首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The STE4 and STE18 genes are required for haploid yeast cell mating. Sequencing of the cloned genes revealed that the STE4 polypeptide shows extensive homology to the beta subunits of mammalian G proteins, while the STE18 polypeptide shows weak similarity to the gamma subunit of transducin. Null mutations in either gene can suppress the haploid-specific cell-cycle arrest caused by mutations in the SCG1 gene (previously shown to encode a protein with similarity to the alpha subunit of G proteins). We propose that the products of the STE4 and STE18 genes comprise the beta and gamma subunits of a G protein complex coupled to the mating pheromone receptors. The genetic data suggest pheromone-receptor binding leads to the dissociation of the alpha subunit from beta gamma (as shown for mammalian G proteins), and the free beta gamma element initiates the pheromone response.  相似文献   

3.
Heterotrimeric guanine nucleotide binding proteins transduce signals from cell surface receptors to intracellular effectors. The alpha subunit is believed to confer receptor and effector specificity on the G protein. This role is reflected in the diversity of genes that encode these subunits. The beta and gamma subunits are thought to have a more passive role in G protein function; biochemical data suggests that beta-gamma dimers are shared among the alpha subunits. However, there is growing evidence for active participation of beta-gamma dimers in some G protein mediated signaling systems. To further investigate this role, we examined the diversity of the beta subunit family in mouse. Using the polymerase chain reaction, we uncovered a new member of this family, G beta 4, which is expressed at widely varying levels in a variety of tissues. The predicted amino acid sequence of G beta 4 is 79% to 89% identical to the three previously known beta subunits. The diversity of beta gene products may be an important corollary to the functional diversity of G proteins.  相似文献   

4.
G蛋白亚单位基因家族研究进展   总被引:3,自引:0,他引:3  
Hu J  Hu YM 《生理科学进展》2003,34(2):131-135
G蛋白由α、β、γ三个亚单位组成异源三聚体。目前已发现16个α、6个β和12个γ基因。G蛋白亚单位基因家族相当保守并且原始,几乎所有G蛋白基因外显子-内含子连接均遵从GT-AG规则,并且各亚单位基因编码区内含子结构和位置显示出很高的保守性。多数G蛋白基因具有持家基因的特点。G蛋白基因在基因组中的分布存在着丛集的倾向,有5对α基因呈二联串连排列。  相似文献   

5.
The heterotrimeric GTP binding proteins, G proteins, consist of three distinct subunits: alpha, beta, and gamma. There are 12 known mammalian gamma subunit genes whose products are the smallest and most variable of the G protein subunits. Sequencing of the bovine brain gamma(10) protein by electrospray mass spectrometry revealed that it differs from the human protein by an Ala to Val substitution near the N-terminus. Comparison of gamma isoform subunit sequences indicated that they vary substantially more at the N-terminus than at other parts of the protein. Thus, species variation of this region might reflect the lack of conservation of a functionally unimportant part of the protein. Analysis of 38 gamma subunit sequences from four different species shows that the N-terminus of a given gamma subunit isoform is as conserved between different species as any other part of the protein, including highly conserved regions. These data suggest that the N-terminus of gamma is a functionally important part of the protein exhibiting substantial isoform-specific variation.  相似文献   

6.
A region of 25 nucleotides is highly conserved in genes coding for the alpha, beta, gamma, and delta subunits of the nicotinic acetylcholine receptor (AChR) of human, mouse, calf, chicken, and Torpedo. Based on this observation, a 2-fold degenerate oligonucleotide was synthesized and used as a probe to screen a cDNA library made from a mouse myogenic cell line. Clones coding for the beta, gamma, and delta subunits were identified by the probe. The protein sequence deduced from the beta subunit clones codes for a precursor polypeptide of 501 amino acids with a calculated molecular weight of 56,930 daltons, which includes a signal peptide of 23 amino acids. The protein sequence and structural features of the beta subunits of mouse, calf, and Torpedo are conserved. A clone coding for the mouse gamma subunit was isolated, and its identity was confirmed by alignment of its sequence to previously published cDNA sequences for the mouse and calf gamma subunits. The clone contained approximately 200 nucleotides more at its 3' end untranslated region than a mouse gamma clone recently described. Northern blot analysis, utilizing as probes these beta and gamma subunit cDNAs and previously characterized alpha and delta subunit cDNAs, shows that the steady-state levels of the four AChR mRNAs increase coordinately during terminal differentiation of cultured C2 and C2i mouse myoblasts. The increase in mRNA levels can account for the rise of cell surface receptors during myogenesis and suggests that the muscle AChR genes may be regulated during development by a common mechanism. Utilization of this oligonucleotide probe should prove useful for screening a variety of libraries made from different species and tissues which are known to express AChRs.  相似文献   

7.
Two genes in the rice genome were identified as those encoding the gamma subunits, gamma1 and gamma2, of heterotrimeric G proteins. Using antibodies against the recombinant proteins for the alpha, beta, gamma1, and gamma2 subunits of the G protein complexes, all of the subunits were proven to be localized in the plasma membrane in rice. Gel filtration of solubilized plasma membrane proteins showed that all of the alpha subunits were present in large protein complexes (about 400 kDa) containing the other subunits, beta, gamma1, and gamma2, and probably also some other proteins, whereas large amounts of the beta and gamma (gamma1 and gamma2) subunits were freed from the large complexes and took a 60-kDa form. A yeast two-hybrid assay and co-immunoprecipitation experiments showed that the beta subunit interacted tightly with the gamma1 and gamma2 subunits, and so the beta and gamma subunits appeared to form dimers in rice cells. Some dimers were associated with the alpha subunit, because few beta, gamma1, and gamma2 subunits were present in the 400-kDa complexes in a rice mutant, d1, which was lacking in the alpha subunit. When a constitutively active form of the alpha subunit was prepared by the exchange of one amino acid residue and introduced into d1, the mutagenized subunit was localized in the plasma membrane of the transformants and took a free, and not the 400-kDa, form.  相似文献   

8.
The present model of G protein activation by G protein-coupled receptors exclusively localizes their activation and function to the plasma membrane (PM). Observation of the spatiotemporal response of G protein subunits in a living cell to receptor activation showed that 6 of the 12 members of the G protein gamma subunit family translocate specifically from the PM to endomembranes. The gamma subunits translocate as betagamma complexes, whereas the alpha subunit is retained on the PM. Depending on the gamma subunit, translocation occurs predominantly to the Golgi complex or the endoplasmic reticulum. The rate of translocation also varies with the gamma subunit type. Different gamma subunits, thus, confer distinct spatiotemporal properties to translocation. A striking relationship exists between the amino acid sequences of various gamma subunits and their translocation properties. gamma subunits with similar translocation properties are more closely related to each other. Consistent with this relationship, introducing residues conserved in translocating subunits into a non-translocating subunit results in a gain of function. Inhibitors of vesicle-mediated trafficking and palmitoylation suggest that translocation is diffusion-mediated and controlled by acylation similar to the shuttling of G protein subunits (Chisari, M., Saini, D. K., Kalyanaraman, V., and Gautam, N. (2007) J. Biol. Chem. 282, 24092-24098). These results suggest that the continual testing of cytosolic surfaces of cell membranes by G protein subunits facilitates an activated cell surface receptor to direct potentially active G protein betagamma subunits to intracellular membranes.  相似文献   

9.
The high affinity receptor for IgE (Fc epsilon RI) found on mast cells and basophils is a tetrameric complex of a single alpha subunit, a single beta subunit, and two identical gamma subunits. The genes for the three subunits of mouse Fc epsilon RI have now been cloned from the mast cell line, PT18. When compared at the DNA level, the rat and mouse subunits are similarly conserved. However, at the protein level the homology between mouse and rat alpha is surprisingly low (71% identities) especially in the cytoplasmic regions (57% identities) which are of different length (25 and 20 residues, respectively). By contrast the beta and gamma are homogeneously conserved between mouse and rat (83 and 93% identities, respectively). The consensus amino acid sequence of the alpha subunit derived from three species (rat, mouse, and human) shows that the cytoplasmic tail diverges to the same extent as the leader peptide. Conversely, the transmembrane domain of the alpha is highly conserved and contains 10 consecutive residues that are identical. Comparisons between mouse Fc epsilon RI and other mouse proteins reveal regions of high homology between the alpha subunit and Fc gamma RIIa and between the gamma subunit and the zeta chain of the T cell receptor. Cells transfected with the alpha gene express the alpha subunit on their surface very inefficiently. Efficient expression is only achieved after co-transfection of the three rodent genes or of the human alpha gene together with the rodent gamma without apparent need for beta. The subunits are completely interchangeable upon transfection so that various chimeric mouse-rat-human receptors can be expressed.  相似文献   

10.
The GTP-binding regulatory proteins (G proteins) that transduce signals from receptors to effectors are composed of alpha, beta, and gamma subunits. Whereas the role of alpha subunits in directly regulating effector activity is widely accepted, it has recently been demonstrated that beta gamma subunits may also directly regulate effector activity. This has made clear the importance of identifying and characterizing beta and gamma subunits. We have isolated a cDNA clone encoding a new gamma subunit, referred to here as the gamma 7 subunit, using probes based on peptide sequences of a gamma subunit previously purified from bovine brain. The clone contains a 1.47-kilobase cDNA insert, which includes an open reading frame of 204 base pairs that predicts a 68-amino acid polypeptide with a calculated M(r) of 7553. The predicted protein shares amino acid identities with the other known gamma subunits, ranging from 38 to 68%. Also characteristic of gamma subunits is a carboxyl-terminal CAAX motif. The expression of the gamma 7 subunit as well as the gamma 2, gamma 3, and gamma 5 subunits was examined in several bovine tissues at both the mRNA and protein levels. Whereas the gamma 2 and gamma 3 subunits were selectively expressed in brain, the gamma 5 and gamma 7 subunits were expressed in a variety of tissues. Thus, the gamma 5 and gamma 7 subunits are the first G protein gamma subunits known that could participate in the regulation of widely distributed signal transduction pathways.  相似文献   

11.
Mechanisms for heterotrimeric G protein activation that do not rely on G protein coupled receptor activation are becoming increasingly apparent. We recently identified beta gamma subunit-binding peptides that we proposed bound to a "hot spot" on beta gamma subunits, stimulating G protein dissociation without stimulating nucleotide exchange and activating G protein signaling in intact cells. AGS3, a member of the activators of G protein signaling family of proteins, also activates G protein signaling in a nucleotide exchange-independent manner, and AGS3 homologues are involved in asymmetric cell division during development. Here we demonstrate that a consensus G protein regulatory (GPR) peptide from AGS3 and related proteins is sufficient to induce G protein subunit dissociation and that both the GPR and hot spot-binding peptides promote dissociation to extents comparable with a known G protein activator, AMF. Peptides derived from adenylyl cyclase 2 and GRK2 prevented formation of the heterotrimeric complex but did not alter the rate of alpha subunit dissociation from beta gamma subunits. These data indicate that these nucleotide exchange-independent G protein activator peptides do not simply compete for alpha interactions with beta gamma subunits, but actively promote subunit dissociation. Thus, we propose two novel mechanisms for nucleotide exchange independent activation of G protein signaling, one that involves conformational changes in the alpha subunit and one that involves conformational changes in the beta gamma subunits.  相似文献   

12.
G gamma(13) is a divergent member of the G gamma subunit family considered to be a component of the gustducin G-protein heterotrimer involved in bitter and sweet taste reception in taste bud cells. G gamma(13) contains a C-terminal asparagine-proline-tryptophan (NPW) tripeptide, a hallmark of RGS protein G gamma-like (GGL) domains which dimerize exclusively with G beta(5) subunits. In this study, we investigated the functional range of G gamma(13) assembly with G beta subunits using multiple assays of G beta association and G beta gamma effector modulation. G gamma(13) was observed to associate with all five G beta subunits (G beta(1-5)) upon co-translation in vitro, as well as function with all five G beta subunits in the modulation of Kir3.1/3.4 (GIRK1/4) potassium and N-type (alpha(1B)) calcium channels. Multiple G beta/G gamma(13) pairings were also functional in cellular assays of phospholipase C (PLC) beta 2 activation and inhibition of G alpha(q)-stimulated PLC beta 1 activity. However, upon cellular co-expression of G gamma(13) with different G beta subunits, only G beta(1)/G gamma(13), G beta(3)/G gamma(13), and G beta(4)/G gamma(13) pairings were found to form stable dimers detectable by co-immunoprecipitation under high-detergent cell lysis conditions. Collectively, these data indicate that G gamma(13) forms functional G beta gamma dimers with a range of G beta subunits. Coupled with our detection of G gamma(13) mRNA in mouse and human brain and retina, these results imply that this divergent G gamma subunit can act in signal transduction pathways other than that dedicated to taste reception in sensory lingual tissue.  相似文献   

13.
The subcellular distribution of G protein subunits in the neutrophil was examined. Cells were nitrogen cavitated and subcellular organelles fractionated on discontinuous sucrose gradients. The presence of GTP-binding regulatory protein (G protein) alpha and beta/gamma subunits in each organelle was determined using three methods of analysis: specific binding of guanine nucleotide, ADP ribosylation by pertussis toxin, and immunoblot analysis with subunit-specific G protein antibodies. Both plasma membrane and cytosolic G protein components were detected. In contrast, neither the specific nor the azurophilic granules contained detectable G protein. Based on the ability of exogenous G protein beta/gamma subunits to increase the ADP ribosylation of the cytosolic form of G protein and upon the hydrodynamic behavior of the cytosolic protein, it is likely that this represents an uncomplexed G protein alpha subunit. Proteolytic mapping with Staphylococcus aureus V8 protease suggests the soluble alpha subunit is from Gn, the major pertussis toxin substrate of human neutrophils. Using quantitative analysis, the levels of the 40-kD G protein alpha subunit and of the 35/36-kD beta subunit in the neutrophil membrane were determined.  相似文献   

14.
Heterotrimeric guanine-nucleotide-binding regulatory proteins (G proteins) have been classified into several subtypes on the basis of the properties of their alpha subunits, though a notable multiplicity of gamma subunits has also been demonstrated. To investigate whether each subtype of alpha subunit is associated with a particular gamma subunit, various oligomeric G proteins, purified from bovine tissues, were subjected to gel electrophoresis in a Tricine buffer system. All G proteins examined were shown to have more than two kinds of gamma subunit. Of the brain G proteins, GoA, GoB, and Gi1 contain the same set of three gamma subunits, but Gi2 contains only two of these subunits. Lung Gi1 and Gi2 and spleen Gi2 and Gi3 had similar sets of two gamma subunits, one of which was distinct from the gamma subunits of brain G proteins. These observations indicate that each subtype of alpha subunit is associated with a variety of beta gamma subunits, and that the combinations differ among cells. For analyses of the structural diversity of the gamma subunits, beta gamma subunits were purified from the total G proteins of each tissue and subjected to reverse-phase HPLC under denaturing conditions, where none of the beta subunits were eluted from the column. Three distinct gamma subunits were isolated in this way from brain beta gamma subunits. In contrast, lung and spleen beta gamma subunits contained at least five gamma subunits, the elution positions and electrophoretic mobilities of which were indistinguishable between the two tissues. Among several gamma subunits, two subspecies appeared to be common to the three tissues. In fact, in each case, the partial amino acid sequence of the most abundant gamma subunit in each tissue was identical, and the sequences coincided exactly with that of 'gamma 6' [Robishaw, J. D., Kalman, V. K., Moomaw, C. R. & Slaughter, C. A. (1989) J. Biol. Chem. 264, 15758-15761]. Fast-atom-bombardment mass spectrometry analysis indicated that this abundant gamma subunit in lung and spleen was geranylgeranylated and carboxymethylated at the C-terminus, as was 'gamma 6' from brain. In addition to abundant gamma subunits, other tissue-specific gamma subunits were also shown to be geranylgeranylated by gas-chromatography-coupled mass spectrometry analysis of Raney nickel-treated gamma subunits. These results suggest that most gamma subunits associated with many different subtypes of alpha subunit are geranylgeranylated in a variety of tissues, with the single exception being the retina where the G protein transducin has a farnesylated gamma subunit.  相似文献   

15.
16.
The complex role that the heterotrimeric G proteins play in signaling pathways has become increasingly apparent with the cloning of countless numbers of receptors, G proteins, and effectors. However, in most cases, the specific combinations of alpha and betagamma subunits comprising the G proteins that participate in the most common signaling pathways, such as beta-adrenergic regulation of adenylyl cyclase activity, are not known. The extent of this problem is evident in the fact that the identities of the betagamma subunits that combine with the alpha subunit of Gs are only now being elucidated almost 20 years after its initial purification. In a previous study, we described the first use of a ribozyme strategy to suppress specifically the expression of the gamma7 subunit of the G proteins, thereby identifying a specific role of this protein in coupling the beta-adrenergic receptor to stimulation of adenylyl cyclase activity in HEK 293 cells. In the present study, we explored the potential utility of a ribozyme approach directed against the gamma7 subunit to identify functional associations with a particular beta and alphas subunit of the G protein in this signaling pathway. Accordingly, HEK 293 cells were transfected with a ribozyme directed against the gamma7 subunit, and the effects of this manipulation on levels of the beta and alphas subunits were determined by immunoblot analysis. Among the five beta alphas subunits detected in these cells, only the beta1 subunit was coordinately reduced following treatment with the ribozyme directed against the gamma7 subunit, thereby demonstrating a functional association between the beta1 and gamma7 subunits. The mechanism for coordinate suppression of the beta1 subunit was due to a striking change in the half-life of the beta1 monomer versus the beta1 heterodimer complexed with the gamma7 subunit. Neither the 52- nor 45-kDa subunits were suppressed following treatment with the ribozyme directed against the gamma7 subunit, thereby providing insights into the assembly of the Gs heterotrimer. Taken together, these data show the utility of a ribozyme approach to identify the role of not only the gamma subunits but also the beta subunits of the G proteins in signaling pathways.  相似文献   

17.
The nicotinic acetylcholine receptor of skeletal muscle (CHRN in man, Acr in mouse) is a transmembrane protein composed of four different subunits (alpha, beta, gamma, and delta) assembled into the pentamer alpha 2 beta gamma delta. These subunits are encoded by separate genes which derive from a common ancestral gene by duplication. We have used a murine full-length 1,900-bp-long cDNA encoding the gamma subunit subcloned into M 13 (clone gamma 18) to prepare single-stranded probes for hybridization to EcoRI-digested DNA from a panel of human x rodent somatic cell hybrids. Using conditions of low stringency to favor cross-species hybridization, and prehybridization with rodent DNA to prevent rodent background, we detected a single major human band of 30-40 kb. The pattern of segregation of this 30-40 kb band correlated with the segregation of human chromosome 2 within the panel and the presence of a chromosomal translocation in the distal part of the long arm of this t(X;2)(p22;q32.1) chromosome allowing the localization of the gamma subunit gene (CHRNG) to 2q32----qter. The human genes encoding the gamma and delta subunits have been shown to be contained in an EcoRI restriction fragment of approximately 20 kb (Shibahara et al., 1985). Consequently, this study also maps the delta subunit gene (CHRND) to human chromosome 2q32.1----qter. In the mouse, the Acrd and Acrg genes have been shown to be linked to Idh-1, Mylf (IDH1 and MYL1 in humans, respectively) and to the gene encoding villin on chromosome 1. Interestingly, we have recently localized the human MYL1 gene to the same chromosomal fragment of human chromosome 2. These results clearly demonstrate a region of chromosomal homoeology between mouse chromosome 1 and human chromosome 2.  相似文献   

18.
Voltage-dependent calcium channels (VDCCs) are heteromultimers composed of a pore-forming alpha1 subunit and auxiliary subunits, including the intracellular beta subunit, which has a strong influence on the channel properties. Voltage-dependent inhibitory modulation of neuronal VDCCs occurs primarily by activation of G-proteins and elevation of the free G beta gamma dimer concentration. Here we have examined the interaction between the regulation of N-type (alpha 1 B) channels by their beta subunits and by G beta gamma dimers, heterologously expressed in COS-7 cells. In contrast to previous studies suggesting antagonism of G protein inhibition by the VDCC beta subunit, we found a significantly larger G beta gamma-dependent inhibition of alpha 1 B channel activation when the VDCC alpha 1 B and beta subunits were coexpressed. In the absence of coexpressed VDCC beta subunit, the G beta gamma dimers, either expressed tonically or elevated via receptor activation, did not produce the expected features of voltage-dependent G protein modulation of N-type channels, including slowed activation and prepulse facilitation, while VDCC beta subunit coexpression restored all of the hallmarks of G beta gamma modulation. These results suggest that the VDCC beta subunit must be present for G beta gamma to induce voltage-dependent modulation of N-type calcium channels.  相似文献   

19.
The 36-kDa beta 1, 35-kDa beta 2, and 6.5-kDa gamma 2 subunits of the heterotrimeric guanine nucleotide-binding proteins have been overexpressed in Sf9 cells using a baculovirus expression system. The gamma 2 subunit expressed in Sf9 cells incorporated label derived from [3H]mevalonate and is therefore likely to be isoprenylated, as is its mammalian counterpart. Extracts of Sf9 cells doubly infected with viruses encoding a beta subunit and viruses encoding a gamma subunit are active in promoting the pertussis toxin-catalyzed ADP-ribosylation of a G protein alpha subunit. However, extracts from Sf9 cells singly infected with viruses encoding either a beta or gamma subunit are not active in this assay. Results demonstrate utility of the insect/baculovirus system for expressing G protein beta gamma subunits of defined composition.  相似文献   

20.
We have examined the ability of the beta gamma subunits of guanine nucleotide binding regulatory proteins (G proteins) to support the pertussis toxin (PT) catalyzed ADP-ribosylation of G protein alpha subunits. Substoichiometric amounts of the beta gamma complex purified from either bovine brain G proteins or the bovine retinal G protein, Gt, are sufficient to support the ADP-ribosylation of the alpha subunits of Gi (the G protein that mediates inhibition of adenylyl cyclase) and Go (a G protein of unknown function) by PT. This observation indicates that ADP-ribosylated G protein oligomers can dissociate into their respective alpha and beta gamma subunits in the absence of activating regulatory ligands, i.e., nonhydrolyzable GTP analogues or fluoride. Additionally, the catalytic support of ADP-ribosylation by bovine brain beta gamma does not require Mg2+. Although the beta gamma subunit complexes purified from bovine brain G proteins and the beta gamma complex of Gt support equally the ADP-ribosylation of alpha subunits by PT, there is a marked difference in their abilities to interact with Gs alpha. The enhancement of deactivation of fluoride-activated Gs alpha requires 25-fold more beta gamma from Gt than from brain G proteins to produce a similar response. This difference in potency of beta gamma complexes from the two sources was also observed in the ability of beta gamma to produce an increase in the activity of recombinant Gs alpha produced in Escherichia coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号