首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autophagy is a degradative pathway in which cytosolic material is enwrapped within double membrane vesicles, so-called autophagosomes, and delivered to lytic organelles. SNARE (Soluble N-ethylmaleimide sensitive factor attachment protein receptor) proteins are key to drive membrane fusion of the autophagosome and the lytic organelles, called lysosomes in higher eukaryotes or vacuoles in plants and yeast. Therefore, the identification of functional SNARE complexes is central for understanding fusion processes and their regulation. The SNARE proteins Syntaxin 17, SNAP29 and Vamp7/VAMP8 are responsible for the fusion of autophagosomes with lysosomes in higher eukaryotes. Recent studies reported that the R-SNARE Ykt6 is an additional SNARE protein involved in autophagosome-lytic organelle fusion in yeast, Drosophila, and mammals. These current findings point to an evolutionarily conserved role of Ykt6 in autophagosome-related fusion events. Here, we briefly summarize the principal mechanisms of autophagosome-lytic organelle fusion, with a special focus on Ykt6 to highlight some intrinsic features of this unusual SNARE protein.  相似文献   

2.
Macroautophagy/autophagy, which is one of the main degradation systems in the cell, is mediated by a specialized organelle, the autophagosome. Purification of autophagosomes before fusion with lysosomes is important for both mechanistic and physiological studies of the autophagosome. Here, we report a simple method to accumulate undigested autophagosomes. Overexpression of the autophagosomal Qa-SNARE STX17 (syntaxin 17) lacking the N-terminal domain (NTD) or N-terminally tagged GFP-STX17 causes accumulation of autophagosomes. A HeLa cell line, which expresses GFP-STX17ΔNTD or full-length GFP-STX17 under the control of the tetracycline-responsive promoter, accumulates a large number of undigested autophagosomes devoid of lysosomal markers or early autophagy factors upon treatment with doxycycline. Using this inducible cell line, nascent autophagosomes can be easily purified by OptiPrep density-gradient centrifugation and immunoprecipitation. This novel method should be useful for further characterization of nascent autophagosomes.  相似文献   

3.
Vesicle flow within the cell is responsible for the dynamic maintenance of and communication between intracellular compartments. In addition, vesicular transport is crucial for communication between the cell and its surrounding environment. The ability of a vesicle to recognise and fuse with an appropriate compartment or vesicle is determined by its protein and lipid composition as well as by proteins in the cytosol. SNARE proteins present on both vesicle as well as target organelle membranes provide one component necessary for the process of membrane fusion. While in mammalian cells the main focus of interest about SNARE function has centred on those involved in exocytosis, recent data on SNAREs involved in intracellular membrane-trafficking steps have provided a deeper insight into the properties of these proteins. We take, as an example, the promiscuous SNARE syntaxin 6, a SNARE involved in multiple membrane fusion events. The properties of syntaxin 6 reveal similarities but also differences in the behaviour of intracellular SNAREs and the highly specialised exocytotic SNARE molecules.  相似文献   

4.
SNARE complex formation is essential for membrane fusion in exocytotic and vacuolar trafficking pathways. Vesicle-associated (v-) SNARE associates with a target membrane (t-) SNARE to form a SNARE complex bridging two membranes, which may facilitate membrane fusion. The Arabidopsis genome encodes a large number of predicted SNARE proteins that might function primarily as fusogens for vesicle transport in endomembrane systems. The SNAREs SYP41, SYP61 and VTI12 reside in the trans-Golgi network and have been proposed to function together in vesicle fusion with this organelle. Here, we use a liposome fusion assay to demonstrate that VTI12 and either SYP41 or SYP61, but not both, are required for membrane fusion. This indicates that SYP41 and SYP61 are likely to function in independent vesicle fusion reactions in Arabidopsis. In addition, we have identified two new functionally interchangeable components, YKT61 and YKT62, that show sequence similarity to the multifunctional yeast SNARE YKT6. Both YKT61 and YKT62 interact with SYP41 and are essential for membrane fusion mediated by either SYP41 or SYP61. These results therefore define the core constituents required for membrane fusion at the Arabidopsis trans-Golgi network.  相似文献   

5.
A new yeast endosomal SNARE related to mammalian syntaxin 8   总被引:3,自引:0,他引:3  
We report the identification of a yeast SNARE that has escaped notice because of an apparent error in the genome sequence and because it is functionally redundant. It is encoded by an extended version of ORF YAL014c, and since its SNARE motif is related to mammalian syntaxin 8 we term the gene SYN8 . Syn8p is in endosomes. Co-precipitation indicates a set of complexes containing Pep12p, Vti1p, either Syn8p or Tlg1p and either Snc1p or Ykt6p. Analysis of growth and trafficking defects demonstrates that in the absence of Tlg1p, Syn8p is required for Pep12p function. Conversely, when Tlg1p is present, Syn8p can be removed without loss of Pep12p function, or induction of any other obvious trafficking defect. Syn8p thus appears to be a functional homolog of mammalian syntaxin 8, but Tlg1p can, amongst other roles, provide an equivalent function .  相似文献   

6.
SNARE protein trafficking in polarized MDCK cells   总被引:3,自引:0,他引:3  
A key feature of polarized epithelial cells is the ability to maintain the specific biochemical composition of the apical and basolateral plasma membrane domains. This polarity is generated and maintained by the continuous sorting of apical and basolateral components in the secretory and endocytic pathways. Soluble N-ethyl maleimide-sensitive factor attachment protein receptors (SNARE) proteins of vesicle-associated membrane protein (VAMP) and syntaxin families have been suggested to play a role in the biosynthetic transport to the apical and basolateral plasma membranes of polarized cells, where they likely mediate membrane fusion. To investigate the involvement of SNARE proteins in membrane trafficking to the apical and basolateral plasma membrane in the endocytic pathway we have monitored the recycling of various VAMP and syntaxin molecules between intracellular compartments and the two plasma membrane domains in Madin–Darby canine kidney (MDCK) cells. Here we show that VAMP8/endobrevin cycles through the apical but not through the basolateral plasma membrane. Furthermore, we found that VAMP8 localizes to apical endosomal membranes in nephric tubule epithelium and in MDCK cells. This asymmetry in localization and cycling behavior suggests that VAMP8/endobrevin may play a role in apical endosomal trafficking in polarized epithelium cells.  相似文献   

7.
Sec1/Munc18-like (SM) proteins functionally interact with SNARE proteins in vesicular fusion. Despite their high sequence conservation, structurally disparate binding modes for SM proteins with syntaxins have been observed. Several SM proteins appear to bind only to a short peptide present at the N terminus of syntaxin, designated the N-peptide, while Munc18a binds to a 'closed' conformation formed by the remaining portion of syntaxin 1a. Here, we show that the syntaxin 16 N-peptide binds to the SM protein Vps45, but the remainder of syntaxin 16 strongly enhances the affinity of the interaction. Likewise, the N-peptide of syntaxin 1a serves as a second binding site in the Munc18a/syntaxin 1a complex. When the syntaxin 1a N-peptide is bound to Munc18a, SNARE complex formation is blocked. Removal of the N-peptide enables binding of syntaxin 1a to its partner SNARE SNAP-25, while still bound to Munc18a. This suggests that Munc18a controls the accessibility of syntaxin 1a to its partners, a role that might be common to all SM proteins.  相似文献   

8.
Macroautophagy mediates recycling of intracellular material by a multistep pathway, ultimately leading to the fusion of closed double-membrane structures, called autophagosomes, with the lysosome. This event ensures the degradation of the autophagosome content by lysosomal proteases followed by the release of macromolecules by permeases and, thus, it accomplishes the purpose of macroautophagy (hereafter referred to as autophagy). Because fusion of unclosed autophagosomes (i.e., phagophores) with the lysosome would fail to degrade the autophagic cargo, this critical step has to be tightly controlled. Yet, until recently, little was known about the regulation of this event and the factors orchestrating it. A punctum in this issue highlights the recent paper by Noboru Mizushima and his collaborators that answered the question of how premature fusion of phagophores with the lysosome is prevented prior to completion of autophagosome closure.  相似文献   

9.
The NSF homolog Sec18 initiates fusion of yeast vacuoles by disassembling cis-SNARE complexes during priming. Sec18 is also required for palmitoylation of the fusion factor Vac8, although the acylation machinery has not been identified. Here we show that the SNARE Ykt6 mediates Vac8 palmitoylation and acts during a novel subreaction of vacuole fusion. This subreaction is controlled by a Sec17-independent function of Sec18. Our data indicate that Ykt6 presents Pal-CoA via its N-terminal longin domain to Vac8, while transfer to Vac8's SH4 domain occurs spontaneously and not enzymatically. The conservation of Ykt6 and its localization to several organelles suggest that its acyltransferase activity may also be required in other intracellular fusion events.  相似文献   

10.
The molecular mechanisms underlying the regulation of neurotransmission has been an open question for many years. Here, we have examined an interaction between caveolin1 and SNAREs (soluble N-ethylmalemide-sensitive factor attachment protein receptor) which may contribute to the cellular mechanisms underlying changes in synaptic strength. Previously, we reported that application of 4-aminopyridine to hippocampal slices resulted in a persistent potentiation of synaptic transmission and the induction of a short-lasting and specific 40-kDa complex composed of synaptosomal associated protein of 25 kDa (SNAP25) and caveolin1. We have characterized the binding properties of these proteins and observed that in vitro caveolin1 directly associates with both SNAP25 and syntaxin. Caveolin/SNARE interactions are enhanced in the presence of ATP by a mechanism that involves phosphorylation. While caveolin has been associated with cholesterol transport, signal transduction, and transcytosis, this study provides evidence that caveolin is also a SNARE accessory protein.  相似文献   

11.
The cystic fibrosis transmembrane conductance regulator (CFTR) interacts with multiple N-ethylmaleimide sensitive factor attachment protein (SNARE) molecules largely via its N-terminal cytoplasmic domain. The earliest known among these SNAREs are the cognate Q-SNARE pair of Syntaxin 1A (STX1A) and SNAP23 on the plasma membrane. These SNAREs affect CFTR chloride channel gating. CFTR exocytosis/recycling in intestinal epithelial cells is dependent on another SNARE located in the apical plasma membrane, STX3. Members of the STX8/STX7/vesicle transport through interaction with t-SNAREs homolog 1b/VAMP8 SNARE complex, which function in early to late endosome/lysosome traffic, are all known to interact with CFTR. Two SNAREs, STX6 and STX16 that function at the trans-Golgi network (TGN), have now been revealed as members of the CFTR SNARE interactome. We summarize here the SNAREs that interact with CFTR and discuss the roles of these SNAREs in the intracellular trafficking of CFTR and CFTR-associated pathophysiology.  相似文献   

12.
Degradation of autophagic vacuoles (AVs) via lysosomes is an important homeostatic process in cells. Neurons are highly polarized cells with long axons, thus facing special challenges to transport AVs generated at distal processes toward the soma where mature acidic lysosomes are relatively enriched. We recently revealed a new motor-adaptor sharing mechanism driving autophagosome transport to the soma. Late endosome (LE)-loaded dynein-SNAPIN motor-adaptor complexes mediate the retrograde transport of autophagosomes upon their fusion with LEs in distal axons. This motor-adaptor sharing mechanism enables neurons to maintain effective autophagic clearance in the soma, thus reducing autophagic stress in axons. Therefore, our study reveals a new cellular mechanism underlying the removal of distal AVs engulfing aggregated misfolded proteins and dysfunctional organelles associated with several major neurodegenerative diseases.  相似文献   

13.
Fusion of transport vesicles with their target organelles involves specific membrane proteins, SNAREs, which form tight complexes bridging the membranes to be fused. Evidence from yeast and mammals indicates that Sec1 family proteins act as regulators of membrane fusion by binding to the target membrane SNAREs. In experiments with purified proteins, we now made the observation that the ER to Golgi core SNARE fusion complex could be assembled on syntaxin Sed5p tightly bound to the Sec1-related Sly1p. Sly1p also bound to preassembled SNARE complexes in vitro and was found to be part of a vesicular/target membrane SNARE complex immunoprecipitated from yeast cell lysates. This is in marked contrast to the exocytic SNARE assembly in neuronal cells where high affinity binding of N-Sec1/Munc-18 to syntaxin 1A precluded core SNARE fusion complex formation. We also found that the kinetics of SNARE complex formation in vitro with either Sly1p-bound or free Sed5p was not significantly different. Importantly, several presumably nonphysiological SNARE complexes easily generated with Sed5p did not form when the syntaxin was first bound to Sly1p. This indicates for the first time that a Sec1 family member contributes to the specificity of SNARE complex assembly.  相似文献   

14.
Leticia Lemus 《Autophagy》2016,12(6):1049-1050
The endoplasmic reticulum (ER) is a major source for the generation of autophagosomes during macroautophagy. Our recent work in yeast shows that particular ER-derived vesicles are generated for the biogenesis of autophagosomes. These vesicles not only incorporate a SNARE protein that is largely ER-resident under nonstarving conditions, but also display COPII requirements for ER-exit that differ from conventional cargo-transporting vesicles. Our results suggest that specific intracellular traffic is launched at the ER for the transport of membranes to sites of autophagosome formation.  相似文献   

15.
Proteins of the Sec1 family have been shown to interact with target-membrane t-SNAREs that are homologous to the neuronal protein syntaxin. We demonstrate that yeast Sec1p coprecipitates not only the syntaxin homologue Ssop, but also the other two exocytic SNAREs (Sec9p and Sncp) in amounts and in proportions characteristic of SNARE complexes in yeast lysates. The interaction between Sec1p and Ssop is limited by the abundance of SNARE complexes present in sec mutants that are defective in either SNARE complex assembly or disassembly. Furthermore, the localization of green fluorescent protein (GFP)-tagged Sec1p coincides with sites of vesicle docking and fusion where SNARE complexes are believed to assemble and function. The proposal that SNARE complexes act as receptors for Sec1p is supported by the mislocalization of GFP-Sec1p in a mutant defective for SNARE complex assembly and by the robust localization of GFP-Sec1p in a mutant that fails to disassemble SNARE complexes. The results presented here place yeast Sec1p at the core of the exocytic fusion machinery, bound to SNARE complexes and localized to sites of secretion.  相似文献   

16.
Munc18-1, a member of the Sec1/Munc18 (SM) protein family, is essential for synaptic vesicle exocytosis. Munc18-1 binds tightly to the SNARE protein syntaxin 1, but the physiological significance and functional role of this interaction remain unclear. Here we show that syntaxin 1 levels are reduced by 70% in munc18-1 knockout mice. Pulse-chase analysis in transfected HEK293 cells revealed that Munc18-1 directly promotes the stability of syntaxin 1, consistent with a chaperone function. However, the residual syntaxin 1 in munc18-1 knockout mice is still correctly targeted to synapses and efficiently forms SDS-resistant SNARE complexes, demonstrating that Munc18-1 is not required for syntaxin 1 function as such. These data demonstrate that the Munc18-1 interaction with syntaxin 1 is physiologically important, but does not represent a classical chaperone-substrate relationship. Instead, the presence of SNARE complexes in the absence of membrane fusion in munc18-1 knockout mice indicates that Munc18-1 either controls the spatially correct assembly of core complexes for SNARE-dependent fusion, or acts as a direct component of the fusion machinery itself.  相似文献   

17.
Macroautophagy/autophagy plays a critical role in immunity by directly degrading invading pathogens such as Group A Streptococcus (GAS), through a process that has been named xenophagy. We previously demonstrated that autophagic vacuoles directed against GAS, termed GAS-containing autophagosome-like vacuoles (GcAVs), use recycling endosomes (REs) as a membrane source. However, the precise molecular mechanism that facilitates the fusion between GcAVs and REs remains unclear. Here, we demonstrate that STX6 (syntaxin 6) is recruited to GcAVs and forms a complex with VTI1B and VAMP3 to regulate the GcAV-RE fusion that is required for xenophagy. STX6 targets the GcAV membrane through its tyrosine-based sorting motif and transmembrane domain, and localizes to TFRC (transferrin receptor)-positive punctate structures on GcAVs through its H2 SNARE domain. Knockdown and knockout experiments revealed that STX6 is required for the fusion between GcAVs and REs to promote clearance of intracellular GAS by autophagy. Moreover, VAMP3 and VTI1B interact with STX6 and localize on the TFRC-positive puncta on GcAVs, and are also involved in the RE-GcAV fusion. Furthermore, knockout of RABGEF1 impairs the RE-GcAV fusion and STX6-VAMP3 interaction. These findings demonstrate that RABGEF1 mediates RE fusion with GcAVs through the STX6-VAMP3-VTI1B complex, and reveal the SNARE dynamics involved in autophagosome formation in response to bacterial infection.  相似文献   

18.
19.
Autophagosome fusion with a lysosome constitutes the last barrier for autophagic degradation. It is speculated that this fusion process is precisely and tightly regulated. Recent genetic evidence suggests that a set of SNARE proteins, including STX17, SNAP29, and VAMP8, are essential for the fusion between autophagosomes and lysosomes. However, it remains unclear whether these SNAREs are fusion competent and how their fusogenic activity is specifically regulated during autophagy. Using a combination of biochemical, cell biology, and genetic approaches, we demonstrated that fusogenic activity of the autophagic SNARE complex is temporally and spatially controlled by ATG14/Barkor/Atg14L, an essential autophagy-specific regulator of the class III phosphatidylinositol 3-kinase complex (PtdIns3K). ATG14 directly binds to the STX17-SNAP29 binary complex on autophagosomes and promotes STX17-SNAP29-VAMP8-mediated autophagosome fusion with lysosomes. ATG14 homo-oligomerization is required for SNARE binding and fusion promotion, but is dispensable for PtdIns3K stimulation and autophagosome biogenesis. Consequently, ATG14 homo-oligomerization is required for autophagosome fusion with a lysosome, but is dispensable for autophagosome biogenesis. These data support a key role of ATG14 in controlling autophagosome fusion with a lysosome.  相似文献   

20.
<正>Introduction Macroautophagy (hereafter referred as autophagy) is a process of cellular self-degradation. In response to nutrient deprivation or other stimuli, a nascent double-membrane autophagosome, encapsulating intracellular materials or damaged organelles, is generated. The autophagosome is transported toward and eventually fuses with the lysosome (or the vacuole in yeast and plant cells),  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号