首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitric oxide (NO)-sensitive soluble guanylyl cyclase (sGC) is the major cytosolic receptor for NO, catalyzing the conversion of GTP to cGMP. In a search for proteins specifically interacting with human sGC, we have identified the multidomain protein AGAP1, the prototype of an ArfGAP protein with a GTPase-like domain, Ankyrin repeats, and a pleckstrin homology domain. AGAP1 binds through its carboxyl terminal portion to both the alpha1 and beta1 subunits of sGC. We demonstrate that AGAP1 mRNA and protein are co-expressed with sGC in human, murine, and rat cells and tissues and that the two proteins interact in vitro and in vivo. We also show that AGAP1 is prone to tyrosine phosphorylation by Src-like kinases and that tyrosine phosphorylation potently increases the interaction between AGAP1 and sGC, indicating that complex formation is modulated by reversible phosphorylation. Our findings may hint to a potential role of AGAP1 in integrating signals from Arf, NO/cGMP, and tyrosine kinase signaling pathways.  相似文献   

2.
Soluble guanylyl cyclase (sGC) is the major physiological receptor for nitric oxide (NO) throughout the central nervous system. Three different subunits form the α11 and α21 heterodimeric enzymes that catalyze the reaction of GTP to the second messenger cGMP. Both forms contain a prosthetic heme group which binds NO and mediates activation by NO. A number of studies have shown that NO/cGMP signaling plays a major role in neuronal cell differentiation during development of the central nervous system. In the present work, we studied regulation and expression of sGC in brain of rats during postnatal development using biochemical methods. We consistently observed a surprising decrease in cerebral NO sensitive enzyme activity in adult animals in spite of stable expression of sGC subunits. Total hemoprotein heme content was decreased in cerebrum of adult animals, likely because of an increase in heme oxygenase activity. But the loss of sGC activity was not simply because of heme loss in intact heterodimeric enzymes. This was shown by enzyme activity determinations with cinaciguat which can be used to test heme occupancy in intact heterodimers. A reduction in heterodimerization in cerebrum of adult animals was demonstrated by co‐precipitation analysis of sGC subunits. This explained the observed decrease in NO sensitive guanylyl cyclase activity in cerebrum of adult animals. We conclude that differing efficiencies in heterodimer formation may be an important reason for the lack of correlation between sGC protein expression and sGC activity that has been described previously. We suggest that heterodimerization of sGC is a regulated process that changes during cerebral postnatal development because of still unknown signaling mechanisms.  相似文献   

3.
AGC kinases, including the three Akt (protein kinase B) isoforms, protein kinase A (PKA) and all protein kinase C (PKC) isoforms, require activation loop phosphorylation (threonine 308 in Akt1) as well as phosphorylation of a C-terminal residue (serine 473 in Akt1) for catalytic activity and phosphorylation of downstream targets. Conversely, phosphatases reverse these phosphorylations. Virtually all cellular processes are affected by AGC kinases, a circumstance that has led to intense scrutiny of the molecular mechanisms that regulate phosphorylation of these kinases. Here, we review a new layer of control of phosphorylation in Akt, PKA and PKC pointing to ATP binding pocket occupancy as a means to decelerate dephosphorylation of these and, potentially, other kinases. This additional level of kinase regulation opens the door to search for new functional motifs for the rational design of non-ATP-competitive kinase inhibitors that discriminate within and between protein kinase families.Key words: inhibitors hijacking kinase activation, activation loop phosphorylation, dephosphorylation, phosphatase resistance, PKA, PKB, PKC  相似文献   

4.
AGC kinases, including the three Akt (protein kinase B) isoforms, protein kinase A (PKA) and all protein kinase C (PKC) isoforms, require activation loop phosphorylation (threonine 308 in Akt1) as well as phosphorylation of a C-terminal residue (serine 473 in Akt1) for catalytic activity and phosphorylation of downstream targets. Conversely, phosphatases reverse these phosphorylations. Virtually all cellular processes are affected by AGC kinases, a circumstance that has led to intense scrutiny of the molecular mechanisms that regulate phosphorylation of these kinases. Here, we review a new layer of control of phosphorylation in Akt, PKA and PKC pointing to ATP binding pocket occupancy as a means to decelerate dephosphorylation of these and, potentially, other kinases. This additional level of kinase regulation opens the door to search for new functional motifs for the rational design of non- ATP-competitive kinase inhibitors that discriminate within and between protein kinase families.  相似文献   

5.
sGC (soluble guanylate cyclase) is the main mediator of NO signalling. Biochemical and physiological studies suggest that, besides NO, in vivo regulation of sGC involves direct interaction with other proteins. Using yeast two-hybrid screening, we identified that the multidomain LGN (Leu-Gly-Asn repeat-enriched protein) interacts with both α1 and β1 sGC subunits. LGN and sGC co-localized in the cell cytoplasm, and the LGN-sGC complex was co-immunoprecipitated from cells expressing both proteins and from native tissues. Their interaction requires the N-terminal tetratricopeptide repeats of LGN, but does not require the N-terminal portions of α1 or β1 sGC subunits. Overexpression of LGN decreases the activity of cellular sGC, whereas knockdown of LGN mRNA and protein correlated with increased sGC activity. Although purified LGN interacts directly with purified sGC, the inhibitory effect in vitro is observed only after supplementation of cell lysate to the reaction. Although resting sGC and sGC activated by the stimulator BAY41-2272 have very similar LGN-IC50 values to the NO-stimulated sGC, they have a much higher Hill coefficient, suggesting co-operative binding with respect to LGN in the low-activated state of sGC. AGS3 (activator of G-protein signalling 3), the closest LGN homologue, also inhibits sGC. The interaction of sGC with these scaffolding proteins may expand the cross-talk between NO/cGMP signalling and other cellular pathways and tailor sGC function to specific tissues or signals.  相似文献   

6.
Soluble guanylyl cyclase (sGC) is the major cytosolic receptor for nitric oxide (NO) that converts GTP into the second messenger cGMP in a NO-dependent manner. Other factors controlling this key enzyme are intracellular proteins such as Hsp90 and PSD95, which bind to sGC and modulate its activity, stability, and localization. To date little is known about the effects of posttranslational modifications of sGC, although circumstantial evidence suggests that reversible phosphorylation may contribute to sGC regulation. Here we demonstrate that inhibitors of protein-tyrosine phosphatases such as pervanadate and bisperoxo(1,10-phenanthroline)oxovanadate(V) as well as reactive oxygen species such as H2O2 induce specific tyrosine phosphorylation of the beta1 but not of the alpha1 subunit of sGC. Tyrosine phosphorylation of sGCbeta1 is also inducible by pervanadate and H2O2 in intact PC12 cells, rat aortic smooth muscle cells, and in rat aortic tissues, indicating that tyrosine phosphorylation of sGC may also occur in vivo. We have mapped the major tyrosine phosphorylation site to position 192 of beta1, where it forms part of a highly acidic phospho-acceptor site for Src-like kinases. In the phosphorylated state Tyr(P)-192 exposes a docking site for SH2 domains and efficiently recruits Src and Fyn to sGCbeta1, thereby promoting multiple phosphorylation of the enzyme. Our results demonstrate that sGC is subject to tyrosine phosphorylation and interaction with Src-like kinases, revealing an unexpected cross-talk between the NO/cGMP and tyrosine kinase signaling pathways at the level of sGC.  相似文献   

7.
Soluble guanylate cyclase   总被引:1,自引:0,他引:1  
Soluble guanylate cyclase (sGC) is a mammalian nitric oxide (NO) sensor. When NO binds to the sGC heme, its GTP cyclase activity markedly increases, thus generating cyclic GMP, which serves to regulate several cell signaling functions. A good deal is known about the kinetics and equilibrium of binding of NO to sGC, leading to a proposed multistep mechanism of sGC activation that involves at least two NO-binding sites. The crystal structure of a member of a recently discovered family of prokaryotic sGC homologues has provided important insights into structure-function relationships within the sGC family of proteins.  相似文献   

8.
Hyperammonemia is the main responsible for the neurological alterations in hepatic encephalopathy in patients with liver failure. We studied the function of the glutamate-nitric oxide (NO)-cGMP pathway in brain in animal models of hyperammonemia and liver failure and in patients died with liver cirrhosis. Activation of glutamate receptors increases intracellular calcium that binds to calmodulin and activates neuronal nitric oxide synthase, increasing nitric oxide, which activates soluble guanylate cyclase (sGC), increasing cGMP. This glutamate-NO-cGMP pathway modulates cerebral processes such as circadian rhythms, the sleep-waking cycle, and some forms of learning and memory. These processes are impaired in patients with hepatic encephalopathy. Activation of sGC by NO is significantly increased in cerebral cortex and significantly reduced in cerebellum from cirrhotic patients died in hepatic coma. Portacaval anastomosis in rats, an animal model of liver failure, reproduces the effects of liver failure on modulation of sGC by NO both in cerebral cortex and cerebellum. In vivo brain microdialisis studies showed that sGC activation by NO is also reduced in vivo in cerebellum in hyperammonemic rats with or without liver failure. The content of alpha but not beta subunits of sGC are increased both in frontal cortex and cerebellum from patients died due to liver disease and from rats with portacaval anastomosis. We assessed whether determination of activation of sGC by NO-generating agent SNAP in lymphocytes could serve as a peripheral marker for the impairment of sGC activation by NO in brain. Chronic hyperammonemia and liver failure also alter sGC activation by NO in lymphocytes from rats or patients. These findings show that the content and modulation by NO of sGC are strongly altered in brain of patients with liver disease. These alterations could be responsible for some of the neurological alterations in hepatic encephalopathy such as sleep disturbances and cognitive impairment.  相似文献   

9.
Nitric oxide (NO) regulates cardiovascular hemostasis by binding to soluble guanylyl cyclase (sGC), leading to cGMP production, reduced cytosolic calcium concentration ([Ca(2+)](i)), and vasorelaxation. Thrombospondin-1 (TSP-1), a secreted matricellular protein, was recently discovered to inhibit NO signaling and sGC activity. Inhibition of sGC requires binding to cell-surface receptor CD47. Here, we show that a TSP-1 C-terminal fragment (E3CaG1) readily inhibits sGC in Jurkat T cells and that inhibition requires an increase in [Ca(2+)](i). Using flow cytometry, we show that E3CaG1 binds directly to CD47 on the surface of Jurkat T cells. Using digital imaging microscopy on live cells, we further show that E3CaG1 binding results in a substantial increase in [Ca(2+)](i), up to 300 nM. Addition of angiotensin II, a potent vasoconstrictor known to increase [Ca(2+)](i), also strongly inhibits sGC activity. sGC isolated from calcium-treated cells or from cell-free lysates supplemented with Ca(2+) remains inhibited, while addition of kinase inhibitor staurosporine prevents inhibition, indicating inhibition is likely due to phosphorylation. Inhibition is through an increase in K(m) for GTP, which rises to 834 μM for the NO-stimulated protein, a 13-fold increase over the uninhibited protein. Compounds YC-1 and BAY 41-2272, allosteric stimulators of sGC that are of interest for treating hypertension, overcome E3CaG1-mediated inhibition of NO-ligated sGC. Taken together, these data suggest that sGC not only lowers [Ca(2+)](i) in response to NO, inducing vasodilation, but also is inhibited by high [Ca(2+)](i), providing a fine balance between signals for vasodilation and vasoconstriction.  相似文献   

10.
Soluble guanylate cyclase (sGC) is a receptor for endogenous and exogenous nitric oxide (NO) and is activated many fold upon its binding, making it a core enzyme in the nitric oxide signal transduction pathway. Much effort has been made to understand the link between binding of NO at the sGC heme and activation of the cyclase activity. We report here the first direct evidence for the role of conformational changes in transmitting the signal between the heme and cyclase domains. Using both circular dichroism (CD) and fluorescence spectroscopies, we have probed the effect that the sGC activators NO and 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl-indazole (YC-1) and the inhibitor 1H-[1,2,4]-oxadiazolo-[4,3-a]-quinoxalin-1-one (ODQ) have on the structure of the protein. Surprisingly, binding of either ODQ or YC-1 to NO-bound sGC cause virtually identical changes in the far-UV CD spectra of sGC, reflecting a perturbation in the secondary structure of the enzyme. This change is absent upon binding of NO, YC-1 or ODQ alone. Using this and previous data, we propose a working model for the mechanism of activation of sGC by NO and YC-1 and inhibition by ODQ.  相似文献   

11.
Regulators of G protein signaling (RGS proteins) modulate Galpha-directed signals because of the GTPase activating protein (GAP) activity of their conserved RGS domain. RGS14 and RGS12 are unique among RGS proteins in that they also regulate Galpha(i) signals because of the guanine nucleotide dissociation inhibitor (GDI) activity of a GoLoco motif near their carboxy-termini. Little is known about cellular regulation of RGS proteins, although several are phosphorylated in response to G-protein directed signals. Here we show for the first time the phosphorylation of native and recombinant RGS14 in host cells. Direct stimulation of adenylyl cyclase or introduction of dibutyryl-cAMP induces phosphorylation of RGS14 in cells. This phosphorylation occurs through activation of cAMP-dependent protein kinase (PKA) since phosphate incorporation is completely blocked by a selective inhibitor of PKA but only partially or not at all blocked by inhibitors of other G-protein regulated kinases. We show that purified PKA phosphorylates two specific sites on recombinant RGS14, one of which, threonine 494 (Thr494), is immediately adjacent to the GoLoco motif. Because of this proximity, we focused on the possible effects of PKA phosphorylation on the GDI activity of RGS14. We found that mimicking phosphorylation on Thr494 enhanced the GDI activity of RGS14 toward Galpha(i) nearly 3-fold, with no associated effect on the GAP activity toward either Galpha(i) or Galpha(o). These findings implicate cAMP-induced phosphorylation as an important modulator of RGS14 function since phosphorylation could enhance RGS14 binding to Galpha(i)-GDP, thereby limiting Galpha(i) interactions with downstream effector(s) and/or enhancing Gbetagamma-dependent signals.  相似文献   

12.
Voltage-dependent L-type calcium channels that permit cellular calcium influx are essential in calcium-mediated modulation of cellular signaling. Although the regulation of voltage-dependent L-type calcium channels is linked to many factors including cAMP-dependent protein kinase A (PKA) activity and actin cytoskeleton, little is known about the detailed mechanisms underlying the regulation in osteoblasts. Our present study investigated the modulation of L-type calcium channel activities through the effects of forskolin on actin reorganization and on its functional interaction with actin binding protein actinin 4. The results showed that forskolin did not significantly affect the trafficking of pore forming α1c subunit and its interaction with actin binding protein actinin 4, whereas it significantly increased the expression of β3 subunit and its interaction with actinin 4 in osteoblast cells as assessed by co-immunoprecipitation, pull-down assay, and immunostaining. Further mapping showed that the ABD and EF domains of actinin 4 were interaction sites. This interaction is independent of PKA phosphorylation. Knockdown of actinin 4 significantly decreased the activities of L-type calcium channels. Our study revealed a new aspect of the mechanisms by which the forskolin activation of adenylyl cyclase - cAMP cascade regulates the L-type calcium channel in osteoblast cells, besides the PKA mediated phosphorylation of the channel subunits. These data provide insight into the important role of interconnection among adenylyl cyclase, cAMP, PKA, the actin cytoskeleton, and the channel proteins in the regulation of voltage-dependent L-type calcium channels in osteoblast cells.  相似文献   

13.
Nitric oxide (NO) is a physiologically relevant activator of the hemoprotein soluble guanylate cyclase (sGC). In the presence of NO, sGC is activated several hundredfold above the basal level by a mechanism that remains to be elucidated. The heme ligand n-butyl isocyanide (BIC) was used to probe the mechanism of NO activation of sGC. Electronic absorption spectroscopy was used to show that BIC binds to the sGC heme, forming a 6-coordinate complex with an absorbance maximum at 429 nm. BIC activates sGC 2-5-fold, and synergizes with the allosteric activator YC-1, to activate the enzyme 15-25-fold. YC-1 activates the sGC-BIC complex, and leads to an increase in both the V(max) and K(m). BIC was also used to probe the mechanism of NO activation. The activity of the sGC-BIC complex increases 15-fold in the presence of NO, without displacing BIC at the heme, which is consistent with previous reports that proposed the involvement of a non-heme NO binding site in the activation process.  相似文献   

14.
Physiologically, nitric oxide (NO) signal transduction occurs through soluble guanylyl cyclase (sGC), which catalyses cyclic GMP (cGMP) formation. Knowledge of the kinetics of NO-evoked cGMP signals is therefore critical for understanding how NO signals are decoded. Studies on cerebellar astrocytes showed that sGC undergoes a desensitizing profile of activity, which, in league with phosphodiesterases (PDEs), was hypothesized to diversify cGMP responses in different cells. The hypothesis was tested by examining the kinetics of cGMP in rat striatal cells, in which cGMP accumulated in neurones in response to NO. Based on the effects of selective PDE inhibitors, cGMP hydrolysis following exposure to NO was attributed to a cGMP-stimulated PDE (PDE 2). Analysis of NO-induced cGMP accumulation in the presence of a PDE inhibitor indicated that sGC underwent marked desensitization. However, the desensitization kinetics determined under these conditions described poorly the cGMP profile observed in the absence of the PDE inhibitor. An explanation shown plausible theoretically was that cGMP determines the level of sGC desensitization. In support, tests in cerebellar astrocytes indicated an inverse relationship between cGMP level and recovery of sGC from its desensitized state. We suggest that the degree of sGC desensitization is related to the cGMP concentration and that this effect is not mediated by (de)phosphorylation.  相似文献   

15.
Martin E  Berka V  Sharina I  Tsai AL 《Biochemistry》2012,51(13):2737-2746
Soluble guanylyl cyclase (sGC), the key enzyme for the formation of second messenger cyclic GMP, is an authentic sensor for nitric oxide (NO). Binding of NO to sGC leads to strong activation of the enzyme activity. Multiple molecules and steps of binding of NO to sGC have been implicated, but the target of the second NO and the detailed binding mechanism remain controversial. In this study, we used (15)NO and (14)NO and anaerobic sequential mixing-freeze-quench electron paramagnetic resonance to unambiguously confirm that the heme Fe is the target of the second NO. The linear dependence on NO concentration up to 600 s(-1) for the observed rate of the second step of NO binding not only indicates that the binding site of the second NO is different from that in the first step, i.e., the proximal site of the heme, but also supports a concerted mechanism in which the dissociation of the His105 proximal ligand occurs simultaneously with the binding of the second NO molecule. Computer modeling successfully predicts the kinetics of formation of a set of five-coordinate NO complexes with the ligand on either the distal or proximal site and supports the selective release of NO from the distal side of the transient bis-NO-sGC complex. Thus, as has been demonstrated with cytochrome c', a five-coordinate NO-sGC complex containing a proximal NO is formed after the binding of the second NO.  相似文献   

16.
One of the prototype mammalian kinases is PKA and various roles have been defined for PKA in malaria pathogenesis. The recently described phospho-proteomes of Plasmodium falciparum introduced a great volume of phospho-peptide data for both basic research and identification of new anti-malaria therapeutic targets. We discuss the importance of phosphorylations detected in vivo at different sites in the parasite R and C subunits of PKA and highlight the inhibitor sites in the parasite R subunit. The N-terminus of the parasite R subunit is predicted to be very flexible and we propose that phosphorylation at multiple sites in this region likely represent docking sites for interactions with other proteins, such as 14-3-3. The most significant observation when the P. falciparum C subunit is compared to mammalian C isoforms is lack of phosphorylation at a key site tail implying that parasite kinase activity is not regulated so tightly as mammalian PKA. Phosphorylation at sites in the activation loop could be mediating a number of processes from regulating parasite kinase activity, to mediating docking of other proteins. The important differences between Plasmodium and mammalian PKA isoforms that indicate the parasite kinase is a valid anti-malaria therapeutic target.  相似文献   

17.
Endothelium-derived nitric oxide (NO) activates the heterodimeric heme protein soluble guanylate cyclase (sGC) to form cGMP. In different disease states, sGC levels and activity are diminished possibly involving the sGC binding chaperone, heat shock protein 90 (hsp90). Here we show that prolonged hsp90 inhibition in different cell types reduces protein levels of both sGC subunits by about half, an effect that was prevented by the proteasome inhibitor MG132. Conversely, acute hsp90 inhibition affected neither basal nor NO-stimulated sGC activity. Thus, hsp90 is a molecular stabilizer for sGC tonically preventing proteasomal degradation rather than having a role in short-term activity regulation.  相似文献   

18.
19.
20.
Soluble guanylyl cyclase (sGC) is a heterodimeric enzyme formed by an alpha subunit and a beta subunit, the latter containing the heme where nitric oxide (NO) binds. When NO binds, the basal activity of sGC is increased several hundred fold. sGC activity is also increased by YC-1, a benzylindazole allosteric activator. In the presence of NO, YC-1 synergistically increases the catalytic activity of sGC by enhancing the affinity of NO for the heme. The site of interaction of YC-1 with sGC is unknown. We conducted a mutational analysis to identify the binding site and to determine what residues were involved in the propagation of NO and/or YC-1 activation. Because guanylyl cyclases (GCs) and adenylyl cyclases (ACs) are homologous, we used the three-dimensional structure of AC to guide the mutagenesis. Biochemical analysis of purified mutants revealed that YC-1 increases the catalytic activity not only by increasing the NO affinity but also by increasing the efficacy of NO. Effects of YC-1 on NO affinity and efficacy were dissociated by single-point mutations implying that YC-1 has, at least, two types of interaction with sGC. A structural model predicts that YC-1 may adopt two configurations in one site that is pseudosymmetric with the GTP binding site and equivalent to the forskolin site in AC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号