首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of nitrogen uptake on the whole plant level   总被引:13,自引:0,他引:13  
M. K. Schenk 《Plant and Soil》1996,181(1):131-137
The largest part of nitrogen requirements of crops is mostly covered by nitrate. The uptake of this ion is thermodynamically uphill and thus dependent on metabolism. This article considers regulation of N uptake in higher plants putting emphasis on NO3 - and the whole plant level.In field conditions the transport rate depends on the concentration at the root surface in Michaelis-Menten-Kinetics. Maximum net influx of NO3 - (Imax) was often reported at concentrations of 100 M NO3 - and even lower. There are indications that for unrestricted growth the NO3 - concentration at root surface has to be in the order of magnitude allowing Imax if plants are not able to compensate for lower NO3 - concentrations by increasing root surface per unit of shoot.Imax is not a constant but depends for a given variety on N status of plants, the availability of NO3 - and plant age. The decrease of Imax with increasing plant age is closely related to relative growth rate as long as the relationship between N demand and new growth is linear and the root:shoot ratio keeps constant. It seems that Imax is a meaningful physiological characteristic of NO3 - uptake reflecting absolute N demand. There is evidence that shoot demand is linked to NO3 - uptake of the root through an amino acid transport pool cycling in the plant via phloem and xylem.The N demand of a crop depends on increase of dry mass and might not be linear if the critical level of nitrogen in plant dry matter changes during crop development or if retranslocation of nitrogen from older leaves to meristematic tissue occurs. Radiation and temperature drive plant growth and thus N demand of crops. These relationships can be described by mathematical models.  相似文献   

2.
Translocation of nitrogen in a vegetative wheat plant (Triticum aestivum)   总被引:7,自引:0,他引:7  
The translocation of nitrogen was studied in vegetative wheat plants ( Triticum aestivum L. cv. SUN 9E) grown with a limited supply of nitrogen. The concentration of nitrogen in xylem sap exuding from the excised roots was the same as the nitrogen concentration in the transpiration stream. Translocation of nitrogen to the shoot was, therefore, calculated as the product of the transpiration rate and the concentration of nitrogen in xylem exudates. On the 22nd day from sowing more nitrogen was translo-cated to the shoot than it incorporated, and 56% of the nitrogen translocated to the shoot was retranslocated to the roots. The nitrogen retranslocated to the roots was more than adequate to supply the requirements of the roots for growth, and the balance of the retranslocated nitrogen was reloaded into the xylem stream. Expressed as a proportion of the total increment of nitrogen in the plant on day 22, between 79 and 100% of the nitrogen absorbed by the plant was "cycled' in the plant (root → shoot → root → shoot). It is suggested that the size of this mobile reserve of nitrogen may vary depending on the growth requirement of the plant, its nitrogen-uptake capacity and the contribution of nitrogen from mobilisation of leaf protein during senescence.  相似文献   

3.
The Carbon Balance of a Legume and the Functional Economy of its Root Nodules   总被引:12,自引:2,他引:10  
Budgets for carbon and nitrogen in shoot, root, and nodulesof garden pea (Pisum sativum L.) are drawn up for a 9-d intervalin the life cycle, from data on nitrogen fixation, carbon accumulationin dry matter, respiratory output of plant organs, and organicsolute exchange between shoot and nodulated root. Of the carbon gained photosynthetically by the shoot from theatmosphere 26 per cent is incorporated directly into its drymatter, 32 per cent translocated to the nodules, and 42 percent to the supporting root. Of the nodules’ share, 5per cent is consumed in growth, 12 per cent in respiration,and 15 per cent returned to the shoot via the xylem, as aminocompounds generated in nitrogen fixation. Growth and respirationof the root utilize, respectively, 7 and 35 per cent. The respiratory efficiency of a nodulated root in terms of nitrogenfixation (5.9mg C per mg N2-N fixed) is found to be very similarto that of an uninoculated root assimilating nitrate (6.2 mgC per mg NO3-N reduced). The nodules require in growth, respiration,and export 4.1 mg C ( 10.3 mg carbohydrate) for each mg N whichthey fix. The nodules consume 3 ml O2 for every 1 ml N2 utilized in fixation. In exporting a milligram of fixed nitrogen the nodules requireat least 0.35 ml of water. Almost half of this requirement mightbe met by mass flow into the nodules via the phloem.  相似文献   

4.
The principal forms of amino nitrogen transported in xylem were studied in nodulated and non-nodulated peanut (Arachis hypogaea L.). In symbiotic plants, asparagine and the nonprotein amino acid, 4-methyleneglutamine, were identified as the major components of xylem exudate collected from root systems decapitated below the lowest nodule or above the nodulated zone. Sap bleeding from detached nodules carried 80% of its nitrogen as asparagine and less than 1% as 4-methyleneglutamine. Pulse-feeding nodulated roots with 15N2 gas showed asparagine to be the principal nitrogen product exported from N2-fixing nodules. Maintaining root systems in an N2-deficient (argon:oxygen, 80:20, v/v) atmosphere for 3 days greatly depleted asparagine levels in nodules. 4-Methyleneglutamine represented 73% of the total amino nitrogen in the xylem sap of non-nodulated plants grown on nitrogen-free nutrients, but relative levels of this compound decreased and asparagine increased when nitrate was supplied. The presence of 4-methyleneglutamine in xylem exudate did not appear to be associated with either N2 fixation or nitrate assimilation, and an origin from cotyledon nitrogen was suggested from study of changes in amount of the compound in tissue amino acid pools and in root bleeding xylem sap following germination. Changes in xylem sap composition were studied in nodulated plants receiving a range of levels of 15N-nitrate, and a 15N dilution technique was used to determine the proportions of accumulated plant nitrogen derived from N2 or fed nitrate. The abundance of asparagine in xylem sap and the ratio of asparagine:nitrate fell, while the ratio of nitrate:total amino acid rose as plants derived less of their organic nitrogen from N2. Assays based on xylem sap composition are suggested as a means of determining the relative extents to which N2 and nitrate are being used in peanuts.  相似文献   

5.
According to current knowledge, cytokinins are predominantly root-born phytohormones which are transported into the shoot by the transpiration stream. In the hormone message concept they are considered the root signals, which mediate the flux of the photosynthates to the various sinks of the plant. In this review, experiments are assessed, in which changes of the shoot to root ratio of biomass, caused by different levels of nitrogen supply to a model plant,Urtica dioica, could be traced to the natural cytokinin relations of the plant. Disturbance of the internal cytokinin balance of the plant resulted in a disproportionate distribution of the assimilates in favour of the cytokinin-enriched shoot. Inspite of some shortcomings of the hormone message concept, the presented work corroborates the significance of root-sourced cytokinins in the regulation of biomass partitioning between shoot and root.  相似文献   

6.
To investigate salt stress and biochar application effects on nodulation and nitrogen metabolism of soybeans (Glycine max cv. M7), an experiment was conducted under the control condition. The treatments comprised three biochar rates (non, 50 and 100 g kg?1 soil) and three salinities (0, 5 and 10 dS m?1 NaCl), with four replications of treatments. Salt stress diminished the number of nodules and their weights in the soybean roots. Nitrogen content and metabolism decreased in nodules, roots and shoots, while reducing the activity of glutamate dehydrogenase (GDH), glutamine synthetase (GS), glutamine oxoglutarate aminotransferase (GOGAT) and nitrate reductase (NR). Also, salinity brought down root and shoot weight, total plant biomass, chlorophyll content, leaf area (LA) and rubisco activity in the soybean. On the other hand, application of biochar improved nodulation, nitrogen content, rubisco activity, GDH, GS, GOGAT and NR activities in different parts of the soybean and nodules under salt stress, and consequently improved chlorophyll content, LA, root and shoot weight. Both the 50 and 100 g kg?1 biochar rates showed similar effects in improving nitrogen metabolism and plant performance under salt stress. Generally, biochar increased nodulation and nitrogen metabolism of the soybean under saline conditions.  相似文献   

7.
During early development (up to 18 d after sowing) of nodules of an effective cowpea symbiosis (Vigna unguiculata (L.) Walp cv. Vita 3: Rhizobium strain CB756), rapidly increasing nitrogenase (EC 1.7.99.2) activity and leghaemoglobin content were accompanied by rapid increases in activities of glutamine synthetase (EC 6.3.1.2), glutamate synthase (EC 2.6.1.53), enzymes of denovo purine synthesis (forming inosine monophosphate) xanthine oxidoreductase (EC 1.2.3.2), urate oxidase (EC 1.7.3.3), phosphoenolpyruvate carboxylase (EC 4.1.1.31) and led to increased export of ureides (allantoin and allantoic acid) to the shoot of the host plant in the xylem. Culturing plants with the nodulated root systems maintained in the absence of N2 (in 80 Ar: 20 O2, v/v) had little effect on the rates of induction and increase in nitrogenase activity and leghaemoglobin content but, in the absence of N2 fixation and consequent ammonia production by bacteroids, there was no stimulation of activity of enzymes of ammonia assimilation or of the synthesis of purines or ureides. Addition of NO 3 - (0.1–0.2 mM) relieved host-plant nitrogen deficiency caused by the Ar: O2 treatment but failed to increase levels of enzymes of N metabolism in either the bacteroid or the plant-cell fractions of the nodule. Premature senescence in Ar: O2-grown nodules occurred at 18–20 d after sowing, and resulted in reduced levels of nitrogenase activity and leghaemoglobin but increased the activity of hydroxybutyrate oxidoreductase (EC 1.1.1.30).  相似文献   

8.
The economy of carbon, nitrogen and water during growth of nodulated, nitrogen-fixing plants of white lupin (Lupinus albus L.) was studied by measuring C, N and H2O content of plant parts, concentrations of C and N in bleeding sap of xylem and phloem, transpirational losses of whole shoots and shoot parts, and daily exchanges of CO2 between shoot and root parts and the surrounding atmosphere. Relationships were studied between water use and dry matter accumulation of shoot and fruits, and between net photosynthesis rate and leaf area, transpiration rate and nitrogen fixation. Conversion efficiencies were computed for utilization of net photosynthate for nitrogen fixation and for production of dry matter and protein in seeds. Partitioning of the plant's intake of C, N and H2O was described in terms of growth, transpiration, and respiration of plant parts. An empirically-based model was developed to describe transport exchanges in xylem and phloem for a 10-day interval of growth. The model depicted quantitatively the mixtures of xylem and phloem streams which matched precisely the recorded amounts of C, N and H2O assimilated, absorbed or consumed by the various parts of the plant. The model provided information on phloem translocation of carbon and nitrogen to roots from shoots, the cycling of carbon and nitrogen through leaves, the relationship between transpiration and nitrogen partitioning to shoot organs through the xylem, the relative amount of the plant's water budget committed to phloem translocation, and the significance of xylem to phloem transfer of nitrogen in stems as a means of supplying nitrogen to apical regions of the shoot.  相似文献   

9.
The ability to regulate the rates of metabolic processes in response to changes in the internal and/or external environment is a fundamental feature which is inherent in all organisms. This adaptability is necessary for conserving the stability of the intercellular environment (homeostasis) which is essential for maintaining an efficient functional state in the organism. Symbiotic nitrogen fixation in legumes is an important process which establishes from the complex interaction between the host plant and microorganism. This process is widely believed to be regulated by the host plant nitrogen demand through a whole plant N feedback mechanism in particular under unfavorable conditions. This mechanism is probably triggered by the impact of shoot-borne, phloem-delivered substances. The precise mechanism of the potential signal is under debate, however, the whole phenomenon is probably related to a constant amino acid cycling within the plant, thereby signaling the shoot nitrogen status. Recent work indicating that there may be a flow of nitrogen to bacteroids is discussed in light of hypothesis that such a flow may be important to nodule function. Large amount of γ-aminobutyric acid (GABA) are cycled through the root nodules of the symbiotic plants. In this paper some recent evidence concerning the possible role of GABA in whole-plant-based upregulation of symbiotic nitrogen fixation will be reviewed.Key words: γ-aminobutyric acid, nitrogen fixation, nodule, symbiosis, translocation, signalingNitrogen (N) is major limiting nutrient for the growth of most plant species in different ecosystems. Acquisition and assimilation of N is second in importance only to photosynthesis for plant growth and development. Elemental N is a key constituent of protein, nucleic acids and other vital cellular components. Most plants acquire N from the soil solution either as nitrate or ammonium ions. In addition, some plants can utilize the atmospheric gaseous nitrogen pool through symbiotic associations with species of bacteria, cyanobacteria or actinomycetes that contain the N2 fixing enzyme, nitrogenase. Clearly, the crucial role that symbiotic plants play in plant growth requires that physiologists understand the biochemical and molecular events that regulate fixation and subsequent metabolism of nitrogen.Symbiotic N2 fixation is an important process for increasing the plant available N and thereby the growth capacity of legumes. This process results from the complex interaction between the host plant and microorganism.1 The host plant provides the microorganism with carbon and a source of energy for growth and functions while the microorganism fixes atmospheric N2 and provides the plant with a source of reduced nitrogen in the form of ammonium. An adequate supply of carbohydrates is an essential requirement of nodule functioning as N2 fixation is expensive in terms both of energy and carbon for the synthesis of N-products. Sucrose synthesized in photosynthesis and exported to the nodules via the phloem, is the primary fuel for N2 fixation.2 Sucrose can be metabolized in the cytoplasm of infected, uninfected or interstitial cells with organic acids as the end products. Malate is strongly believed to be the major respiratory substrate for bacteroids.3 This dicarboxylic acid is the major energy source for the bacteroids and plant mitochondria, and is used for NH4+ assimilation as carbon skeleton in the glutamine synthetase/glutamate synthase (GS/GOGAT) pathway.4 The products of symbiotic N2 fixation are exported from the nodules to the rest of the host plant where they are incorporated into essential macro-molecules such as amino acids, proteins that drive plant growth, development and yields. According to the fixation products, root nodules are generally divided into two major groupings:1 (1) indeterminate nodules that are elongate-cylindrical activity that transport fixed N as amides such as alfalfa, pea and clover; and (2) determinate nodules that are spherical with determinate internal meristematic activity that transport fixed N as ureides, such as soybean and common bean. The complex series of events leading to the formation and functioning of the fixation machinery required controlled coordinated expression of both bacterial and host plant genes.  相似文献   

10.
Some Aspects of Translocation in Root Nodule Plants   总被引:3,自引:0,他引:3  
By the use of 16N it is shown that the removal, over a shortzone at the base of the shoot of a typical root nodule plant(alder), of the tissues external to the xylem does not interferewith the upward movement of fixed nitrogen from the nodulesinto the shoot. It is concluded that the fixed nitrogen, whichis probably in organic form, can be translocated in the xylemin the transpiration stream, and that this is most likely itsnormal route. It is also shown that in unringed plants substantialenrichment in fixed 16N is detectable in the shoot within 6hours from the commencement of the exposure of the nodules toexcess free 16N. Structural and experimental evidence showsthat the alder nodule is not a water-absorbing organ, and themechanism of transfer of fixed nitrogen from the nodule intothe transpiration stream is not obvious.  相似文献   

11.
Zeatin and zeatin riboside were identified by full-scan gas chromatography-mass spectrometry (GC-MS) in xylem sap of clonal apple rootstocks (M.27, M.9 and MM.106). These rootstocks exhibit a wide range of control over tree size when grafted to a common scion. The concentrations of zeatin and zeatin riboside were measured by GC-MS selected ion monitoring (SIM) in shoot xylem sap and root pressure exudate obtained from these rootstocks and from trees of Fiesta scion grafted onto the rootstocks. Zeatin was the predominant cytokinin in xylem sap from the dwarfing rootstocks, M.27 and M.9, while zeatin riboside was the predominant cytokinin in xylem sap from the more invigorating rootstock MM.106. Cytokinin concentrations (ng ml–1) in root pressure exudate and shoot xylem sap, (i.e. from above the graft union in composite trees), increased with increasing vigour of the rootstock, irrespective of whether the plants were non-grafted rootstocks, or were composite plants of Fiesta scion grafted onto the rootstocks. Cytokinin content (ng shoot–1) of shoot sap differed with rootstock; the more invigorating (MM.106) had greater amounts of cytokinins than the more dwarfing (M.9 and M.27) rootstocks. These results are discussed in relation to possible influences of roots on the growth of shoots via cytokinin supplies in the xylem sap.  相似文献   

12.
Peoples, M. B., Sudin, M. N. and Herridge, D. F. 1987. Translocationof nitrogenous compounds insymbiotic and nitrate-fed amide-exportinglegumes.–J. exp. Bot. 38: 567–579. The transport of nitrogen from the roots and nodules of chickpea(Cicer anetinum L.), lentil (Lens culinaris Medic), faba bean(Vicia faba L.) and pea (Pisum sativum L.) was examined in glasshouse-grownplants supplied either with nitrate-free nutrients or with nutrientssupplemented with 1,2,4 or 8 mol m-3153N-nitrate. A sixth treatmentcomprised uninoculated plants supplied with 8–0 mol m-31513N-nitrate. For each species, more than 75% of the nitrogenwas exported from the nodules as the amides, asparagine andglutamine. In fully symbiotic plants, the amides also dominatednitrogen transport to the shoot When N2 fixation activity wasdecreased by the addition of nitrate to the rooting medium,the N-composition of xylem exudate and stem solutes changedconsiderably. The relative concentrations of asparagine tendedto increase in the xylem whilst those of glutamine were reduced;the levels of nitrate increased in both xylem exudate and thesoluble nitrogen pool of the stem with a rise in nitrate supply.The changes in relative nitrate contents reflected generallythe contributions of root and shoot to overall nitrate reductaseactivity at the different levels of nitrate used. The relationshipsbetween the relative contents of xylary or stem nitrate andamino nitrogen and the plants' reliance on N2 fixation (determinedby the 15N isotope dilution procedure) were examined. Data suggestthat compositional relationships based on nitrate may be reasonableindicators of symbiotic dependence for all species under studyexcept faba bean when greater than 25% of plant nitrogen wasderived from N2 fixation. Key words: Nitrogen, translocation, legumes  相似文献   

13.
Cytokinins are predominantly root-born phytohormones which are distributed in the shoot via the xylem stream. In the hormone message concept they are considered as root signals mediating the transport of the photosynthates to the various sinks of a plant. In this paper the cytokinin relations of Urtica dioica L., the stinging nettle, are described, based on the daily flux from the roots to the shoot. Trans-zeatin-type cytokinins predominate in the various tissues of Urtica (Wagner and Beck, 1993), and accordingly trans-zeatin riboside and trans-zeatin are the forms transported by the xylem sap. The daily time-course of cytokinin concentration in root pressure exudates and in xylem sap collected from a petiole after pressurizing the root bed showed high concentrations in the morning, followed by a substantial drop to a level of 15–30% of the initial concentration which was then maintained during the afternoon. This time-course is interpreted as resulting from continuous synthesis and exudation of cytokinins into the xylem fluid of the roots whose cytokinin concentration is then modified by the dynamics of the transpiration stream. Loading of cytokinins into the xylem sap could be enhanced several times by increasing the flux rate of the xylem stream to the maximal transpiration rate when a maximum export rate was reached. The total daily cytokinin gain by the shoot depended on the nitrogen status of the plant. Roots of Urtica plants grown on a sufficient nitrogen supply had a significantly higher cytokinin content and exuded more cytokinins into the shoot than those of plants raised under nitrogen shortage. A positive correlation was found between the steady rates of cytokinin export measured during the afternoon and the shoot to root-ratios of biomass which, in turn, corresponded to the nitrogen status of the plants.  相似文献   

14.
Partial root-zone drying during irrigation (PRD) has been shown effective in enhancing plant water use efficiency (WUE), however, the roles of chemical signals from root and shoot that are involved and the possible interactions affected by nitrogen nutrition are not clear. Pot-grown cotton (Gossypium spp.) seedlings were treated with three levels of N fertilization and PRD. The concentrations of nitrate (NO3), abscisic acid (ABA) and the pH value of leaf and root xylem saps, biomass and WUE were measured. Results showed that PRD plants produced larger biomass and higher WUE than non-PRD plants, with significant changes in leaf xylem ABA, leaf and root xylem NO3 concentrations and pH values, under heterogeneous soil moisture conditions. Simultaneously, high-N treated plants displayed larger changes in leaf xylem ABA and higher root xylem NO3 concentrations, than in the medium- or low-N treated plants. However, the WUE of plants in the low-N treatment was higher than that of those in the high- and medium-N treatments. PRD and nitrogen levels respectively induced signaling responses of ABA/NO3 and pH in leaf or root xylem to affect WUE and biomass under different watering levels, although significant interactions of PRD and nitrogen levels were found when these signal molecules responded to soil drying. We conclude that these signaling chemicals are regulated by interaction of PRD and nitrogen status to regulate stomatal behavior, either directly or indirectly, and thus increase PRD plant WUE under less irrigation.  相似文献   

15.
The positron-emitting isotopes of nitrogen and carbon, 13N and11C, in the form of 13N2, , and 11CO2 have been used successively on the same plant to investigatetracer movement between root nodules and shoots in young alfalfaseedlings. The mass flow profiles of 11C photosynthate appearsimilar in shape in both stem and root but differ in speed;the speed of movement is significantly slower in roots thanin shoots (0?3 cm min–1 compared with 0?5 cm min–1)apparently in the phloem. Root nodules are sinks for the 11Clabel. 13N fixation occurred in <3 min in root nodules andwas followed by export of 13N compounds in less than 30 minafter presentation in strong light. Fixation seems to be dependenton photosynthate supply. 13N export from the root nodules washighly irregular in profile and not a simple steady-state massflow. The speed of movement of 13N fixation compounds, and , suggests transport in the xylem, at rates of 6–12 cm min–1 acropetally bothin root and shoot. Key words: Alfalfa seedlings, Translocation, Roots, Leaves, Carbon isotope 11C, Nitrogen isotope 13N  相似文献   

16.
The vascular anatomy of soybean nodules [Glycine max (L.) Merr.] suggests that export of solutes in the xylem should be dependent on influx of water in the phloem. However, after severing of stem xylem and phloem by shoot decapitation, export of ureides from nodules continued at an approximately linear rate for 5h. This result was obtained with decapitated roots remaining in the sand medium, but when roots were disturbed by removal from the rooting medium prior to shoot decapitation, export of ureides from nodules was greatly reduced. Stem exudate could not be collected from disturbed roots, indicating that flow in the root xylem had ceased. Thus, ureide export from nodules appeared to be dependent on a continuation of flow in the root xylem. When seedlings were fed a mixture of 3H2O and 14C-inulin for periods of 14–21 min, nodules had higher 3H/14C ratios than roots from which they were detached. The combined results are not consistent with the proposal that export of nitrogenous compounds from nodules is dependent on import of water via the phloem. The results do support the view that a portion of the water required for xylem export from soybean nodules is supplied via a symplastic route from root cortex to nodule cortex to the nodule vascular apoplast.  相似文献   

17.
Root-to-shoot translocation and shoot homeostasis of potassium (K) determine nutrient balance, growth, and stress tolerance of vascular plants. To maintain the cation-anion balance, xylem loading of K+ in the roots relies on the concomitant loading of counteranions, like nitrate (NO3). However, the coregulation of these loading steps is unclear. Here, we show that the bidirectional, low-affinity Nitrate Transporter1 (NRT1)/Peptide Transporter (PTR) family member NPF7.3/NRT1.5 is important for the NO3-dependent K+ translocation in Arabidopsis (Arabidopsis thaliana). Lack of NPF7.3/NRT1.5 resulted in K deficiency in shoots under low NO3 nutrition, whereas the root elemental composition was unchanged. Gene expression data corroborated K deficiency in the nrt1.5-5 shoot, whereas the root responded with a differential expression of genes involved in cation-anion balance. A grafting experiment confirmed that the presence of NPF7.3/NRT1.5 in the root is a prerequisite for proper root-to-shoot translocation of K+ under low NO3 supply. Because the depolarization-activated Stelar K+ Outward Rectifier (SKOR) has previously been described as a major contributor for root-to-shoot translocation of K+ in Arabidopsis, we addressed the hypothesis that NPF7.3/NRT1.5-mediated NO3 translocation might affect xylem loading and root-to-shoot K+ translocation through SKOR. Indeed, growth of nrt1.5-5 and skor-2 single and double mutants under different K/NO3 regimes revealed that both proteins contribute to K+ translocation from root to shoot. SKOR activity dominates under high NO3 and low K+ supply, whereas NPF7.3/NRT1.5 is required under low NO3 availability. This study unravels nutritional conditions as a critical factor for the joint activity of SKOR and NPF7.3/NRT1.5 for shoot K homeostasis.The macronutrient potassium (K) is essential for plant growth and development because of its crucial roles in various cellular processes (i.e. regulation of enzyme activities), stabilization of protein synthesis, and neutralization of negative charges. In addition, it is a major component of the cation-anion balance and osmoregulation in plants, thereby influencing cellular turgor, xylem and phloem transport, pH homeostasis, and the setting of membrane potentials (Maathuis, 2009; Marschner, 2012; Sharma et al., 2013). K+ uptake and distribution in Arabidopsis (Arabidopsis thaliana) are accomplished by a total of 71 membrane proteins that have been assigned to five gene families: the Shaker and Tandem-Pore K+ channels (now also including the inward-rectifier K-like (Kir-like) channels), the K+ uptake permeases (KUP/HAK/KT), the K+ transporter (HKT) family, and the cation proton antiporters (CPA; Gierth and Mäser, 2007; Gomez-Porras et al., 2012; Sharma et al., 2013).Root xylem loading is a key step for the delivery of nutrients to the shoot (Poirier et al., 1991; Engels and Marschner, 1992a; Gaymard et al., 1998; Takano et al., 2002; Park et al., 2008). Root-to-shoot translocation of K+ is mediated by the voltage-dependent Shaker family K+ channel Stelar K+ Outward Rectifier (SKOR). The gene is primarily expressed in pericycle and root xylem parenchyma cells, and it is down-regulated upon K shortage and in response to treatments with the phytohormones abscisic acid, cytokinin, and auxin. Such gene expression changes are thought to control K+ secretion into the xylem sap and K+ reallocation through the phloem to adjust root K+ transport activity to K+ availability and shoot demand (Pilot et al., 2003). SKOR is activated upon membrane depolarization, and it is in a closed state when the driving force for K+ is inwardly directed. It elicits outward K+ currents, facilitating the release of the cation from the cells into the xylem. The voltage dependency of the channel is modulated by the external K+ concentration to minimize the risk of an undesired K+ influx under high K+ availability (Johansson et al., 2006). Root-to-shoot K+ transfer was strongly reduced in the knockout mutant skor-1, resulting in a decreased shoot K content, whereas the root K content remained unaffected (Gaymard et al., 1998).Root xylem loading is subject to the maintenance of a cation-anion balance, and nitrate (NO3) is the quantitatively most important anion counterbalancing xylem loading of K+ (Engels and Marschner, 1993). Members of the Nitrate Transporter1 (NRT1)/Peptide Transporter (PTR) transporter family (NPF) play a prominent role in NO3 uptake and allocation in Arabidopsis (summarized in Krouk et al., 2010; Wang et al., 2012; and Léran et al., 2014). Two of them have recently been reported to control xylem NO3 loading and unloading. The low-affinity, pH-dependent bidirectional NO3 transporter NPF7.3/NRT1.5 (subsequently termed NRT1.5) mediates NO3 efflux from pericycle cells to the xylem vessels, whereas the low-affinity influx protein NPF7.2/NRT1.8 removes NO3 from the xylem sap and transfers it into xylem parenchyma cells (Lin et al., 2008; Li et al., 2010; Chen et al., 2012). Accordingly, the expression of both genes is oppositely regulated under various stress conditions (Li et al., 2010). In nrt1.5 mutants, NRT1.8 expression is increased, which is thought to enhance NO3 reallocation to the root (Chen et al., 2012).The NRT1.5 gene is mainly expressed in root pericycle cells close to the xylem, and the protein localizes to the plasma membrane. In nrt1.5 mutants, less NO3 is transported from the root to the shoot, and the NO3 concentration in the xylem sap is reduced. However, root-to-shoot NO3 transport is not completely abolished in these mutants, indicating the existence of additional xylem-loading activities for NO3 (Lin et al., 2008; Wang et al., 2012). The recent observation that NPF6.3/NRT1.1/CHL1 and NPF6.2/NRT1.4 are also capable of mediating bidirectional NO3 transport in Xenopus laevis oocytes might indicate that more NPF family members are contributing to xylem loading with NO3 (Léran et al., 2013).Electrophysiological studies with NRT1.5-expressing X. laevis oocytes revealed that NO3 excited an inward current at pH 5.5, which would be expected for a proton-coupled nitrate transporter with a proton to nitrate ratio larger than one (Lin et al., 2008). The inward currents elicited by exposure to nitrate were pH dependent, and Lin et al. (2008) observed that NRT1.5 can also facilitate nitrate efflux when the oocytes were incubated at pH 7.4. Lin et al. (2008) concluded that NRT1.5 can transport nitrate in both directions, presumably through a proton-coupled mechanism. Interestingly, a K+ gradient was not sufficient to drive NRT1.5-mediated NO3 export. However, the determination of root and shoot cation concentrations in the nrt1.5-1 mutant revealed that the amount of K+ translocated to the shoot was reduced when NO3 but not NH4+ was supplied as the N source. Therefore, Lin et al. (2008) suggested a regulatory loop between NO3 and K+ at the xylem loading step.A close relationship between these two nutrients concerning uptake, translocation, recycling, and reduction (of NO3) has been described in physiological studies since the 1960s (e.g. Ben Zioni et al., 1971; Blevins et al., 1978; Barneix and Breteler, 1985), but only recently, common components in the NO3 and K+ uptake pathways were identified and led to the first ideas of how such a cross talk might be coordinated on the molecular level. The uptake activity of the K+ channel AKT1 as well as the affinity of the NO3 transporter NPF6.3/NRT1.1/CHL1 are both modulated by the activity of CALCINEURIN B-LIKE PROTEIN-INTERACTING PROTEIN KINASE23 (CIPK23), which itself is regulated by CALCINEURIN B-LIKE PROTEIN9 (CBL9) under both deficiencies (Xu et al., 2006; Ho et al., 2009). Yet, the details of this interaction in root K+ uptake, the (regulation of) xylem loading with K+ and NO3, and the involvement of SKOR and NRT1.5 in this process are unknown.In this study, we approached this problem by investigating the molecular and physiological responses of Arabidopsis wild-type (Columbia-0 [Col-0]), nrt1.5, and skor transfer DNA (T-DNA) insertion lines to varying NO3 and K+ regimes. The nrt1.5 mutant developed an early senescence phenotype under low NO3 nutrition, which could be attributed to a reduced K+ translocation to the shoot. The assessment of nrt1.5 and skor single- and double-knockout lines disclosed an interplay of the two proteins in the NO3-dependent control of shoot K homeostasis. The presented data indicate that SKOR mediates K+ root-to-shoot translocation under high NO3 and low K+ availability, whereas NRT1.5 is important for K+ translocation under low NO3 availability, irrespective of the K+ supply.  相似文献   

18.
Water and nitrogen dynamics in an arid woodland   总被引:5,自引:0,他引:5  
Arid environments are characterized by spatial and temporal variation in water and nitrogen availability. differences in 15N and D of four co-occurring species reveal contrasting patterns of plant resource acquisition in response to this variation. Mineralization potential and nitrogen concentration of surface soils associated with plant canopies were greater than inter-canopy locations, and values decreased with increasing depth in both locations. Mineralization potential and nitrogen concentration were both negatively correlated with soil 15N. The spatial variation in soil 15N caused corresponding changes in plant 15N such that plant 15N values were negatively correlated with nitrogen concentration of surface soils. Plants occurring on soils with relatively high nitrogen concentrations had lower 15N, and higher leaf nitrogen concentrations, than plants occurring on soils with relatively low nitrogen concentrations. Two general temporal patterns of water and nitrogen use were apparent. Three species (Juniperus, Pinus andArtemisia) relied on the episodic availability of water and nitrogen at the soil surface. 15N values did not vary through the year, while xylem pressure potentials and stem-water D values fluctuated with changes in soil moisture at the soil surface. In contrast,Chrysothamnus switched to a more stable water and nitrogen source during drought. 15N values ofChrysothamnus increased throughout the year, while xylem pressure potentials and stem-water D values remained constant. The contrasting patterns of resource acquisition have important implications for community stability following disturbance. Disturbance can cause a decrease in nitrogen concentration at the soil surface, and so plants that rely on surface water and nitrogen may be more susceptible than those that switch to more stable water and nitrogen sources at depth during drougnt.  相似文献   

19.

Purpose

The current study aimed to test the hypothesis that the variations in shoot Cd accumulation among peanut cultivars was ascribed to the difference in capacity of competition with Fe transport, xylem loading and transpiration.

Methods

A hydroponics experiment was conducted to determine the plant biomass, gas exchange, and Cd accumulation in Fe-sufficient or -deficient plants of 12 peanut cultivars, at low Cd level (0.2 μM CdCl2).

Results

Peanut varied among cultivars in morpho-physiological response to Cd stress as well as Cd accumulation, translocation and distribution. Qishan 208 and Xvhua 13 showed a higher capacity for accumulating Cd in their shoots. Fe deficiency increased the concentration and amount of Cd in plant organs, but decreased TF root to shoot and TF root to stem, while TF stem to leaf remained unaffected. Fe deficiency-induced increase rates of Cd concentration and total Cd amount in roots and leaves were negatively correlated with the values in Fe-sufficient plants. Transpiration rate was positively correlated with leaf Cd concentration, TF root to shoot, TF root to stem and TF stem to leaf.

Conclusions

The difference in shoot Cd concentration among peanut cultivars was mainly ascribed to the difference in Fe transport system, xylem loading capacity and transpiration.  相似文献   

20.
The utilization and translocation of nitrogen was investigated in exponentially growing, nitrogen-limited Pisum sativum L. cv. Marma. The plants were given N daily at exponentially increasing, although suboptimal, relative nitrogen addition rates (RN) calculated to yield a relative increment in N of 0.06 day?1 and 0.12 day?1. After 10 days of NO?3 additions (26 days after sowing), the relative growth rate more or less equaled RN. Uptake of NO?3 was several-fold higher than the N requirement for the growth rate set by RN. The daily addition of NO?3 was taken up after 7 to 8 h, resulting in a cyclic behaviour in the NO?3 utilization. During the phase of net NO?3 influx, the filling phase (0 to 8 h), in vitro nitrate reductase activity (NR activity) and intracellular levels of soluble N in the root increased. In the phase of no net influx of NO?3 the depletion phase (8 to 24 h), the plants were entirely dependent on stored N. During this phase both in vitro NR activity and intracellular levels of soluble N decreased. Also the calculated actual rate of NO?3 reduction was high in the filling phase, while it was close to zero in the depletion phase. The pattern of these fluctuations indicates that the regulation of NO?3 utilization involves an interplay between transmembrane fluxes of NO?3, the cytosolic NO?3 concentration and NR activity. Cyclic fluctuations in N-containing compounds were also found in the xylem. Nitrogen was mainly transported as amino acids. The pattern of NO?3 transport in the xylem and the fluctuations in the shoot of in vitro NR activity indicate that a reasoning similar to that for the regulation of NO?3 assimilation in the root also applies for the shoot. The results also indicate a substantial supply of amino acids to the xylem through recirculation from the shoot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号