首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparison of methods for detecting bottlenecks from microsatellite loci   总被引:1,自引:0,他引:1  
This paper describes simulation tests to compare methods for detecting recent bottlenecks using microsatellite data. This study considers both type I error (detecting a bottleneck when there wasn’t one) and type II error (failing to detect a bottleneck when there was one) under a variety of scenarios. The two most promising methods were the range in allele size conditioned on the number of alleles, M k , and heterozygosity given the number of alleles, H k , under a two-phase mutation model; in most of the simulations one of these two methods had the lowest type I and type II error relative to other methods. M k was the method most likely to correctly identify a bottleneck when a bottleneck lasted several generations, the population had made a demographic recovery, and mutation rates were high or pre-bottleneck population sizes were large. On the other hand H k was most likely to correctly identify a bottleneck when a bottleneck was more recent and less severe and when mutation rates were low or pre-bottleneck population sizes were small. Both methods were prone to type I errors when assumptions of the model were violated, but it may be easier to design a conservative heterozygosity test than a conservative ratio test.  相似文献   

2.
The Swedish sand lizard ( Lacerta agilis ) is a relict species from the post-glacial warmth period. From the geological history of this region, and more recent data on population fragmentation due to disturbance by man, it can be surmised that the Swedish sand lizards passed through at least one population bottleneck in relatively recent times. We tested this hypothesis by investigating the amount and structuring of genetic variability in six microsatellite loci in ten lizard populations from different parts of Sweden. We contrasted these data against those from a Hungarian population which we have reason to assume strongly resembles the founder population for Swedish sand lizards. The average number of alleles per locus in Sweden was 3.3, and these alleles were common in almost all populations, whereas the average number of alleles in the Hungarian population was 8.0. Likewise, the level of expected heterozygosity was lower in the Swedish populations (0.45) compared to the Hungarian population (0.70). The lower variability in Swedish populations is probably a consequence of a common population bottleneck during the immigration subsequent to the latest glacial period. The remaining variability is strongly subdivided between populations (FST=0.30) with the main genetic differences being between rather than within populations. Despite the marked isolation of the populations and the present small population sizes (N= 10–300 adults), the Swedish relict populations show a surprisingly high level of observed heterozygosity, indicating that small population size is probably a recent phenomenon.  相似文献   

3.
Distinguishing migration from isolation: a Markov chain Monte Carlo approach   总被引:41,自引:0,他引:41  
Nielsen R  Wakeley J 《Genetics》2001,158(2):885-896
A Markov chain Monte Carlo method for estimating the relative effects of migration and isolation on genetic diversity in a pair of populations from DNA sequence data is developed and tested using simulations. The two populations are assumed to be descended from a panmictic ancestral population at some time in the past and may (or may not) after that be connected by migration. The use of a Markov chain Monte Carlo method allows the joint estimation of multiple demographic parameters in either a Bayesian or a likelihood framework. The parameters estimated include the migration rate for each population, the time since the two populations diverged from a common ancestral population, and the relative size of each of the two current populations and of the common ancestral population. The results show that even a single nonrecombining genetic locus can provide substantial power to test the hypothesis of no ongoing migration and/or to test models of symmetric migration between the two populations. The use of the method is illustrated in an application to mitochondrial DNA sequence data from a fish species: the threespine stickleback (Gasterosteus aculeatus).  相似文献   

4.
Understanding biological invasion is currently one of the main scientific challenges for ecologists. The introduction process is crucial for the success of an invasion, especially when it involves a demographic bottleneck. A small introduced population is expected to face a higher risk of extinction before the first stage of invasion is complete if inbreeding depression, caused by the expression of deleterious alleles, is important. Changes in mating regimes or in population size can induce the evolution of deleterious allele frequencies, either by selection or by drift, possibly resulting in the purging or the fixation of such alleles within the population. The harlequin ladybird Harmonia axyridis became invasive on several continents following a scenario including at least one event of demographic bottleneck. Although native populations suffered from severe inbreeding depression, it was greatly reduced in invasive ones suggesting that deleterious alleles were purged during the invasion process. In this study, we performed an experiment designed to manipulate the effective population size of H. axyridis across successive generations to mimic contrasting introduction events. We used the measurement of two fitness-related phenotypic traits in order to test (1) if inbreeding depression can evolve at the time-scale of an invasion; and (2) if the changes in inbreeding depression following a bottleneck in laboratory conditions are compatible with the purging of deleterious alleles observed in this species. We found that two generations of very low population size are enough to induce a substantial change in inbreeding depression. Although the genetic changes mostly consisted in fixation of deleterious alleles, purging did also occur, sometimes simultaneously with fixation.  相似文献   

5.
森林砍伐对苦槠种群遗传结构的影响   总被引:2,自引:0,他引:2  
简耘  石磊  李丹  张纯淳  石苗苗  王嵘  陈小勇 《生态学报》2008,28(12):6228-6234
人类活动严重干扰着自然生态系统,其中砍伐是对森林生态系统最常见的干扰之一,它导致森林退化,植物种群变小,甚至灭绝,遗传多样性也随之下降。当被破坏的森林未被转换性利用时,则会逐渐恢复,但由于瓶颈效应,恢复起来的生态系统中植物种群的遗传结构可能会改变。恢复种群遗传组成的改变一方面与干扰的强度、频度和持续时间有关,另一方面,也受植物生活史特点的深刻影响。然而,我国对于砍伐后恢复起来的森林生态系统中生物多样性的改变,尤其是遗传多样性的改变的研究并不多见。研究在浙江省宁波市天童国家森林公园及周边地区选择了5个苦槠种群,采用SSR微卫星标记来分析砍伐对苦槠种群遗传结构的影响。5对多态SSR引物共得到了29个等位基因。种群内维持了较高的遗传多样性,种群间遗传分化程度较低,基因流达8.68。恢复林和成熟林种群的遗传多样性相差不大,以阿育王寺地区恢复种群的最高;表明砍伐对于苦槠种群遗传多样性的影响不大,这与苦槠较强的萌条能力有关。尽管如此,在恢复种群中观察到近期的种群瓶颈,显示出砍伐对种群遗传组成的影响;而在一个成熟林中也观察到种群瓶颈,这是因片断化导致种群变小之故。植被保存最好的天童国家森林公园内苦槠种群的遗传多样性却较低,这可能与成熟林中苦槠优势度较低有关。  相似文献   

6.
Genotype calling procedures vary from laboratory to laboratory for many microsatellite markers. Even within the same laboratory, application of different experimental protocols often leads to ambiguities. The impact of these ambiguities ranges from irksome to devastating. Resolving the ambiguities can increase effective sample size and preserve evidence in favor of disease-marker associations. Because different data sets may contain different numbers of alleles, merging is unfortunately not a simple process of matching alleles one to one. Merging data sets manually is difficult, time-consuming, and error-prone due to differences in genotyping hardware, binning methods, molecular weight standards, and curve fitting algorithms. Merging is particularly difficult if few or no samples occur in common, or if samples are drawn from ethnic groups with widely varying allele frequencies. It is dangerous to align alleles simply by adding a constant number of base pairs to the alleles of one of the data sets. To address these issues, we have developed a Bayesian model and a Markov chain Monte Carlo (MCMC) algorithm for sampling the posterior distribution under the model. Our computer program, MicroMerge, implements the algorithm and almost always accurately and efficiently finds the most likely correct alignment. Common allele frequencies across laboratories in the same ethnic group are the single most important cue in the model. MicroMerge computes the allelic alignments with the greatest posterior probabilities under several merging options. It also reports when data sets cannot be confidently merged. These features are emphasized in our analysis of simulated and real data.  相似文献   

7.
The Mauna Kea silversword, Argyroxiphium sandwicense ssp. sandwicense, has experienced both a severe population crash associated with an increase in alien ungulate populations on Mauna Kea, and a population bottleneck associated with reintroduction. In this paper, we address the genetic consequences of both demographic events using eight microsatellite loci. The population crash was not accompanied by a significant reduction in number of alleles or heterozygosity. However, the population bottleneck was accompanied by significant reductions in observed number of alleles, effective number of alleles, and expected heterozygosity, though not in observed heterozygosity. The effective size of the population bottleneck was calculated using both observed heterozygosities and allele frequency variances. Both methods corroborated the historical census size of the population bottleneck of at most three individuals. The results suggest that: (i) small populations, even those that result from severe reductions in historical population size and extent, are not necessarily genetically depauperate; and (ii) species reintroduction plans need to be conceived and implemented carefully, with due consideration to the genetic impact of sampling for reintroduction.  相似文献   

8.
Billiard S  Castric V  Vekemans X 《Genetics》2007,175(3):1351-1369
We developed a general model of sporophytic self-incompatibility under negative frequency-dependent selection allowing complex patterns of dominance among alleles. We used this model deterministically to investigate the effects on equilibrium allelic frequencies of the number of dominance classes, the number of alleles per dominance class, the asymmetry in dominance expression between pollen and pistil, and whether selection acts on male fitness only or both on male and on female fitnesses. We show that the so-called "recessive effect" occurs under a wide variety of situations. We found emerging properties of finite population models with several alleles per dominance class such as that higher numbers of alleles are maintained in more dominant classes and that the number of dominance classes can evolve. We also investigated the occurrence of homozygous genotypes and found that substantial proportions of those can occur for the most recessive alleles. We used the model for two species with complex dominance patterns to test whether allelic frequencies in natural populations are in agreement with the distribution predicted by our model. We suggest that the model can be used to test explicitly for additional, allele-specific, selective forces.  相似文献   

9.
In this paper, we derive the expectation of two popular genetic distances under a model of pure population fission allowing for unequal population sizes. Under the model, we show that conventional genetic distances are not proportional to the divergence time and generally overestimate it due to unequal genetic drift and to a bottleneck effect at the divergence time. This bias cannot be totally removed even if the present population sizes are known. Instead, we present a method to estimate the divergence times between populations which is based on the average number of nucleotide differences within and between populations. The method simultaneously estimates the divergence time, the ancestral population size and the relative sizes of the derived populations. A simulation study revealed that this method is essentially unbiased and that it leads to better estimates than traditional approaches for a very wide range of parameter values. Simulations also indicated that moderate population growth after divergence has little effect on the estimates of all three estimated parameters. An application of our method to a comparison of humans and chimpanzee mitochondrial DNA diversity revealed that common chimpanzees have a significantly larger female population size than humans.  相似文献   

10.
Mating structure governs the distribution of alleles in populations and thus the extent to which the phenotypes associated with the alleles are manifested. A mating system which initially achieves more genetic identity within individuals than between individuals enhances the probability that a finite population without reproductive excess will become extinct from a recessive lethal or semidominant lethal mutation; however, such a mating system decreases the number of deaths that will ensue if the population size is maintained by replacement of inviable progeny with individuals engendered from the entire mating pool. This is illustrated with Markov chain models for half-sib and double-first-cousin mating in populations of four individuals and by various techniques for analogous large populations. An appropriate choice of mating strategy can mitigate the effect of deleterious mutations, but the determination of which strategy is appropriate depends on how much reproductive excess is available and on the relative costs assigned to individual deaths and the extinction of a population.  相似文献   

11.
Genetic changes over space and time provide insights into the relative roles of evolutionary factors in shaping genetic patterns within plant populations.However,compared with spatial genetic structure,few studies have been conducted on genetic changes over time.In this study,we used six polymorphic microsatellite loci to assess genetic variation of six size-classes of the population of Liushan,Cryptomeria japonica var.sinensis,in the Tianmushan National Nature Reserve,whose origin was debatable.The mean number of alleles per locus and expected heterozygosity were 4.583 and 0.5999 respectively,lower than other conifers with the same life history characteristics.FST was 0.002 4- 0.003,and the pairwise test revealed no significant differentiation in any pair of size classes.Significant heterozygosity excesses were detected in five size classes except the oldest one,indicating bottleneck event(s).The above results support the hypothesis that Tianmushan population was introduced and followed by natural regeneration.  相似文献   

12.
Exact discrete Markov chains are applied to the Wright-Fisher model and the Moran model of haploid random mating. Selection and mutations are neglected. At each discrete value of time t there is a given number n of diploid monoecious organisms. The evolution of the population distribution is given in diffusion variables, to compare the two models of random mating with their common diffusion limit. Only the Moran model converges uniformly to the diffusion limit near the boundary. The Wright-Fisher model allows the population size to change with the generations. Diffusion theory tends to under-predict the loss of genetic information when a population enters a bottleneck.  相似文献   

13.
We introduce the Bayesian skyline plot, a new method for estimating past population dynamics through time from a sample of molecular sequences without dependence on a prespecified parametric model of demographic history. We describe a Markov chain Monte Carlo sampling procedure that efficiently samples a variant of the generalized skyline plot, given sequence data, and combines these plots to generate a posterior distribution of effective population size through time. We apply the Bayesian skyline plot to simulated data sets and show that it correctly reconstructs demographic history under canonical scenarios. Finally, we compare the Bayesian skyline plot model to previous coalescent approaches by analyzing two real data sets (hepatitis C virus in Egypt and mitochondrial DNA of Beringian bison) that have been previously investigated using alternative coalescent methods. In the bison analysis, we detect a severe but previously unrecognized bottleneck, estimated to have occurred 10,000 radiocarbon years ago, which coincides with both the earliest undisputed record of large numbers of humans in Alaska and the megafaunal extinctions in North America at the beginning of the Holocene.  相似文献   

14.
Beaumont MA 《Genetics》2003,164(3):1139-1160
This article introduces a new general method for genealogical inference that samples independent genealogical histories using importance sampling (IS) and then samples other parameters with Markov chain Monte Carlo (MCMC). It is then possible to more easily utilize the advantages of importance sampling in a fully Bayesian framework. The method is applied to the problem of estimating recent changes in effective population size from temporally spaced gene frequency data. The method gives the posterior distribution of effective population size at the time of the oldest sample and at the time of the most recent sample, assuming a model of exponential growth or decline during the interval. The effect of changes in number of alleles, number of loci, and sample size on the accuracy of the method is described using test simulations, and it is concluded that these have an approximately equivalent effect. The method is used on three example data sets and problems in interpreting the posterior densities are highlighted and discussed.  相似文献   

15.
The Brazilian Atlantic Rain Forest, one of the most endangered ecosystems worldwide, is also among the most important hotspots as regards biodiversity. Through intensive logging, the initial area has been reduced to around 12% of its original size. In this study we investigated the genetic variability and structure of the mountain lion, Puma concolor. Using 18 microsatellite loci we analyzed evidence of allele dropout, null alleles and stuttering, calculated the number of allele/locus, PIC, observed and expected heterozygosity, linkage disequilibrium, Hardy-Weinberg equilibrium, F(IS), effective population size and genetic structure (MICROCHECKER, CERVUS, GENEPOP, FSTAT, ARLEQUIN, ONESAMP, LDNe, PCAGEN, GENECLASS software), we also determine whether there was evidence of a bottleneck (HYBRIDLAB, BOTTLENECK software) that might influence the future viability of the population in south Brazil. 106 alleles were identified, with the number of alleles/locus ranging from 2 to 11. Mean observed heterozygosity, mean number of alleles and polymorphism information content were 0.609, 5.89, and 0.6255, respectively. This population presented evidence of a recent bottleneck and loss of genetic variation. Persistent regional poaching constitutes an increasing in the extinction risk.  相似文献   

16.
A model is presented in which a large population in mutation/drift equilibrium undergoes a severe restriction in size and subsequently remains at the small size. The rate of loss of genetic variability has been studied. Allelic loss occurs more rapidly than loss of genic heterozygosity. Rare alleles are lost especially rapidly. The result is a transient deficiency in the total number of alleles observed in samples taken from the reduced population when compared with the number expected in a sample from a steady-state population having the same observed heterozygosity. Alternatively, the population can be considered to possess excess gene diversity if the number of alleles is used as the statistical estimator of mutation rate. The deficit in allele number arises principally from a lack of those alleles that are expected to appear only once or twice in the sample. The magnitude of the allelic deficiency is less, however, than the excess that an earlier study predicted to follow a rapid population expansion. This suggests that populations that have undergone a single bottleneck event, followed by rapid population growth, should have an apparent excess number of alleles, given the observed level of genic heterozygosity and provided that the bottleneck has not occurred very recently. Conversely, such populations will be deficient for observed heterozygosity if allele number is used as the sufficient statistic for the estimation of 4Nev. Populations that have undergone very recent restrictions in size should show the opposite tendencies.  相似文献   

17.
Consider a population that does not change in size. If it is assumed that there are an infinite number of possible neutral alleles at a locus and u is the probability that a particular gene mutates to some other gene in one generation, the effective number of alleles ne is computed to be 4Neu + 1, where Ne is the inbreeding effective population number. It is assumed in this paper that the number of individuals in a monoecious population, or the numbers of males and females in a dioecious population, are states in a finite irreducible Markov chain. In general it is impossible to obtain a single value of ne. In some cases where the computation of ne is possible, the results are as follows. When the population is monoecious, Ne is the reciprocal of the asymptotic average, over population sizes, of the probabilities that two gametes uniting to form an individual came from the same individual one generation earlier. In dioecious populations, Ne is the reciprocal of the long-run average of the probabilities that two homologous genes in separate individuals of one generation came from the same individual one generation earlier. Special cases are discussed.  相似文献   

18.
Population bottlenecks and founder events reduce genetic diversity through stochastic processes associated with the sampling of alleles at the time of the bottleneck, and the recombination of alleles that are identical by descent. At the same time bottlenecks and founder events can structure populations through the stochastic distortion of allele frequencies. Here we undertake an empirical assessment of the impact of two independent bottlenecks of known size from a known source, and consider inference about evolutionary process in the context of simulations and theoretical expectations. We find a similar level of reduced variation in the parallel bottleneck events, with the greater impact on the population that began with the smaller number of females. The level of diversity remaining was consistent with model predictions, but only if re-growth of the population was essentially exponential and polygeny was minimal at the early stages. There was a high level of differentiation seen compared to the source population and between the two bottlenecked populations, reflecting the stochastic distortion of allele frequencies. We provide empirical support for the theoretical expectations that considerable diversity can remain following a severe bottleneck event, given rapid demographic recovery, and that populations founded from the same source can become quickly differentiated. These processes may be important during the evolution of population genetic structure for species affected by rapid changes in available habitat.  相似文献   

19.
Most founding events entail a reduction in population size, which in turn leads to genetic drift effects that can deplete alleles. Besides reducing neutral genetic variability, founder effects can in principle shift additive genetic variance for phenotypes that underlie fitness. This could then lead to different rates of adaptation among populations that have undergone a population size bottleneck as well as an environmental change, even when these populations have a common evolutionary history. Thus, theory suggests that there should be an association between observable genetic variability for both neutral markers and phenotypes related to fitness. Here, we test this scenario by monitoring the early evolutionary dynamics of six laboratory foundations derived from founders taken from the same source natural population of Drosophila subobscura. Each foundation was in turn three‐fold replicated. During their first few generations, these six foundations showed an abrupt increase in their genetic differentiation, within and between foundations. The eighteen populations that were monitored also differed in their patterns of phenotypic adaptation according to their immediately ancestral founding sample. Differences in early genetic variability and in effective population size were found to predict differences in the rate of adaptation during the first 21 generations of laboratory evolution. We show that evolution in a novel environment is strongly contingent not only on the initial composition of a newly founded population but also on the stochastic changes that occur during the first generations of colonization. Such effects make laboratory populations poor guides to the evolutionary genetic properties of their ancestral wild populations.  相似文献   

20.
We estimate the mean time to extinction of small populations in an environment with constant carrying capacity but under stochastic demography. In particular, we investigate the interaction of stochastic variation in fecundity and sex ratio under several different schemes of density dependent population growth regimes. The methods used include Markov chain theory, Monte Carlo simulations, and numerical simulations based on Markov chain theory. We find a strongly enhanced extinction risk if stochasticity in sex ratio and fluctuating population size act simultaneously as compared to the case where each mechanism acts alone. The distribution of extinction times deviates slightly from a geometric one, in particular for short extinction times. We also find that whether maximization of intrinsic growth rate decreases the risk of extinction or not depends strongly on the population regulation mechanism. If the population growth regime reduces populations above the carrying capacity to a size below the carrying capacity for large r (overshooting) then the extinction risk increases if the growth rate deviates from an optimal r-value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号