首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The generation of layer-by-layer silicate-chitosan composite biosorbent was studied. The films were evaluated on its stability regarding the polymer leakage and its capability in the removal of Cd(II), Cr(III) and Cr(VI) from an aqueous solution. SEM, EDAX and ATR-IR techniques were applied for material characterization. Silicate-chitosan films with a final layer of silicate demonstrated chitosan retention and had better sorption capacities than those without it. For metal species, such as Cd(II) and Cr(III), the greatest adsorption was obtained when the pH of the solution was 7. When Cr(VI) was evaluated, pH 4 was the optimal for its adsorption. Langmuir and Freundlich isotherms were modeled for the equilibrium data. An 80% of the adsorbed metal was recovered by HNO(3) incubation. This non-covalent immobilization method allowed chitosan surface retention and did not affect its adsorption properties. The use of a coated surface would facilitate sorbent removal from medium after adsorption.  相似文献   

2.
Biosorption is potentially an attractive technology for treatment of wastewater for retaining heavy metals from dilute solutions. This study investigated the feasibility of anaerobic granules as a novel type of biosorbent, for lead, copper, cadmium, and nickel removal from aqueous solutions. Anaerobic sludge supplied from a wastewater treatment plant in the province of Quebec was used. Anaerobic granules are microbial aggregates with a strong, compact and porous structure and excellent settling ability. After treatment of the biomass with Ca ions, the cation exchange capacity of the biomass was approximately 111 meq/100 g of biomass dry weight which is comparable to the metal binding capacities of commercial ion exchange resins. This work investigated the equilibrium, batch dynamics for the biosorption process. Binding capacity experiments using viable biomass revealed a higher value than those for nonviable biomass. Binding capacity experiments using non-viable biomass treated with Ca revealed a high value of metals uptake. The solution initial pH value affected metal sorption. Over the pH range of 4.0-5.5, pH-related effects were not significant. Meanwhile, at lower pH values the uptake capacity decreased. Time dependency experiments for the metal ions uptake showed that adsorption equilibrium was reached almost 30 min after metal addition. It was found that the q(max) for Pb2+, Cd2+, Cu2+, and Ni2+ ions, were 255, 60, 55, and 26 mg/g respectively (1.23, 0.53, 0.87, and 0.44 mmol/g respectively). The data pertaining to the sorption dependence upon metal ion concentration could be fitted to a Langmiur isotherm model. Based on the results, the anaerobic granules treated with Ca appear to be a promising biosorbent for removal of heavy metals from wastewater due to its optimal uptake of heavy metals, its particulate shape, compact porous structure, excellent settling ability, and its high mechanical strength.  相似文献   

3.
Park D  Yun YS  Yim KH  Park JM 《Bioresource technology》2006,97(14):1592-1598
In this study, the removal of Cr(VI) was examined in a binary aqueous system containing Ni(II), and the competitive interaction between them was successfully modeled. The removal rate of Cr(VI) was unaffected by the presence of Ni(II). However, in an equilibrium state, the uptake of total Cr or Ni(II) was decreased in the presence of the other metal. The mono- and multi-component Langmuir adsorption models clearly represented the uptake behavior of these metals.  相似文献   

4.
Biosorption is the process of removal of any chemical molecules by the treatment of biological material. Industrialization resulted in the discharge of various toxic heavy metals into water bodies, which poses serious health hazards to humans and animals. In the present study, live Spirulina platensis was used as a biosorbent for the removal of the heavy metals chromium (Cr(VI)) and lead (Pb(II)) from the aqueous samples. S. platensis were cultured in the presence of different concentrations of heavy metals. The growth of the algal cells was found to be decreased by 59% and 36% in media containing 50 ppm Cr(VI) and Pb(II), respectively. To assess the biosorption of heavy metals, at different time intervals, the spent culture media were used to detect Cr(VI) by atomic absorption spectroscopy method and Pb(II) by 4-(2-pyridylazo)resorcinol indicator method. Results suggested that there was a significant uptake of Cr(VI) and Pb(II) from the medium by S. platensis, with corresponding decrease of metals in the medium. When metal salt solutions or industrial effluent samples were passed through the column containing immobilized live S. platensis in calcium alginate beads, the concentration of Cr(VI) was found to be reduced drastically. The present study indicates the application of S. platensis for the bioremediation of heavy metals from the samples obtained from industrial effluents.  相似文献   

5.
Phytoremediation is an efficient method for the removal of heavy metals from contaminated systems. A productive disposal of metal accumulating plants is a major concern in current scenario. In this work, Cr(VI) accumulating Tradescantia pallida plant parts were investigated for its reuse as a biosorbent for the removal of Cr(VI) ions. The effect of pH, contact time, sorbent dosage, Cr(VI) concentration and temperature was examined to optimize these process parameters. Results showed that Cr(VI) exposed/unexposed T. pallida leaf biomass could remove 94% of chromium with a sorption capacity of 64.672 mg g?1. Whereas the kinetics of Cr(VI) biosorption was well explained by the pseudo second-order kinetic model, the Langmuir model better described the data on Cr(VI) sorption isotherm compared with the Freundlich model. The changes in the free energy (ΔG°), entropy (ΔS°) and enthalpy (ΔH°) were found to be ?5.276 kJ mol?1, 0.391 kJ mol?1 K?1 and 11.346 kJ mol?1, respectively, which indicated the process to be spontaneous, feasible and endothermic in nature. FTIR spectra of T. pallida leaf biomass revealed the active participation of ligands, such as ?NH, amide, hydroxyl and sulphonate groups present in the biomass for Cr(VI) binding, SEM analysis revealed a porous structure of the biosorbent for an easy uptake of Cr(VI).  相似文献   

6.
Biosorption of each of the heavy metals, copper(II) and cobalt(II) by crab shell was investigated in this study. The biosorption capacities of crab shell for copper and cobalt were studied at different particle sizes (0.456-1.117 mm), biosorbent dosages (1-10 g/l), initial metal concentrations (500-2000 mg/l) and solution pH values (3.5-6) in batch mode. At optimum particle size (0.767 mm), biosorbent dosage (5 g/l) and initial solution pH (pH 6); crab shell recorded maximum copper and cobalt uptakes of 243.9 and 322.6 mg/g, respectively, according to Langmuir model. The kinetic data obtained at different initial metal concentrations indicated that biosorption rate was fast and most of the process was completed within 2h, followed by slow attainment of equilibrium. Pseudo-second order model fitted the data well with very high correlation coefficients (>0.998). The presence of light and heavy metal ions influenced the copper and cobalt uptake potential of crab shell. Among several eluting agents, EDTA (pH 3.5, in HCl) performed well and also caused low biosorbent damage. The biosorbent was successfully regenerated and reused for five cycles.  相似文献   

7.
The green macroalgae present in freshwater ecosystems have attracted a great attention of the world scientists for removal of heavy metals from wastewater. In this mesocosm study, the uptake rates of heavy metals such as cadmium (Cd), nickel (Ni), chromium (Cr), and lead (Pb) by Oedogonium westi (O. westti) were measured. The equilibrium adsorption capabilities of O. westti were different for Cd, Ni, Cr, and Pb (0.974, 0.418, 0.620, and 0.261 mgg–1, respectively) at 18°C and pH 5.0. Furthermore, the removal efficiencies for Cd, Cr, Ni and Pb were observed from 55–95%, 61–93%, 59–89%, and 61–96%, respectively. The highest removal efficiency was observed for Cd and Cr from aqueous solution at acidic pH and low initial metal concentrations. However, the removal efficiencies of Ni and Pb were higher at high pH and high concentrations of metals in aqueous solution. The results summarized that O. westti is a suitable candidate for removal of selected toxic heavy metals from the aqueous solutions.  相似文献   

8.
ABSTRACT

Microbial waste biomass, a by-product of the fermentation industry, was developed as a biosorbent to remove hexavalent chromium (Cr) from the acidic effluent of a metal processing industry. In batch sorption, 100% Cr(VI) removal was achieved from aqueous solution in 30 min contact at pH 4.0–5.0. The Cr(VI) sorption equilibrium was evaluated using the Langmuir and Freundlich models, indicating the involvement of ion exchange and physicochemical interaction. Fourier transform infrared (FTIR) analysis revealed the presence of amine, hydroxyl, and imine functional groups present on the surface of microbial biomass that are involved in Cr binding. In a continuous sorption system, 95 mg L?1 of Cr(VI) was adsorbed before the column reached a breakthrough point of 0.1 mg L?1 Cr(VI) at the column outlet. An overall biosorption capacity of 12.6 mg Cr(VI) g?1 of dry microbial waste was achieved, including the partially saturated portion of the dynamic sorption zone. Insignificant change in metal removal was observed up to 10 cycles. In pilot-scale studies, 100% removal of Cr(VI) was observed up to 5 weeks, and the method was found to be cost-effective, commercially viable, and environmentally friendly, as it does not generate toxic chrome sludge.  相似文献   

9.
Several Lupinus species, for example, Lupinus albus, Lupinus luteus, Lupinus angustifolius, and Lupinus hispanicus were used to accumulate Mn(II), Cd(II), Pb(II), Cr(III), Cr(VI), Hg2+, and CH3Hg+ from waste waters. The influence of different species concentrations (50 and 100 mg L-1) and pH on growing behavior as well as the resulting distribution of metals in the plants were investigated. The results obtained showed that lupins were able to germinate and to grow in the presence of the metals mentioned above, even when they were present at levels as high as 50 mg L-1. Accumulation of Pb(II), Cr(III), and Cd(II) was higher in roots than in shoots. As far as mercury is concerned, the highest CH3Hg and Hg2+ accumulation was detected in roots, but fast transport toward the leaves was noticed. In contrast to mercury, the uptake of chromium seems to be influenced by the chemical form of the analyte, remaining Cr(VI) in solution. No differences in growing behavior and accumulation were observed for the four Lupinus species studied. Even though plants were exposed only a relatively short time to the metal solutions, metal concentrations of approximately 2 g/kg of dry matter were detected in the young lupins plants. The feasibility of utilizing Lupinus plants for the removal of heavy metals from wastewater was also investigated. Lupins were able to grow under extreme conditions (wastewater, pH lower than 2) and to remove 98% of the initial amount of toxic metals present in the sample.  相似文献   

10.
This paper reports the sorption of three metallic ions, namely Cr(VI), Cu(II) and Pb(II) in aqueous solution by a consortium culture (CC) comprising an acclimatised mixed bacterial culture collected from point and non-point sources. Metal sorption capability of growing and non-growing cells at initial pH of between 3 and 8 in the 1-100mg/L concentration range were studied based on Q(max) and K(f) values of the Langmuir and linearised Freundlich isotherm models, respectively. Maximal metal loading was generally observed to be dependent on the initial pH. Growing cells displayed significant maximal loading (Q(max)) for Pb(II) (238.09 mg/g) and Cu(II) (178.87 mg/g) at pH 6 and at pH 7 for Cr(VI) (90.91 mg/g) compared to non-growing cells (p < 0.05). At the pH range of 6-8, growing cells showed higher loading capacity compared to non-growing cells i.e. 38-52% for Cr, 17-28% for Cu and 3-17% for Pb. At lower metal concentrations and at more acidic pH (3-4) however, non-growing cells had higher metal loading capacity than growing cells. The metal sorption capacity for both populations were as follows: Pb(II) > Cu(II) > Cr(VI).  相似文献   

11.
Biosorption of Cd(II) and Cr(VI) ions in single solutions using Staphylococcus xylosus and Pseudomonas sp., and their selectivity in binary mixtures was investigated. Langmuir and Freundlich models were applied to describe metal biosorption and the influence of pH, biomass concentration and contact time was determined. Maximum uptake capacity of cadmium was estimated to 250 and 278 mg g(-1), whereas that of chromium to 143 and 95 mg g(-1) for S. xylosus and Pseudomonas sp., respectively. In binary mixtures with Cd(II) ions as the dominant species, there is a profound selectivity for cadmium biosorption, reaching 96% and 89% for Pseudomonas sp. and S. xylosus, respectively, at 10 mg l(-1) Cd(II) and 5 mg l(-1) Cr(VI). Interesting, when chromium (VI) ions are the dominant species, there is selectivity towards chromium around 92% with S. xylosus only.  相似文献   

12.
Abstract: Fungal mycelial by-products from fermentation industries present a considerable affinity for soluble metal ions (e.g. Zn, Cd, Ni, Pb, Cr, Ag) and could be used in biosorption processes for purification of contaminated effluents. In this work the influence of pH on sorption parameters is characterized by measuring the isotherms of five heavy metals (Ni, Zn, Cd, Ag and Pb) with Rhizopus arrhizus biomass under pH-controlled conditions. The maximum sorption capacity for lead was observed at pH 7.0 (200 mg g-l), while silver uptake was weakly affected. The stability of metal-biosorbent complexes is regularly enhanced by pH neutralization, except for lead. A transition in sorption mechanism was observed above pH 6.0. In addition, comparison of various industrial fungal biomasses ( R. arrhizus, Mucor miehei and Penicillium chrysogenum indicated important variations in zinc-binding and buffering properties (0.24, 0.08 and 0.05 mmol g−l, respectively). Without control, the equilibrium pH (5.8, 3.9 and 4.0) is shown to be related to the initial calcium content of the biosorbent, pH neutralization during metal adsorption increases zinc sorption in all fungi (0.57, 0.52 and 0.33 mmol g-l) but an improvement was also obtained (0.34, 0.33 and 0.10 mmol g−1) by calcium saturation of the biomass before heavy metal accumulation. Breakthrough curves of fixed bed biosorbent columns demonstrated the capacity of the biosorbent process to purify zinc and lead solutions in continuous-flow systems, and confirmed the necessity for cationic activation of the biosorbent before contact with the heavy-metal solution.  相似文献   

13.
This study involved the development of formaldehyde-treated, deseeded sunflower head waste–based biosorbent (FSH) for the biosorption of Cr(VI) from aqueous solution and industrial wastewater. Batch-mode experiments were conducted to determine the kinetics, sorption isotherms, effect of pH, initial Cr(VI) concentration, biosorbent dose, and contact time. The results demonstrated that FSH can sequester Cr(VI) from the aqueous solution. The maximum sorption occurred at pH = 2.0, biosorbent dose = 4.0 g/L, concentration of 100 mg/L at 25°C at 180 rpm after 2 h contact time. The FSH had an adsorption capacity of 7.85 mg/g for Cr(VI) removal at pH 2.0. The rate of adsorption was rapid, and equilibrium was attained within 2 h. The equilibrium sorption data fitted the Langmuir isotherm model, which was further confirmed by the chi-square test.  相似文献   

14.
This study is focused on the possible use of Ceratocystis paradoxa MSR2 native biomass for Cr(VI) biosorption. The influence of experimental parameters such as initial pH, temperature, biomass dosage, initial Cr(VI) concentration and contact time were optimized using batch systems as well as response surface methodology (RSM). Maximum Cr(VI) removal of 68.72% was achieved, at an optimal condition of biomass dosage 2g L−1, initial Cr(VI) concentration of 62.5 mg L−1 and contact time of 60 min. The closeness of the experimental and the predicted values exhibit the success of RSM. The biosorption mechanism of MSR2 biosorbent was well described by Langmuir isotherm and a pseudo second order kinetic model, with a high regression coefficient. The thermodynamic study also revealed the spontaneity and exothermic nature of the process. The surface characterization using FT-IR analysis revealed the involvement of amine, carbonyl and carboxyl groups in the biosorption process. Additionally, desorption efficiency of 92% was found with 0.1 M HNO3. The Cr(VI) removal efficiency, increased with increase in metal ion concentration, biomass concentration, temperature but with a decrease in pH. The size of the MSR2 biosorbent material was found to be 80 μm using particle size analyzer. Atomic force microscopy (AFM) visualizes the distribution of Cr(VI) on the biosorbent binding sites with alterations in the MSR2 surface structure. The SEM-EDAX analysis was also used to evaluate the binding characteristics of MSR2 strain with Cr(VI) metals. The mechanism of Cr(VI) removal of MSR2 biomass has also been proposed.  相似文献   

15.
High concentration of heavy metals is toxic for most microorganisms and cause strict damage in wastewater treatment operations and often a physico-chemical pretreatment prior to biological treatment is considered necessary. However, in this study it has been shown that biological systems can adapt to Ni (II) and Cr (VI) when their concentration is below 10 and 20 mg/L, respectively. The aim of this study was to evaluate the effect of Ni (II) and Cr (VI) on the lab-scale rotating biological contactor process. It was found that, addition of Ni (II) up to 10 mg/L did not reduce the chemical oxygen demand removal efficiency and on the contrary concentrations below 10 mg/L improved the performance. The influent Ni (II) concentration of 1 mg/L was the concentration where the treatment efficiency produced a maximum COD removal of 86.5%. Moreover, Ni (II) concentration above 10 mg/L was relatively toxic to the system and produced lower treatment efficiencies than the baseline study without Ni (II). Turbidity and suspended solids removals were not stimulated to a great extent with nickel. Addition of Ni (II) did not seem to affect the pH of the system during treatment. The dissolved oxygen concentration did not drop below 4 mg/L at all concentrations of Ni (II) indicating aerobic conditions prevailed in the system. Experiments conducted with Cr (VI) revealed that addition of Cr (VI) up to 20 mg/L did not reduce the COD removal efficiency and on the contrary concentrations below 20 mg/L improved the performance. The influent Cr (VI) concentration of 1 mg/L was the concentration where the treatment efficiency produced a maximum COD removal of 88%. Turbidity and SS removals were more efficient at 5 mg/L Cr (VI) concentration, rather than 1 mg/L, which lead to the conclusion that 5 mg/L Cr (VI) concentration is the optimum concentration, in terms of COD, turbidity and SS removals. Similar with Ni (II) experiments, addition of Cr (VI) did not significantly affect the pH value of the effluent. The DO concentration remained above 5 mg/L.  相似文献   

16.
A biosorbent was prepared by coating the fibrous network of loofa sponge (Luffa cylindrica) with a thin film of calcium alginate. Alginate-coated loofa sponge removed Cd(II) rapidly, reaching equilibrium loading of 124 mg g(-1) in 30 min. Seventy % of equilibrium uptake was achieved in 10 min. In contrast, it took 240 min for alginate beads to reach a loading equilibrium of 88 mg g(-1) under identical conditions. The biosorption behaviour followed the Langmuir adsorption isotherm and the ACLS biosorbent was shown to be highly effective in removing Cd(II) from a 10 mg l(-1) solution in a continuous flow fixed-bed column bioreactor.  相似文献   

17.
The use of inexpensive biosorbents to sequester heavy metals from aqueous solutions, is one of the most promising technologies being developed to remove these toxic contaminants from wastewaters. Considering this challenge, the viability of Cr(III) and Pb(II) removal from aqueous solutions using a flocculating brewer's yeast residual biomass from a Portuguese brewing industry was studied. The influence of physicochemical factors such as medium pH, biomass concentration and the presence of a co-ion was characterised. Metal uptake kinetics and equilibrium were also analysed, considering different incubation temperatures. For both metals, uptake increased with medium pH, being maximal at 5.0. Optimal biomass concentration for the biosorption process was determined to be 4.5?g dry weight/l. In chromium and lead mixture solutions, competition for yeast binding sites was observed between the two metals, this competition being pH dependent. Yeast biomass showed higher selectivity and uptake capacity to lead. Chromium uptake kinetic was characterised as having a rapid initial step, followed by a slower one. Langmuir model describes well chromium uptake equilibrium. Lead uptake kinetics suggested the presence of mechanisms other than biosorption, possibly including its precipitation.  相似文献   

18.
The hexavalent chromium Cr(VI) poses a threat as a hazardous metal and its removal from aquatic environments through biosorption has gained attention as a viable technology of bioremediation. We evaluated the potential use of three green algae (Cladophora glomerata, Enteromorpha intestinalis and Microspora amoena) dry biomass as a biosorbent to remove Cr(VI) from aqueous solutions. The adsorption capacity of the biomass was determined using batch experiments. The adsorption capacity appeared to depend on the pH. The optimum pH with the acid-treated biomass for Cr(VI) biosorption was found to be 2.0 at a constant temperature, 45?°C. Among the three genera studied, C. glomerata recorded a maximum of 66.6% removal from the batch process using 1.0?g dried algal cells/100?ml aqueous solution containing an initial concentration of 20?mg/L chromium at 45?°C and pH 2.0 for 60?min of contact time. Langmuir and Freundlich isotherm equations fitted to the equilibrium data, Freundlich was the better model. Our study showed that C. glomerata dry biomass is a suitable candidate to remove Cr(VI) from aqueous solutions.  相似文献   

19.
The anaerobic digestion of cattail by rumen cultures in the presence of Cu(II), Cd(II) or Cr(VI) was investigated in this study. Three cases were respectively observed for the different metal dosages: promoted cattail degradation and methane production at a low heavy metal concentration, e.g., Cu(II) 2.4 mg/l, Cd(II) 1.6 mg/l, Cr(VI) 4.0 mg/l; reduced cattail degradation efficiency and methane production at a middle metal level; a severe inhibition to the cattail degradation at a high heavy metal dosage. The inhibition kinetics of Cu(II) on the digestion of cattail by rumen cultures was also analyzed and a simplified Andrews equation was used to describe such an inhibition. The inhibition constants for Cu(II) on the degradation of cattail, production of volatile fatty acids and formation of methane were estimated as 7.4, 9.5 and 6.4 mg/l, respectively. Comparative experimental results suggest that the order of toxicity degree of the tested metals on the rumen cultures was: Cd(II) > Cu(II) > Cr(VI).  相似文献   

20.
The mycelia pellets of Penicillium simplicissimum impregnated with powdered biochar (MPPSIPB) were synthesized and applied to remove chromium (VI) from aqueous solution. The effects of pH, MPPSIPB dosage, initial Cr(VI) concentration, and contact time were investigated via batch experiments. Results indicated that the percentage removal of Cr(VI) was significantly dependent on the pH of the solution. Ten grams mycelial pellets and 0.2 g powdered biochar could form the most stable pellets. The maximum value of biosorption of Cr(VI) was 28.0 mg/g. Scanning electron microscopy (SEM) analysis showed that the mycelia pellets of Penicillium simplicissimum had abundant filamentous network, which entrapped powdered biochar firmly. Fourier transform infrared (FTIR) analysis suggested that O?H, N?H, C?H, C?O, and C?OH groups from MPPSIPB were involved in chromium binding and the subsequent reduction. Kinetic studies indicated that the pseudo-second-order equation fit best for Cr(VI) removal from aqueous solution. Freundlich isotherm was found to apply better for the adsorption equilibrium data with respect to the Langmuir isotherm. Furthermore, MPPSIPB can be separated from aqueous solution completely by filtration. Both experimental study and modeling results indicated that MPPSIPB exhibited remarkable affinity for chromate and had a potential application in Cr(VI) removal from water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号