首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The increasing use of microwave devices over recent years has meant the bioeffects of microwave exposure have been widely investigated and reported. However the exact biological fate of bone marrow MSCs (BM-MSCs) after microwave radiation remains unknown. In this study, the potential cytotoxicity on MSC proliferation, apoptosis, cell cycle, and in vitro differentiation were assayed following 2.856 GHz microwave exposure at a specific absorption rate (SAR) of 4 W/kg. Importantly, our findings indicated no significant changes in cell viability, cell division and apoptosis after microwave treatment. Furthermore, we detected no significant effects on the differentiation ability of these cells in vitro, with the exception of reduction in mRNA expression levels of osteopontin (OPN) and osteocalcin (OCN). These findings suggest that microwave treatment at a SAR of 4 W/kg has undefined adverse effects on BM-MSCs. However, the reduced-expression of proteins related to osteogenic differentiation suggests that microwave can the influence at the mRNA expression genetic level.  相似文献   

2.
The case for a DNA-damaging action produced by radiofrequency (RF) signals remains controversial despite extensive research. With the advent of the Universal Mobile Telecommunication System (UMTS) the number of RF-radiation-exposed individuals is likely to escalate. Since the epigenetic effects of RF radiation are poorly understood and since the potential modifications of repair efficiency after exposure to known cytotoxic agents such as ionizing radiation have been investigated infrequently thus far, we studied the influence of UMTS exposure on the yield of chromosome aberrations induced by X rays. Human peripheral blood lymphocytes were exposed in vitro to a UMTS signal (frequency carrier of 1.95 GHz) for 24 h at 0.5 and 2.0 W/kg specific absorption rate (SAR) using a previously characterized waveguide system. The frequency of chromosome aberrations was measured on metaphase spreads from cells given 4 Gy of X rays immediately before RF radiation or sham exposures by fluorescence in situ hybridization. Unirradiated controls were RF-radiation- or sham-exposed. No significant variations due to the UMTS exposure were found in the fraction of aberrant cells. However, the frequency of exchanges per cell was affected by the SAR, showing a small but statistically significant increase of 0.11 exchange per cell compared to 0 W/kg SAR. We conclude that, although the 1.95 GHz signal (UMTS modulated) does not exacerbate the yield of aberrant cells caused by ionizing radiation, the overall burden of X-ray-induced chromosomal damage per cell in first-mitosis lymphocytes may be enhanced at 2.0 W/kg SAR. Hence the SAR may either influence the repair of X-ray-induced DNA breaks or alter the cell death pathways of the damage response.  相似文献   

3.
To examine the biological effects of radio frequency (RF) electromagnetic fields in vitro, we have examined the fundamental cellular responses, such as cell growth, survival, and cell cycle distribution, following exposure to a wide range of specific absorption rates (SAR). Furthermore, we compared the effects of continuous and intermittent exposure at high SARs. An RF electromagnetic field exposure unit operating at a frequency of 2.45 GHz was used to expose cells to SARs from 0.05 to 1500 W/kg. When cells were exposed to a continuous RF field at SARs from 0.05 to 100 W/kg for 2 h, cellular growth rate, survival, and cell cycle distribution were not affected. At 200 W/kg, the cell growth rate was suppressed and cell survival decreased. When the cells were exposed to an intermittent RF field at 300 W/kg(pk), 900 W/kg(pk) and 1500 W/kg(pk) (100 W/kg(mean)), no significant differences were observed between these conditions and intermittent wave exposure at 100 W/kg. When cells were exposed to a SAR of 50 W/kg for 2 h, the temperature of the medium around cells rose to 39.1 degrees C, 100 W/kg exposure increased the temperature to 41.0 degrees C, and 200 W/kg exposure increased the temperature to 44.1 degrees C. Exposure to RF radiation results in heating of the medium, and the thermal effect depends on the mean SAR. Hence, these results suggest that the proliferation disorder is caused by the thermal effect.  相似文献   

4.
The induction of stress proteins in HeLa and CHO cells was investigated following a 2 h exposure to radiofrequency (RF) or microwave radiation. Cells were exposed or sham exposed in vitro under isothermal (37 ± 0.2 °C) conditions. HeLa cells were exposed to 27- or 2450 MHz continuous wave (CW) radiation at a specific absorption rate (SAR) of 25 W/kg. CHO cells were exposed to CW 27 MHz radiation at a SAR of 100 W/kg. Parallel positive control studies included 2 h exposure of HeLa or CHO cells to 40 °C or to 45 μM cadmium sulfate. Stress protein induction was assayed 24 h after treatment by electrophoresis of whole-cell extracted protein labeled with [35S]-methionine. Both cell types exhibited well-characterized responses to the positive control stresses. Under these exposure conditions, neither microwave nor RF radiation had a detectable effect on stress protein induction as determined by either comparison of RF-exposed cells with sham-exposed cells or comparison with heat-stressed or Cd++ positive control cells. Bioelectromagnetics 18:499–505, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
The mechanism by which Bcl-2 inhibits apoptosis is unknown. One proposal is that Bcl-2 regulates intracellular Ca2+ fluxes thought to mediate apoptosis. In the present study, we investigated Bcl-2's mechanism of action by determining the effect of Bcl-2 on intracellular Ca2+ fluxes in the WEH17.2 mouse lymphoma cell line, which does not express Bcl-2, and its stable transfectant, which expresses a high level of Bcl-2. Treatment with the endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin produced marked alterations in intracellular Ca2+ homeostasis in both WEH17.2 and W.Hb12 cells, including elevation of free cytosolic Ca2+, endoplasmic reticulum Ca2+ pool depletion, capacitative entry of extracellular Ca2+, and increased loading of Ca2+ into mitochondria. Similar changes in intracellular Ca2+ occurred spontaneously in both cell lines following exponential growth. In both situations, W.Hb12 cells maintained optimal viability despite marked alterations in intracellular Ca 2+' whereas WEH17.2 cells underwent apoptosis. Treatment with the glucocorticoid hormone, dexamethasone, induced apoptosis in WEH17.2 cells, but not in W.HB12 cells, even though dexamethasone treatment did not alter intracellular Ca2+ homeostasis in either cell line. These findings indicate that Bcl-2 acts downstream from intracellular Ca 2+ fluxes in a pathway where Ca2+-dependent and Ca2+-independent death signals converge.  相似文献   

6.
The evolution of mobile phone technology is toward an increase of the carrier frequency up to 2.45 GHz. Absorption of radiofrequency (RF) radiation becomes more superficial as the frequency increases. This increasingly superficial absorption of RF radiation by the skin, which is the first organ exposed to RF radiation, may lead to stress responses in skin cells. We thus investigated the expression of three heat-shock proteins (HSP70, HSC70, HSP27) using immunohistochemistry and induction of apoptosis by flow cytometry on human primary keratinocytes and fibroblasts. A well-characterized exposure system, SXC 1800, built by the IT'IS foundation was used at 1800 MHz, with a 217 Hz modulation. We tested a 48-h exposure at an SAR of 2 W/kg (ICNIRP local exposure limit). Skin cells were also irradiated with a 600 mJ/cm2 single dose of UVB radiation and subjected to heat shock (45 degrees C, 20 min) as positive controls for apoptosis and HSP expression, respectively. The results showed no effect of a 48-h GSM-1800 exposure at 2 W/kg on either keratinocytes or fibroblasts, in contrast to UVB-radiation or heat-shock treatments, which injured cells. We thus conclude that the GSM-1800 signal does not act as a stress factor on human primary skin cells in vitro.  相似文献   

7.
In this study, rat pheochromocytoma (PC12) cells were exposed, as a model of neuron-like cells, to 1950 MHz radiofrequency (RF) radiation with a signal used by the 3G wireless technology of the Universal Mobile Telecommunications System (UMTS) to assess possible adverse effects. RF exposure for 24 h at a specific absorption rate (SAR) of 10 W/kg was carried out in a waveguide system under accurately controlled environmental and dosimetric parameters. DNA integrity, cell viability, and apoptosis were investigated as cellular endpoints relevant for carcinogenesis and other diseases of the central nervous system. Very sensitive biological assays were employed to assess the effects immediately after RF exposure and 24 h later, as demonstrated by the cellular response elicited in PC12 cells using positive control treatments provided for each assay. In our experimental conditions, 24 h of RF exposure at a carrier frequency and modulation scheme typical of a UMTS signal was not able to elicit any effect in the selected cellular endpoints in undifferentiated PC12 cells, despite the application of a higher SAR value than those applied in the majority of the studies reported in the literature.  相似文献   

8.
The aim of the present study was to investigate possible cooperative effects of radiofrequency (RF) radiation and ferrous chloride (FeCl2) on reactive oxygen species (ROS) production and DNA damage. In order to test intracellular ROS production as a possible underlying mechanism of DNA damage, we applied the fluorescent probe DCFH‐DA. Integrity of DNA was quantified by alkaline comet assay. The exposures to 872 MHz RF radiation were conducted at a specific absorption rate (SAR) of 5 W/kg using continuous waves (CW) or a modulated signal similar to that used in Global System for Mobile Communications (GSM) phones. Four groups were included: (1) Sham exposure (control), (2) RF radiation, (3) Chemical treatment, (4) Chemical treatment, and RF radiation. In the ROS production experiments, human neuroblastoma (SH‐SY5Y) cells were exposed to RF radiation and 10 µg/ml FeCl2 for 1 h. In the comet assay experiments, the exposure time was 3 h and an additional chemical (0.015% diethyl maleate) was used to make DNA damage level observable. The chemical treatments resulted in statistically significant responses, but no effects from either CW or modulated RF radiation were observed on ROS production, DNA damage or cell viability. Bioelectromagnetics 31:417–424, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
10.
A larger diffusion of peritoneal dialysis (PD) is limited by the progressive deterioration of the dialysis membrane structure and function, characterized in vitro and in vivo by mesothelial cell loss and closely related to the use of bioincompatible dialysis solutions. The apoptosis rate of rat and human mesothelial cells incubated in commercial PD fluid (PDF, 4.25 g/dL dextrose) became significant as early as 1 h after PDF addition and reached a plateau at 4–5 h. This pattern was unchanged after exposure to 1.5 g/dL dextrose PDF or freshly prepared PDF, indicating that effects were independent on the dextrose strength and manufacturing procedures but strictly dependent on PDF composition. Molecular studies revealed that PDF exposure inactivated the physiological volume recovery from hypertonic shrinkage, accompanied by an abnormal Ca2+ signaling: a progressive intracellular Ca2+ ([Ca2+]i) rise resulting from an increased Ca2+ entry. PDF also affected cytoskeleton integrity: early dissolution of actin filaments occurred well before the appearance of typical apoptosis features. Lastly, the PDF dependent apoptosis was almost completely prevented by the contemporary Ca2+ concentration decrease and K+ addition. This study suggests that the PDF dependent apoptosis arises from the extreme volume perturbations in mesothelial cells, turned out unable to regulate their volume back once exposed to a hyperosmolal medium containing high Ca2+ levels in the absence of K+, such PDF.  相似文献   

11.
Cadmium (Cd) is an important industrial and environmental pollutant. In animals, the liver is the major target organ of Cd toxicity. In this study, rat hepatocytes were treated with 2.5~10 μM Cd for various durations. Studies on nuclear morphology, chromatin condensation, and apoptotic cells demonstrate that Cd concentrations ranging within 2.5~10 μM induced apoptosis. The early-stage marker of apoptosis, i.e., decreased mitochondrial membrane potential, was observed as early as 1.5 h at 5 μM Cd. Significant (P?P?2+ concentration ([Ca2+] i ) of Cd-exposed cells significantly increased (P?2+] i may play an important role in apoptosis. Overall, these results showed that oxidative stress and Ca2+ signaling were critical mediators of the Cd-induced apoptosis of rat hepatocytes.  相似文献   

12.
Exposure to mobile phone-induced electromagnetic radiation (EMR) may affect biological systems by increasing free oxygen radicals, apoptosis, and mitochondrial depolarization levels although selenium may modulate the values in cancer. The present study was designed to investigate the effects of 900 MHz radiation on the antioxidant redox system, apoptosis, and mitochondrial depolarization levels in MDA-MB-231 breast cancer cell line. Cultures of the cancer cells were divided into four main groups as controls, selenium, EMR, and EMR?+?selenium. In EMR groups, the cells were exposed to 900 MHz EMR for 1 h (SAR value of the EMR was 0.36?±?0.02 W/kg). In selenium groups, the cells were also incubated with sodium selenite for 1 h before EMR exposure. Then, the following values were analyzed: (a) cell viability, (b) intracellular ROS production, (c) mitochondrial membrane depolarization, (d) cell apoptosis, and (e) caspase-3 and caspase-9 values. Selenium suppressed EMR-induced oxidative cell damage and cell viability (MTT) through a reduction of oxidative stress and restoring mitochondrial membrane potential. Additionally, selenium indicated anti-apoptotic effects, as demonstrated by plate reader analyses of apoptosis levels and caspase-3 and caspase-9 values. In conclusion, 900 MHz EMR appears to induce apoptosis effects through oxidative stress and mitochondrial depolarization although incubation of selenium seems to counteract the effects on apoptosis and oxidative stress.  相似文献   

13.
Rat brain tissue, loaded with 45Ca2+ by intraventricular injection was exposed in vitro to pulsemodulated 1-GHz (SAR of 0.29 or 2.9 W/kg) or 2.45-GHz radiation (SAR = 0.3 W/kg), and in vivo to 2.06-GHz radiation (SAR of 0.12 to 2.4 W/kg). There were no significant differences in efflux of 45Ca2+ between the microwave- and sham-irradiated groups.  相似文献   

14.
A large-scale in vitro study focusing on low-level radiofrequency (RF) fields from mobile radio base stations employing the International Mobile Telecommunication 2000 (IMT-2000) cellular system was conducted to test the hypothesis that modulated RF fields induce apoptosis or other cellular stress response that activate p53 or the p53-signaling pathway. First, we evaluated the response of human cells to microwave exposure at a specific absorption rate (SAR) of 80 mW/kg, which corresponds to the limit of the average whole-body SAR for general public exposure defined as a basic restriction by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. Second, we investigated whether continuous wave (CW) and wideband code division multiple access (W-CDMA) modulated signal RF fields at 2.1425 GHz induced apoptosis or any signs of stress. Human glioblastoma A172 cells were exposed to W-CDMA radiation at SARs of 80, 250, and 800 mW/kg, and CW radiation at 80 mW/kg for 24 or 48 h. Human IMR-90 fibroblasts from fetal lungs were exposed to both W-CDMA and CW radiation at a SAR of 80 mW/kg for 28 h. Under the RF field exposure conditions described above, no significant differences in the percentage of apoptotic cells were observed between the test groups exposed to RF signals and the sham-exposed negative controls, as evaluated by the Annexin V affinity assay. No significant differences in expression levels of phosphorylated p53 at serine 15 or total p53 were observed between the test groups and the negative controls by the bead-based multiplex assay. Moreover, microarray hybridization and real-time RT-PCR analysis showed no noticeable differences in gene expression of the subsequent downstream targets of p53 signaling involved in apoptosis between the test groups and the negative controls. Our results confirm that exposure to low-level RF signals up to 800 mW/kg does not induce p53-dependent apoptosis, DNA damage, or other stress response in human cells.  相似文献   

15.
Recent data suggest that there might be a subtle thermal explanation for the apparent induction by radiofrequency (RF) radiation of transgene expression from a small heat-shock protein (hsp16-1) promoter in the nematode, Caenorhabditis elegans. The RF fields used in the C. elegans study were much weaker (SAR 5-40 mW kg(-1)) than those routinely tested in many other published studies (SAR approximately 2 W kg(-1)). To resolve this disparity, we have exposed the same transgenic hsp16-1::lacZ strain of C. elegans (PC72) to higher intensity RF fields (1.8 GHz; SAR approximately 1.8 W kg(-1)). For both continuous wave (CW) and Talk-pulsed RF exposures (2.5 h at 25 degrees C), there was no indication that RF exposure could induce reporter expression above sham control levels. Thus, at much higher induced RF field strength (close to the maximum permitted exposure from a mobile telephone handset), this particular nematode heat-shock gene is not up-regulated. However, under conditions where background reporter expression was moderately elevated in the sham controls (perhaps as a result of some unknown co-stressor), we found some evidence that reporter expression may be reduced by approximately 15% following exposure to either Talk-pulsed or CW RF fields.  相似文献   

16.
A novel exposure facility for exposing cell monolayers to centimeter and millimeter waves (18–40.5 GHz) used by future 5G mobile communication technology and similar applications has been developed. A detailed dosimetric characterization of the apparatus for frequencies of 27 and 40.5 GHz and 60 mm petri dishes, used in a presently ongoing study on human dermal fibroblasts and keratinocytes, was carried out. The exposure facility enables a well-defined, randomized, and blinded application of sham exposure and exposure with selectable values of incident power flux density, and additionally provides the possibility of continuous monitoring of the sample temperature during exposure while it does not require significant deviations from routine in vitro handling procedures, i.e. petri dishes are not required to be placed inside waveguides or TEM cells. Mean specific absorption rate (SAR) values inside the cell monolayer of 115 W/kg (27 GHz) and 160 W/kg (40.5 GHz) per watt antenna input power and corresponding transmitted power density (St) values at the bottom of the cell monolayer of 65 W/m2 (27 GHz) and 70 W/m2 (40.5 GHz) per watt antenna input power can be achieved, respectively. For reasonable amounts of harvested cells (80% of petri dish bottom area), the variation (max/min) of SAR and St over the cell monolayer remains below 3.7 dB (27 GHz) and 3.0 dB (40.5 GHz), respectively. © 2021 Bioelectromagnetics Society.  相似文献   

17.
Reactive oxygen species (ROS) are responsible for lung damage during inhalation of cold air. However, the mechanism of the ROS production induced by cold stress in the lung is still unclear. In this work, we measured the changes of ROS and the cytosolic Ca2+ concentration ([Ca2+]c) in A549 cell. We observed that cold stress (from 20 to 5 °C) exposure of A549 cell resulted in an increase of ROS and [Ca2+]c, which was completely attenuated by removing Ca2+ from medium. Further experiments showed that cold-sensing transient receptor potential subfamily member 1 (TRPA1) agonist (allyl isothiocyanate, AITC) increased the production of ROS and the level of [Ca2+]c in A549 cell. Moreover, HC-030031, a TRPA1 selective antagonist, significantly inhibited the enhanced ROS and [Ca2+]c induced by AITC or cold stimulation, respectively. Taken together, these data demonstrated that TRPA1 activation played an important role in the enhanced production of ROS induced by cold stress in A549 cell.  相似文献   

18.
In the present study we aimed to investigate the effects of 2.1 GHz Wideband Code Division Multiple Access (W-CDMA) modulated Microwave (MW) Radiation on cell survival and apoptotic activity of human breast fibroblast cells. The cell cultures were exposed to W-CDMA modulated MW at 2.1 GHz at a SAR level of 0.607 W/kg for 4 and 24 h. The cell viability was assessed by MTT [3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] method. The percentage of apoptotic cells was analyzed by Annexin V-FITC and PI staining. 5,5′,6,6′-Tetrachloro-1,1′,3,3′- tetraethylbenzimidazolcarbocyanine iodide (JC-1) was used to measure Mitochondrial Membrane Potential (ΔΨ m). sFasL and Fas/APO-1 protein levels were determined by ELISA method. 2.1 GHz MW radiation was shown to be able to inhibit cell proliferation and induce apoptosis in human breast fibroblast cells. The cell viability of MW-exposed cells was decreased significantly. The percentages of Annexin V-FITC positive cells were higher in MW groups. ΔΨ m was decreased significantly due to MW radiation exposure. However, neither sFas nor FasL level was significantly changed in MW-exposed fibroblast cells. The results of this study showed that 2.1 GHz W-CDMA modulated MW radiation-induced apoptotic cell death via the mitochondrial pathway.  相似文献   

19.
Human promyelocytic leukemia HL-60 cells were pre-exposed to non-ionizing 900 MHz radiofrequency fields (RF) at 12 µW/cm2 power density for 1 hour/day for 3 days and then treated with a chemotherapeutic drug, doxorubicin (DOX, 0.125 mg/L). Several end-points related to toxicity, viz., viability, apoptosis, mitochondrial membrane potential (MMP), intracellular free calcium (Ca2+) and Ca2+-Mg2+ -ATPase activity were measured. The results obtained in un-exposed and sham-exposed control cells were compared with those exposed to RF alone, DOX alone and RF+DOX. The results indicated no significant differences between un-exposed, sham-exposed control cells and those exposed to RF alone while treatment with DOX alone showed a significant decrease in viability, increased apoptosis, decreased MMP, increased Ca2+ and decreased Ca2+-Mg2+-ATPase activity. When the latter results were compared with cells exposed RF+DOX, the data showed increased cell proliferation, decreased apoptosis, increased MMP, decreased Ca2+ and increased Ca2+-Mg2+-ATPase activity. Thus, RF pre-exposure appear to protect the HL-60 cells from the toxic effects of subsequent treatment with DOX. These observations were similar to our earlier data which suggested that pre-exposure of mice to 900 MHz RF at 120 µW/cm2 power density for 1 hours/day for 14 days had a protective effect in hematopoietic tissue damage induced by subsequent gamma-irradiation.  相似文献   

20.
In this study we investigated the effect of the Enhanced Data rate for GSM Evolution (EDGE) signal on cells of three human brain cell lines, SH-SY5Y, U87 and CHME5, used as models of neurons, astrocytes and microglia, respectively, as well as on primary cortical neuron cultures. SXC-1800 waveguides (IT'IS-Foundation, Zürich, Switzerland) were modified for in vitro exposure to the EDGE signal radiofrequency (RF) radiation at 1800 MHz. Four exposure conditions were tested: 2 and 10 W/kg for 1 and 24 h. The production of reactive oxygen species (ROS) was measured by flow cytometry using the dichlorofluorescein diacetate (DCFH-DA) probe at the end of the 24-h exposure or 24 h after the 1-h exposure. Rotenone treatment was used as a positive control. All cells tested responded to rotenone treatment by increasing ROS production. These findings indicate that exposure to the EDGE signal does not induce oxidative stress under these test conditions, including 10 W/kg. Our results are in agreement with earlier findings that RF radiation alone does not increase ROS production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号