNAs for SPs were found to be at a low level. Moderate protein levels for SP-A and SP-B were found, and SP-C and SP-D proteins were not detectable. R3/1 cells are positive for CD44s, E-cadherin, cytokeratin, vimentin and RAGE, and bind the lectins BPA and SBA. For demonstration of the suitability of R3/1 cells for in vitro studies on epithelial injury, the cells were treated with bleomycin. As shown by real-time RT-PCR and immunoblotting, bleomycin-treatment of R3/1 cells resulted in a decrease in mRNA and protein for both caveolin-1 and caveolin-2 in comparison with controls. The AT I-like cell line R3/1 may serve as a promising tool for the study of lung cell biology.Roland Koslowski and Kathrin Barth contributed equally to the study  相似文献   

4.
Here, we have created a series of caveolin-1 (Cav-1) deletion mutants to examine whether the membrane spanning segment is required for membrane attachment of caveolin-1 in vivo. One mutant, Cav-1-(1-101), contains only the cytoplasmic N-terminal domain and lacks the membrane spanning domain and the C-terminal domain. Interestingly, Cav-1-(1-101) still behaves as an integral membrane protein but lacks any known signals for lipid modification. In striking contrast, another deletion mutant, Cav-1-(1-81), behaved as a soluble protein. These results implicate caveolin-1 residues 82-101 (also known as the caveolin scaffolding domain) in membrane attachment. In accordance with the postulated role of the caveolin-1 scaffolding domain as an inhibitor of signal transduction, Cav-1-(1-101) retained the ability to functionally inhibit signaling along the p42/44 mitogen-activated protein kinase cascade, whereas Cav-1-(1-81) was completely ineffective. To rule out the possibility that membrane attachment mediated by the caveolin scaffolding domain was indirect, we reconstituted the membrane binding of caveolin-1 in vitro. By using purified glutathione S-transferase-caveolin-1 fusion proteins and reconstituted lipid vesicles, we show that the caveolin-1 scaffolding domain and the C-terminal domain (residues 135-178) are both sufficient for membrane attachment in vitro. However, the putative membrane spanning domain (residues 102-134) did not show any physical association with membranes in this in vitro system. Taken together, our results provide strong evidence that the caveolin scaffolding domain contributes to the membrane attachment of caveolin-1.  相似文献   

5.
Caveolins, components of caveolae, are expressed in mammary tissue. In order to determine whether caveolins are present in different mammary cell types and whether their localisation depends on the physiological stage or species, cav-1 and cav-2 were characterised by immunoblotting in mammary tissues from the mouse, ewe and rabbit and localised, by immunofluorescence and electron microscopy, in mammary tissues from the mouse and ewe. At all the physiological stages studied, cav-1 and cav-2 were present in endothelial and myoepithelial cells in which flask-shaped caveolae were abundant. However, labelling of cav-1 and cav-2 associated with small vesiculo-tubular structures (including those close to lipid droplets) was low in epithelial cells. To study the possible association of cav-1 with lipid droplets, lactating ewe mammary fragments were treated in vitro with brefeldin A. This treatment did not modify the association of cav-1-labelled structures with lipid droplets. Finally, HC11 and MCF-10A mammary cell lines were treated with oleic acid. The total quantity of cav-1 was little affected by the treatment, although the lipid droplet labelling of cav-1 was amplified in MCF-10A cells. Thus, the synthesis and localisation of caveolins are mostly dependent upon the cell types of mammary tissue and upon their state of differentiation.  相似文献   

6.
miR-219-5p has been reported to act as either a tumor suppressor or a tumor promoter in different cancers by targeting different genes. In the present study, we demonstrated that miR-219-5p negatively regulated the expression of TBXT, a known epithelial–mesenchymal transition (EMT) inducer, by directly binding to TBXT 3′-untranslated region. As a result of its inhibition on TBXT expression, miR-219-5p suppressed EMT and cell migration and invasion in breast cancer cells. The re-introduction of TBXT in miR-219-5p overexpressing cells decreased the inhibitory effects of miR-219 on EMT and cell migration and invasion. Moreover, miR-219-5p decreased breast cancer stem cell (CSC) marker genes expression and reduced the mammosphere forming capability of cells. Overall, our study highlighted that TBXT is a novel target of miR-219-5p. By suppressing TBXT, miR-219-5p plays an important role in EMT and cell migration and invasion of breast cancer cells.  相似文献   

7.
The cell surface heparan sulfate proteoglycan, syndecan-2, is crucial for the tumorigenic activity of colon cancer cells. However, the role played by the cytoplasmic domain of the protein remains unclear. Using colon cancer cells transfected with various syndecan-2-encoding genes with deletions in the cytoplasmic domain, it was shown that syndecan-2-induced migration activity requires the EFYA sequence of the C-terminal region; deletion of these residues abolished the rise in cell migration seen when the wild-type gene was transfected and syndecan-2 interaction with syntenin-1, suggesting that syntenin-1 functioned as a cytosolic signal effector downstream from syndecan-2. Colon cancer cells transfected with the syntenin-1 gene showed increased migratory activity, whereas migration was decreased in cells in which syntenin-1 was knock-down using small inhibitory RNA. In addition, syntenin-1 expression potentiated colon cancer cell migration induced by syndecan-2, and syndecan-2-mediated cell migration was reduced when syntenin-1 expression diminished. However, syntenin-1-mediated migration enhancement was not noted in colon cancer cells transfected with a gene encoding a syndecan-2 mutant lacking the cytoplasmic domain. Furthermore, in line with the increase in cell migration, syntenin-1 mediated Rac activation stimulated by syndecan-2. Together, the data suggest that the cytoplasmic domain of syndecan-2 regulates colon cancer cell migration via interaction with syntenin-1.  相似文献   

8.
The mechanisms of cancer involve changes in multiple biological pathways. Multitarget molecules, which are components of animal venoms, are therefore a potential strategy for treating tumors. The objective of this study was to screen the effects of Phoneutria nigriventer spider venom (PnV) on tumor cell lines. Cultured human glioma (NG97), glioblastoma (U-251) and cervix adenocarcinoma (HeLa) cells, and nontumor mouse fibroblasts (L929) were treated with low (14 µg/ml) and high (280 µg/ml) concentrations of PnV, and analyzed through assays for cell viability (thiazolyl blue tetrazolium blue), proliferation (carboxyfluorescein succinimidyl ester), death (annexin V/propidium iodide [Pi]), the cell cycle (Pi), and migration (wound healing and transwell assay). The venom decreased the viability of U-251 cells, primarily by inducing cell death, and reduced the viability of NG97 cells, primarily by inhibiting the cell cycle. The migration of all the tumor cell lines was delayed when treated with venom. The venom significantly affected all the tumor cell lines studied, with no cytotoxic effect on normal cells (L929), although the nonglial tumor cell (HeLa) was less sensitive to PnV. The results of the current study suggest that PnV may be composed of peptides that are highly specific for the multiple targets involved in the hallmarks of cancer. Experiments are underway to identify these molecules.  相似文献   

9.
Summary Pieces of coverslip glass coated with various proteins were implanted under one edge of a fresh skin wound on adult newt hind limbs so that the implant served as wound bed for the migrating wound epithelium. Laminin, a protein that has been implicated as an epithelial-specific adhesin, was a moderately good migration substrate. Type-IV collagen, fibrinogen and fibronectin, however, were significantly better. Fetuin, myoglobin, and casein all proved to be very poor substrates, allowing practically no migration. The inability of fetuin, myoglobin, and casein to support migration is further evidence that the considerable migration that occurs on collagen (Donaldson et al. 1982) fibrinogen and fibronectin (Donaldson and Mahan 1983) and the moderate migration on laminin, is a relatively specific response to these proteins and is therefore of special significance. The fact that laminin is a poorer migration substrate than collagen, fibrinogen or fibronectin suggests that the absence of cell surface laminin that has been associated with epithelial movement in several studies (Stanley et al. 1981; Clark et al. 1982; Madri and Stenn 1982; Gulati et al. 1983) may promote motility by allowing epithelial cells to interact directly with other extracellular macromolecules.  相似文献   

10.
Receptor-coupled contraction of smooth muscle involves recruitment to the plasma membrane of downstream effector molecules PKCalpha and rhoA but the mechanism of this signal integration is unclear. Caveolins, the principal structural proteins of caveolar plasma membrane invaginations, have been implicated in the organization and regulation of many signal transducing molecules. Thus, using laser scanning confocal immunofluorescent microscopy, we tested the hypothesis that caveolin is involved in smooth muscle signaling by investigating caveolin isoform expression and localization, together with the effect of a peptide inhibitor of caveolin function, in intact differentiated smooth muscle cells. All three main caveolin isoforms were identified in uterine, stomach, and ileal smooth muscles and assumed a predominantly plasma membranous localization in myometrial cells. Cytoplasmic introduction of a peptide corresponding to the caveolin-1 scaffolding domain-an essential region for caveolin interaction with signaling molecules--significantly inhibited agonist-induced translocation of both PKCalpha and rhoA. Translocation was unimpaired by a scrambled peptide and was unaltered in sham-treated cells. The membranous localization of caveolins, and direct inhibition of receptor-coupled PKCalpha and rhoA translocation by the caveolin-1 scaffolding domain, supports the concept that caveolins can regulate the integration of extracellular contractile stimuli and downstream intracellular effectors in smooth muscle.  相似文献   

11.
ABSTRACT

Migration of a fibroblast along a collagen fiber can be regarded as cell locomotion in one-dimension (1D). In this process, a cell protrudes forward, forms a new adhesion, produces traction forces, and releases its rear adhesion in order to advance itself along a path. However, how a cell coordinates its adhesion formation, traction forces, and rear release in 1D migration is unclear. Here, we studied fibroblasts migrating along a line of microposts. We found that when the front of a cell protruded onto a new micropost, the traction force produced at its front increased steadily, but did so without a temporal correlation in the force at its rear. Instead, the force at the front coordinated with a decrease in force at the micropost behind the front. A similar correlation in traction forces also occurred at the rear of a cell, where a decrease in force due to adhesion detachment corresponded to an increase in force at the micropost ahead of the rear. Analysis with a bio-chemo-mechanical model for traction forces and adhesion dynamics indicated that the observed relationship between traction forces at the front and back of a cell is possible only when cellular elasticity is lower than the elasticity of the cellular environment.  相似文献   

12.
13.
Emerging data identifies the water channel aquaporin-5 as a major player in multiple cancers. Over-expression of aquaporin-5 has been associated with increased metastasis and poor prognosis, suggesting that aquaporin-5 may enhance cancer cell migration. This review aims to highlight the current knowledge and hypothesis regarding downstream signaling partners of aquaporin-5 in relation to cancer cell migration. The molecular mechanisms that link aquaporin-5 to cell migration are not completely understood. Aquaporin-5 may promote cell movement by increasing water uptake into the front of the cell allowing local swelling. Aquaporin-5 may also activate extracellular-regulated kinases, increasing proliferation and potentially stimulating the migration machinery. Thus, further studies are warranted to identify the underlying mechanisms and signaling pathways. This will reveal whether aquaporin-5 and downstream effectors could be targets for developing new cancer therapeutics.  相似文献   

14.
Prostate cancer (PCa), which is an aggressive malignancy of the male genitourinary system. In the present study, the effects of microRNA-140 (miR-140) on PCa were determined. We transfected miR-140 mimics or negative control into PCa cells, and we used MTT, wound healing, and Transwell assays for determining the capacities of miR-140 in cell proliferation, migration, and invasion, respectively. We also confirmed the relationship between miR-140 and YES proto-oncogene 1 (YES1) using Luciferase reporter assay. The results showed that miR-140 was downregulated in PCa cells and tissues, and overexpression of miR-140 could significantly suppress their capacities of proliferation, migration, and invasion. Moreover, YES1 was shown to be a direct target of miR-140. Moreover, miR-140 expression is negatively correlated with YES1 levels. miR-140 exhibits significant tumor-suppressive effects in PCa by inhibiting YES1. The study indicated that miR-140 and YES1 could be the potential targets for PCa therapy.  相似文献   

15.
Chemokines are vertebrate‐specific, structurally related proteins that function primarily in controlling cell movements by activating specific 7‐transmembrane receptors. Chemokines play critical roles in a large number of biological processes and are also involved in a range of pathological conditions. For these reasons, chemokines are at the focus of studies in developmental biology and of clinically oriented research aimed at controlling cancer, inflammation, and immunological diseases. The small size of the zebrafish embryos, their rapid external development, and optical properties as well as the large number of eggs and the fast expansion in genetic tools available make this model an extremely useful one for studying the function of chemokines and chemokine receptors in an in vivo setting. Here, we review the findings relevant to the role that chemokines play in the context of directed single‐cell migration, primarily in neutrophils and germ cells, and compare it to the collective cell migration of the zebrafish lateral line. We present the current knowledge concerning the formation of the chemokine gradient, its interpretation within the cell, and the molecular mechanisms underlying the cellular response to chemokine signals during directed migration.  相似文献   

16.

Background

Sanguisorba minor, as well as several other edible herbs and vegetables, has been used extensively in traditional medicine. The observed beneficial effects can be attributed at least in part to the direct modulation of several enzymatic activities by its polyphenolic constituents.

Methods

The ethanol extract of Sanguisorba minor was characterized by reversed-phase liquid chromatography, and most relevant analytes were identified by multiple stage mass spectrometry. The whole extract and the most relevant isolated constituents were tested for their ability to modulate the activity of human plasmin both toward a synthetic substrate and in human breast cancer cell culture models. Kinetic and equilibrium parameters were obtained by a concerted spectrophotometric and biosensor-based approach.

Results

Quercetin-3-glucuronide was recognized as the compound mainly responsible for the in vitro plasmin inhibition by S. minor extract, with an inhibition constant in the high nanomolar range; in detail, our approach based on bioinformatic, enzymatic and binding analyses classified the inhibition as competitive. Most interestingly, cell-based assays showed that this flavonoid was effective in suppressing plasmin-induced loss of cancer cell adhesion.

General significance

Our results show that the extract from Sanguisorba minor limits plasmin-mediated tumor cell motility in vitro, mostly due to quercetin-3-glucuronide. This glucuronated flavonoid is a promising template for rational designing of anticancer drugs to be used in the treatment of pathological states involving the unregulated activity of plasmin.  相似文献   

17.
Glycogen synthase kinase 3 (GSK3) is one of the few master switch kinases that regulate many aspects of cell functions. Recent studies on cell polarization and migration have shown that GSK3 is also essential for proper regulation of these processes. GSK3 influences cell migration as one of the regulators of the spatiotemporally controlled dynamics of the actin cytoskeleton, microtubules, and cell‐to‐matrix adhesions. In this mini‐review, the effects of GSK3 on these three aspects of cell migration will be discussed.  相似文献   

18.
Gremlin1 (Grem1) is an antagonist of bone morphogenetic proteins (BMPs) that plays a critical role in embryonic and postnatal development. Grem1 has been implicated as both a promoter and an inhibitor of cell proliferation driven by BMP-4 and other mitogens in a diverse range of cell types. Recent data showed that Grem1 can trigger angiogenesis via vascular endothelial growth factor receptor (VEGFR2) binding, highlighting that the precise modalities of Grem1 signalling require further elucidation.In an attempt to enhance our understanding of the role of Grem1 in cell proliferation, mouse embryonic fibroblasts lacking grem1 (grem1−/−) were generated. Grem1−/− cells showed elevated levels of proliferation in vitro compared to wild-type and grem1+/−, with accelerated scratch wound repair but no obvious changes in cell cycle profile. Modest increases in BMP-4-stimulated Smad1/5/8 phosphorylation were detected in grem1−/− cells, with concomitant modest changes in Smad-dependent gene expression. Surprisingly, levels of ERK phosphorylation were reduced in grem1−/− cells compared to wild-type.These data suggest Grem1 is an inhibitor of embryonic fibroblast proliferation in vitro. Furthermore, the signalling pathways causing increased cell proliferation in the absence of Grem1 may involve other pathways distinct from canonical Smad and non-canonical ERK signalling.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号