首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Introduction: Helicobacter pylori (H. pylori) is a gram-negative bacterium that colonizes the gastric epithelium and mucous layer of more than half the world’s population. H. pylori is a primary human pathogen, responsible for the development of chronic gastritis, peptic ulceration and gastric cancer. Proteomics is impacting several aspects of medical research: understanding the molecular basis of infection and disease manifestation, identification of therapeutic targets and discovery of clinically relevant biomarkers.

Areas covered: The main aim of the present review is to provide a comprehensive overview of the contribution of proteomics to the study of H. pylori infection pathophysiology. In particular, we focused on the role of the bacterium and its most important virulence factor, CagA, in the progression of gastric cells transformation and cancer progression. We also discussed the proteomic approaches aimed at the investigation of the host response to bacterial infection.

Expert commentary: In the field of proteomics of H. pylori, comprehensive analysis of clinically relevant proteins (functional proteomics) rather than entire proteomes will result in important medical outcomes. Finally, we provided an outlook on the potential development of proteomics in H. pylori research.  相似文献   


2.
3.
万秀坤  刘纯杰 《微生物学报》2016,56(12):1821-1830
幽门螺杆菌感染是导致从胃炎到胃癌等一系列胃相关疾病的主要病因,但具体的致病机制仍不是很清楚。细胞毒素相关蛋白A(cytotoxin-associated gene A,Cag A)是幽门螺杆菌编码的一种重要毒力因子,且作为细菌来源的唯一癌蛋白被大量研究。Cag A蛋白是由幽门螺杆菌Ⅳ型分泌系统介导并注入宿主胃上皮细胞内,一旦进入细胞,Cag A能够与多个分子发生相互作用,扰乱细胞正常的信号通路,引起细胞病变和转化,而动物实验也证明了Cag A蛋白的致癌特点。本文重点对Cag A蛋白的序列特征,转位方式及致病机制等方面的最新进展进行了综述,希望能进一步阐释Cag A介导的幽门螺杆菌的致病机制,为以后的研究提供一定的方向和指导。  相似文献   

4.
Jin S  Wu M  Cao H  Ying S  Hua J  Chen Y 《Helicobacter》2012,17(2):140-147
Background and Aims: Infection by Helicobacter pylori is one of the major contributing factors of chronic active gastritis and peptic ulcer and is closely associated with the occurrence and progression of gastric cancer. CagA protein is a major virulence factor of H. pylori that interacts with SHP‐2, a true oncogene, to interfere with cellular signaling pathways; CagA also plays a crucial role in promoting the carcinogenesis of gastric epithelial cells. However, currently, the molecular mechanisms of gastric epithelial cells that antagonize CagA pathogenesis remain inconclusive. Methods: We showed that AGS gastric cancer cells transfected with CagA exhibited the inhibition of proliferation and increased activity of caspase 3/7 using two‐dimensional gel electrophoresis and secondary mass spectrometry (MS/MS). Results: It was found that the AGS gastric cancer cells stably expressing CagA displayed significantly increased the expression of 16 proteins, including hnRNPC1/2. Further analysis revealed that hnRNPC1/2 significantly boosted the expression of the p27kip1 protein. Conclusion: Our data suggested that hnRNPC1/2 upregulates p27kip1 expression and the subsequent suppression of cell proliferation and induction of apoptosis, thereby providing an important mechanism whereby gastric epithelial cells antagonize CagA‐mediated pathogenesis.  相似文献   

5.
The cytotoxin‐associated gene A protein (CagA) plays a pivotal role in the aetiology of Helicobacter pylori‐associated gastric diseases. CagA is injected into the cytoplasm of host cells by a type IV secretion system, and is phosphorylated on tyrosine residues by the host enzyme c‐Src. We previously reported that the enzyme haem oxygenase‐1 (HO‐1) inhibits IL‐8 secretion by H. pylori‐infected cells. However, the cellular mechanism by which HO‐1 regulates the innate immune function of infected cells remains unknown. We now show that nitric oxide and haemin, two inducers of HO‐1, decrease the level of phosphorylated CagA (p‐CagA) in H. pylori‐infected gastric epithelial cells and this is blocked by either pharmacological inhibition of HO‐1 or siRNA knockdown of hmox‐1. Moreover, forced expression of HO‐1 by transfection of a plasmid expressing hmox‐1 also results in a strong attenuation of CagA phosphorylation. This occurs through the inhibition of H. pylori‐induced c‐Src phosphorylation/activation by HO‐1.Consequently, H. pylori‐induced cytoskeletal rearrangements and activation of the pro‐inflammatory response mediated by p‐CagA are inhibited in HO‐1‐expressing cells. These data highlight a mechanism by which the innate immune response of the host can restrict the pathogenicity of H. pylori by attenuating CagA phosphorylation in gastric epithelial cells.  相似文献   

6.
Objective: To investigate the dynamic variation in H3K4me3 and HP1 with employment length in nickel smelting workers.

Methods: Blood samples were collected from 140 nickel smelting workers and 140 age-matched office workers to test for H3K4me3, and HP1 levels.

Results: H3K4me3 was statistically significantly different (p?<?0.05) between the two groups and positively correlated with employment length (rs?=?0.267). HP1 was not correlated with employment length (p?=?0.066) but was significantly different between the two groups.

Conclusions: Chronic exposure to nickel can induce oxidative damage, and increase H3K4me3 expression and inhibit HP1 expression.  相似文献   


7.
Helicobacter pylori is a paradigm of persistent pathogens and major risk factor for developing severe diseases including adenocarcinoma in the human stomach. An important bacterial factor linked to gastric disease progression is the cag pathogenicity island‐encoded type‐IV secretion system (T4SS) effector protein CagA. Translocated CagA undergoes tyrosine phosphorylation at EPIYA‐motifs and then activates or inactivates multiple host signaling proteins in a phosphorylation‐dependent and phosphorylation‐independent fashion. In this way, intracellular CagA acts as a ‘masterkey’ or ‘picklock’, which evolved during evolution to hijack key host cell signal transduction functions. Crucial targets of CagA represent a variety of serine/threonine and tyrosine kinases, which control major checkpoints of eukaryotic signaling. Here we review the signal transmission by translocated CagA on multiple receptor kinases (c‐Met and EGFR) and non‐receptor kinases (Src, Abl, Csk, aPKC, Par1, PI3K, Akt, FAK, GSK‐3, JAK, PAK1, PAK2 and MAP kinases), manipulating a selection of fundamental processes in the human gastric epithelium such as cell adhesion, polarity, proliferation, motility, receptor endocytosis, cytoskeletal rearrangements, apoptosis, inflammation and cell cycle progression. This enormous complexity generates a highly remarkable and puzzling scenario during H. pylori infection. The contribution of these signaling pathways to bacterial survival, persistence and gastric pathogenesis is discussed.  相似文献   

8.
Nam YH  Ryu E  Lee D  Shim HJ  Lee YC  Lee ST 《Helicobacter》2011,16(4):276-283
Background: Infection of cagA‐positive Helicobacter pylori is associated with increased expression of MMPs in gastric epithelial cells. The role of phosphorylated CagA in the induction of MMP‐9, a protease‐degrading basement membrane, in gastric epithelial cells has not been clearly defined yet. The aim of this study is to analyze whether the presence of CagA and its phosphorylation status play a role in increased expression of MMP‐9 in gastric epithelial cells. Materials and Methods: Induction of MMP‐9 secretion was analyzed in gastric epithelial AGS cells harboring CagA with or without EPIYA motif, which is injected by H. pylori or ectopically expressed. In addition, signaling pathways involved in the CagA‐dependent MMP‐9 production have been studied. Results: The 147C strain of H. pylori expressing tyrosine‐phosphorylated CagA (EPIYA present) induced higher MMP‐9 secretion by AGS cells than the 147A strain expressing non‐tyrosine‐phosphorylated CagA (EPIYA absent). In addition, in bacteria‐free CagA‐inducible AGS cells, expression of wild‐type CagA induced more MMP‐9 secretion than phosphorylation‐resistant CagA. Inhibition of CagA phosphorylation by the Src family kinase inhibitor PP1 downregulated CagA‐mediated MMP‐9 secretion. Knockdown of SHP‐2 phosphatase dramatically reduced MMP‐9 secretion. ERK inhibitors, PD98059 and U0126, and NF‐κB pathway inhibitors, sulfasalazine and N‐acetyl‐l ‐cysteine, also inhibited MMP‐9 expression. Conclusion: These results support a model whereby the EPIYA motif of CagA is phosphorylated by Src family kinases in gastric epithelial cells, which initiates activation of SHP‐2. In addition, they suggest that the resultant activation of ERK pathway along with CagA‐dependent NF‐κB activation is critical for the induction of MMP‐9 secretion.  相似文献   

9.
Context: Urothelial carcinoma (UC) is common and highly recurrent. Diagnosis and follow-up involve invasive cystoscopies.

Objective: To evaluate H19 RNA in urine cells as diagnostic tool for UC.

Materials and methods: RT-PCR analysis of urine samples from healthy volunteers and UC patients.

Results: H19 RNA was unequivocally detected in the urine of 90.5% of patients and 25.9% of controls. H19 copies were three orders of magnitude higher in patients. Receiver operating characteristic analysis showed an area under the curve of 0.933.

Conclusions: This pilot study shows that urinary cell H19 is a highly sensitive test for UC and pending verification could transform patient management.  相似文献   


10.
The cytotoxin-associated gene (Cag) pathogenicity island is a strain-specific constituent of Helicobacter pylori (H. pylori) that augments cancer risk. CagA translocates into the cytoplasm where it stimulates cell signaling through the interaction with tyrosine kinase c-Met receptor, leading cellular proliferation. Identified as a potential gastric stem cell marker, cluster-of-differentiation (CD) CD44 also acts as a co-receptor for c-Met, but whether it plays a functional role in H. pylori-induced epithelial proliferation is unknown. We tested the hypothesis that CD44 plays a functional role in H. pylori-induced epithelial cell proliferation. To assay changes in gastric epithelial cell proliferation in relation to the direct interaction with H. pylori, human- and mouse-derived gastric organoids were infected with the G27 H. pylori strain or a mutant G27 strain bearing cagA deletion (∆CagA::cat). Epithelial proliferation was quantified by EdU immunostaining. Phosphorylation of c-Met was analyzed by immunoprecipitation followed by Western blot analysis for expression of CD44 and CagA. H. pylori infection of both mouse- and human-derived gastric organoids induced epithelial proliferation that correlated with c-Met phosphorylation. CagA and CD44 co-immunoprecipitated with phosphorylated c-Met. The formation of this complex did not occur in organoids infected with ∆CagA::cat. Epithelial proliferation in response to H. pylori infection was lost in infected organoids derived from CD44-deficient mouse stomachs. Human-derived fundic gastric organoids exhibited an induction in proliferation when infected with H. pylorithat was not seen in organoids pre-treated with a peptide inhibitor specific to CD44. In the well-established Mongolian gerbil model of gastric cancer, animals treated with CD44 peptide inhibitor Pep1, resulted in the inhibition of H. pylori-induced proliferation and associated atrophic gastritis. The current study reports a unique approach to study H. pylori interaction with the human gastric epithelium. Here, we show that CD44 plays a functional role in H. pylori-induced epithelial cell proliferation.  相似文献   

11.
Context: The metabolic function of peroxisome proliferator-activated receptor gamma (PPARγ) in lung cancer remains unclear.

Objectives: To determine the relationship of PPARγ on ALDH1A3-induced lipid peroxidation to inhibit lung cancer cell growth.

Materials and methods: In silico analysis using microarray dataset was performed to screen the positive correlation between PPARγ and all ALDH isoforms. NUBIscan software and ChIP assay were used to identify the binding sites (BSs) of PPARγ on ALDH1A3 promoter. The expression of ALDH1A3 under thiazolidinedione (TZD) treatment was evaluated by QPCR and Western Blot in HBEC and H1993 cell lines. Upon treatment of TZD, colony formation assay was used to check cell growth inhibition and 4-hydroxy-2-nonenal (4HNE) production as lipid peroxidation marker was determined by Western Blot in PPARγ positive cell H1993 and PPARγ negative cell H1299.

Results: Compared to other ALDH isoforms, ALDH1A3 showed the highest positive correlation to PPARγ expression. ALDH1A3 upregulated PPARγ expression while PPARγ activation suppressed ALDH1A3. Among 2 potential screened PPARγ response elements, BS 1 and 2 in the promoter of ALDH1A3 gene, PPARγ bound directly to BS2. Ligand activation of PPARγ suppressed mRNA and protein expression of ALDH1A3. Growth inhibition was observed in H1993 (PPARγ positive cell) treated with PPARγ activator and ALDH inhibitor compared to H1299 (PPARγ negative cell). PPARγ activation increased 4HNE which is known to be suppressed by ALDH1A3.

Conclusions: ALDH1A3 suppression could be one of PPARγ tumor suppressive function. This study provides a better understanding of the role of PPARγ in lung cancer.  相似文献   


12.
Lai YP  Yang JC  Lin TZ  Wang JT  Lin JT 《Helicobacter》2003,8(3):235-243
Background. Tyrosine phosphorylation of Helicobacter pylori cytotoxin‐associated protein of in gastric epithelial cells is reported. The goals of this study are first to examine the occurrence of CagA tyrosine phosphorylation in H. pylori strains isolated from patients with gastric adenocarcinoma and gastritis, and second to clarify the relationship between the diversity of tyrosine phosphorylation motifs and the presence of CagA tyrosine phosphorylation. Methods. Fifty‐eight clinical isolates of H. pylori from patients with gastric adenocarcinoma (29 cases) and gastritis (29 cases) were studied for CagA tyrosine phosphorylation by Western blotting. Sequence diversity of tyrosine phosphorylation motifs was analysed among positive‐ or negative‐CagA tyrosine phosphorylation isolates. Results. Positive CagA tyrosine phosphorylation was found in 93.1% (27 of 29) of strains from gastric adenocarcinoma patients and 51.7% (15 of 29) of strains from gastritis patients (p < 0.001). Intact motifs were found in H. pylori isolates with CagA tyrosine phosphorylation. Of the 16 negative CagA tyrosine phosphorylation isolates, intact tyrosine phosphorylation motifs were found in 15 isolates. Conclusions. CagA tyrosine phosphorylation, which is significantly greater in strains from gastric adenocarcinoma patients, may play a role in gastric carcinogenesis, and could be a better marker of more virulent strains than the cag pathogenicity island in Asia, where the cag pathogenicity island is present in nearly all H. pylori strains. Sequence diversity of tyrosine phosphorylation motifs on CagA was not related to the presence of tyrosine phosphorylation. The absence of tyrosine phosphorylation motif might result in negative tyrosine phosphorylation phenotypes, but such motifs are not the sole factors associated with CagA tyrosine phosphorylation.  相似文献   

13.
Helicobacter pylori, a Gram-negative, microaerophilic bacterium found in the stomach, is assumed to be associated with carcinogenesis, invasion and metastasis in digestive diseases. Cytotoxin-associated gene A (CagA) is an oncogenic protein of H. pylori that is encoded by a Cag pathogenicity island related to the development of gastric cancer. The epithelial–mesenchymal transition (EMT) is the main biological event in invasion or metastasis of epithelial cells. H. pylori may promote EMT in human gastric cancer cell lines, but the specific mechanisms are still obscure. We explored the underlying molecular mechanism of EMT induced by H. pylori CagA in gastric cancer. In our article, we detected gastric cancer specimens and adjacent non-cancerous specimens by immunohistochemistry and found increased expression of the EMT-related regulatory protein TWIST1 and the mesenchymal marker vimentin in cancer tissues, while programmed cell death factor 4 (PDCD4) and the epithelial marker E-cadherin expression decreased in cancer specimens. These changes were associated with degree of tissue malignancy. In addition, PDCD4 and TWIST1 levels were related. In gastric cancer cells cocultured with CagA expression plasmid, CagA activated TWIST1 and vimentin expression, and inhibited E-cadherin expression by downregulating PDCD4. CagA also promoted mobility of gastric cancer cells by regulating PDCD4. Thus, H. pylori CagA induced EMT in gastric cancer cells, which reveals a new signaling pathway of EMT in gastric cancer cell lines.  相似文献   

14.
Background: Serpentine ecosystems support different, often unique, plant communities; however, we know little about the soil organisms that associate with these ecosystems. Mycorrhizas, mutualistic symbioses between fungi and roots, are critical to nutrient cycling and energy exchange below ground.

Aims: We address three hypotheses: H1, diversity of mycorrhizal fungi in serpentine soils mirrors above-ground plant diversity; H2, the morphology of mycorrhizas and fungi on serpentine soils differs from that on non-serpentine; and H3, mycorrhizal fungal communities of the same or closely related hosts differ between serpentine and non-serpentine soils.

Methods: This review focuses on whether plant diversity on serpentine soils correlates with the below ground diversity of mycorrhizal fungi.

Results: Studies show that plants and fungi formed abundant ectomycorrhizal and arbuscular mycorrhizal symbioses on and off serpentine soils. No serpentine-endemic fungi were identified. Molecular analyses indicate distinct serpentine isolates for Cenococcum geophilum and for Acaulospora, suggesting adaptation to serpentine soils. While fungal sporocarp assemblages on serpentine sites resembled those off serpentine, fruiting of hypogeous fungi was greatly reduced.

Conclusions: Ectomycorrhizal fungal communities did not differ between soil types; however, arbuscular mycorrhizal communities differed in some cases but not others. The additive response to multiple factors, described as the serpentine syndrome, may explain part of the response by fungi.  相似文献   


15.
Qingtao Jiang  Yun Sun 《Biomarkers》2019,24(6):510-516
Background: CXCR4 is a member of the C-X-C chemokine receptor family, which is associated with multiple types of cancer. Although it has been widely reported, the prognostic value of CXCR4 expression in gastrointestinal (GI) cancer remains controversial.

Methods: A meta-analysis was conducted to investigate the relationship between CXCR4 and prognosis of patients with GI cancer. Subgroup analysis was also performed according to tumour subtypes and heterogeneity test.

Results: A total of 24 studies including 3637 cases suggested that overexpression of CXCR4 is significantly associated with overall survival (OS) for patients with GI cancer (HR = 1.71, 95% CI = 1.45–2.03, p?=?0.000). Subgroup analysis also indicated that high CXCR4 expression in oesophagus, gastric and colorectal cancer all predicted a worse prognosis (HR = 1.52, 95% CI = 1.26–1.84, p?=?0.001 for oesophagus cancer; HR = 1.59, 95% CI = 1.10–2.30, p?=?0.015 for gastric cancer; HR = 2.21, 95% CI = 1.56–3.14, p?=?0.000 for colorectal cancer).

Conclusions: CXCR4 may serve as a prognostic indicator in GI cancer patients.  相似文献   


16.
Context: Stomach ulcers are the common gastrointestinal disorders worldwide.

Objective: This study aimed to investigate the therapeutic impact of Pulicaria crispa aerial parts ethanol extract against gastric ulcer in rats.

Materials and methods: Ulcer was induced by one oral dose of ethanol (0.5?ml/100g body weight) on 24?hours empty stomach, then the plant extract (500?mg/kg b.wt.) was orally administered daily for one week. Ranitidine (100?mg/kg b.wt.); as a reference drug was evaluated. Stomach acidity and volume, as well as lesion counts were measured. Levels of malondialdehyde (MDA), glutathione (GSH) and superoxide dismutase (SOD) were estimated. Assay of different marker enzymes; succinate dehydrogenase (SDH), lactate dehydrogenase (LDH), glucose-6-phosphatase (G-6-Pase), acid phosphatase (AP) and 5′-nucleotidase (5′NT) were determined. Interlukin-10 (IL-10), intracellular adhesion molecule-1 (ICAM-1) and tumor necrosis factor alpha (TNF-α) were also determined. Stomach histopathological assessment was detected.

Results: Gastric ulcer showed drastic changes in oxidative stress, cell organelles and inflammatory markers. These biomarkers served as good tools to identify the presence of gastric ulcer. Treatment with P. crispa recorded amelioration in most parameters exceeding the auto healing effect.

Conclusion: Healing potency of P. crispa is possibly related to its content of glycosides, coumarins, flavonoids, tannins, sterols and triterpenes.  相似文献   


17.
High-grade serous ovarian cancer (HG-SOC), a major histologic type of epithelial ovarian cancer (EOC), is a poorly-characterized, heterogeneous and lethal disease where somatic mutations of TP53 are common and inherited loss-of-function mutations in BRCA1/2 predispose to cancer in 9.5–13% of EOC patients. However, the overall burden of disease due to either inherited or sporadic mutations is not known.

We performed bioinformatics analyses of mutational and clinical data of 334 HG-SOC tumor samples from The Cancer Genome Atlas to identify novel tumor-driving mutations, survival-significant patient subgroups and tumor subtypes potentially driven by either hereditary or sporadic factors.

We identified a sub-cluster of high-frequency mutations in 22 patients and 58 genes associated with DNA damage repair, apoptosis and cell cycle. Mutations of CHEK2, observed with the highest intensity, were associated with poor therapy response and overall survival (OS) of these patients (P = 8.00e-05), possibly due to detrimental effect of mutations at the nuclear localization signal. A 21-gene mutational prognostic signature significantly stratifies patients into relatively low or high-risk subgroups with 5-y OS of 37% or 6%, respectively (P = 7.31e-08). Further analysis of these genes and high-risk subgroup revealed 2 distinct classes of tumors characterized by either germline mutations of genes such as CHEK2, RPS6KA2 and MLL4, or somatic mutations of other genes in the signature.

Our results could provide improvement in prediction and clinical management of HG-SOC, facilitate our understanding of this complex disease, guide the design of targeted therapeutics and improve screening efforts to identify women at high-risk of hereditary ovarian cancers distinct from those associated with BRCA1/2 mutations.  相似文献   


18.
Capsule: Stable isotope analyses reveal some degree of migratory connectivity of Bluethroat populations wintering from Iberia to West Africa.

Aims: To identify the probable breeding origins of Bluethroats wintering from Iberia to Senegal.

Methods: Bluethroat feathers (P1) were sampled from individuals at their wintering areas. These feathers were then analysed for stable H isotopes (δ2H). We assigned individual Bluethroats to approximate geographic origin using likelihood-based assignment procedures.

Results: We observed spatial segregation between different Bluethroat populations. At wintering sites north of the Sahara Desert, Bluethroats wintering to the west came from further west origins than those which overwintered to the east. Bluethroats from central-eastern Europe overwintered either within the circum-Mediterranean region or in Senegal. We found no clear evidence supporting a sub-Saharan wintering range for birds breeding in Iberia (Luscinia svecica azuricollis subspecies).

Conclusion: North of the Sahara Desert, we found what might be a parallel migration pattern. The apparent lack of Luscinia svecica namnetum Bluethroats in Senegal suggests to some extent some kind of leap-frog migration between some Luscinia svecica cyanecula populations and the L. s. namnetum subspecies.  相似文献   


19.
20.
Many pathogenic Gram‐negative bacteria possess type IV secretion systems (T4SS) to inject effector proteins directly into host cells to modulate cellular processes to their benefit. The human bacterial pathogen Helicobacter pylori, a major aetiological agent in the development of chronic gastritis, duodenal ulcer and gastric carcinoma, harbours the cag‐T4SS to inject the cytotoxin associated Antigen (CagA) into gastric epithelial cells. This results in deregulation of major signalling cascades, actin‐cytoskeletal rearrangements and eventually gastric cancer. We show here that a pre‐infection with live H. pylori has a dose‐dependent negative effect on the CagA translocation efficiency of a later infecting strain. This effect of the ‘first’ strain was independent of any of its T4SS, the vacuolating cytotoxin (VacA) or flagella. Other bacterial pathogens, e.g. pathogenic Escherichia coli, Campylobacter jejuni, Staphylococcus aureus, or commensal bacteria, such as lactobacilli, were unable to interfere with H. pylori's CagA translocation capacity in the same way. This interference was independent of the β1 integrin receptor availability for H. pylori, but certain H. pylori outer membrane proteins, such as HopI, HopQ or AlpAB, were essential for the effect. We suggest that the specific interference mechanism induced by H. pylori represents a cellularresponse to restrict and control CagA translocation into a host cell to control the cellular damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号