首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Imidacloprid, sulfoxaflor and two experimental sulfoximine insecticides caused generally depressive symptoms in stick insects, characterized by stillness and weakness, while also variably inducing postural changes such as persistent ovipositor opening, leg flexion or extension and abdomen bending that could indicate excitation of certain neural circuits. We examined the same compounds on nicotinic acetylcholine receptors in stick insect neurons, which have previously been shown to desensitize in the presence of ACh. Brief U-tube application of 10−4 M solutions of insecticides for 1 s evoked currents that were much smaller than ACh-evoked currents, and depressed subsequent ACh-evoked currents for several minutes, indicating that the compounds are low-efficacy partial agonists that potently desensitize the receptors. Much lower concentrations of insecticides applied in the bath for longer periods did not activate currents, but inhibited ACh-evoked currents via desensitization of the receptors. Previously described fast- and slowly-desensitizing nACh currents, IACh1 and IACh2 respectively, were each found to consist of two components with differing sensitivities to the insecticides. Imidacloprid applied in the bath desensitized high-sensitivity components, IACh1H and IACh2H with IC50s of 0.18 and 0.13 pM, respectively. It desensitized the low-sensitivity slowly desensitizing component, IACh2L, with an IC50 of 2.6 nM, while a component of the fast-desensitizing current, IACh1L, was least sensitive, with an IC50 of 81 nM IACh1L appeared to be insensitive to the three sulfoximines tested, whereas all three sulfoximines potently desensitized IACh1H and both slowly desensitizing components, with IC50s between 2 and 7 nM. We conclude that selective desensitization of certain nAChR subtypes can account for the insecticidal actions of imidacloprid and sulfoximines in stick insects.  相似文献   

5.
Summary Histological sections of the brain, suboesophageal ganglion, and the corpora cardiaca/corpora allata complex were examined for the presence of crustacean hyperglycemic hormone-like immunoreactive material. With the use of an antiserum directed against the hyperglycemic hormone of Carcinus maenas, immunofluorescence was found in the median portion of the pars intercerebralis, and the corpora cardiaca. Extracts of corpora cardiaca were examined by radioimmunoassay for competitive binding to the antiserum; one pair of corpora cardiaca contains at least 7 pg crustacean hyperglycemic hormone-like material.  相似文献   

6.
7.
The hypertrehalosaemic hormone from the stick insect Carausius morosus (Cam-HrTH) contains a hexose covalently bound to the ring of the tryptophan, which is in the eighth position in the molecule. We show by solution NMR spectroscopy that the tryptophan is modified at its C(delta1)(C2) by an alpha-mannopyranose. It is the first insect hormone to exhibit C-glycosylation whose exact nature has been determined experimentally. Chemical shift analysis reveals that the unmodified as well as the mannosylated Cam-HrTH are not completely random-coil in aqueous solution. Most prominently, C-mannosylation strongly influences the average orientation of the tryptophan ring in solution and stabilizes it in a position clearly different from that found in the unmodified peptide. NMR diffusion measurements indicate that mannosylation reduces the effective hydrodynamic radius. It induces a change of the average peptide conformation that also diminishes the propensity for aggregation of the peptide.  相似文献   

8.
Hind legs with crossed receptor-apodemes of the femoral chordotonal organ when making a step during walking often do not release the ground after reaching the extreme posterior position. After putting a clamp on the trochanter (stimulation of the campaniform sensilla) the leg is no longer protracted during walking. However, during searching-movements the same leg is moved very far forwards. The anatomical situation of the campaniform sensilla on the trochanter and the sensory innervation of the trochanter is described. After removal of the hair-rows and continuously stimulating the hair-plate at the thorax-coxa-joint the extreme anterior and posterior positions of the leg in walking are displaced in the posterior direction. Front and middle legs operated in this way sometimes do not release the ground at the end of retraction. In searching-movements the same leg is moved in a normal way. If only one side of a decerebrated animal goes over a step, then on the other side a compensatory effect is observed. The main source of this compensatory information appears to be the BF1-hair-plates. If the animal has to drag a weight the extreme anterior and posterior positions of the middle and hind legs are displaced in the anterior direction. Crossing the receptor-apodeme of the femoral chordotonal organ, when it causes the leg to remain in the protraction phase, displaces the extreme posterior position of the ipsilateral leg in front of the operated one in the posterior direction. Influences of different sources on the extreme posterior position can superimpose. A model is presented which combines both a central programme and peripheral sensory influence. The word programme used here means that it does not only determine the motor output but also determines the reactions to particular afferences. The fact that the reaction to a stimulus depends on the internal state of the CNS is also represented by the model.Supported by Deutsche Forschungsgemeinschaft  相似文献   

9.
10.
The angle of the coxa-trochanter (C-T) joint in the stick insect Carausius morosus is controlled by a negative feedback mechanism. It is shown that the trochanteral hair plate alone functions as the feedback transducer and that the rhomboid hair plate is not involved in the feedback loop.The properties of the C-T control system were investigated by means of force measurements. The results cannot be adequately described in all details by either a fractional differentiator model, a model which fits many sensory systems, or a nonlinear bandpass filter, a model which fits the force response of the femur-tibia feedback loop. The fractional differentiator model adequately describes the frequency response of the open-loop system to sinusoidal stimulation with 34 deg stimulus amplitude. However, the responses to sinusoidal and steplike stimulation with 10 deg stimulus amplitude do not fit this model. They are better described by the model of a nonlinear bandpass filter.The possible contribution of mechanical properties of the musculature and the joint to the total force response is discussed. It is suggested that cocontractions occurring at higher stimulus frequencies alters the muscle properties and enables the animal to respond to stimulus frequencies above the upper corner frequency of the active feedback loop.  相似文献   

11.
1.  The function of the legs of a free walking mature stick insect (Carausius morosus) is investigated in four different walking situations: walks on a horizontal path, walks on a horizontal plane, walks on a horizontal beam with the body hanging from the beam and walks up a vertical path.
2.  The geometrical data, which are necessary to describe the movement of the legs, are determined (Tables 1, 2, 3, 4; Figs. 2, 3, 4, 5).
3.  The forces, by which the leg of a free walking animal acts on the walking surface, are measured (Table 5). Typical results are shown in Figures 6, 7, 8, 9 for each walking situation. From these forces and the known geometrical relationships the torques, which are produced by the antagonistic muscle systems at each leg joint, can be calculated (Fig. 10). Those torques calculated for different typical leg positions are shown in Table 6, 7, 8, 9 for each walking situation.
4.  The results show that many things change depending upon the particular walking situation: the angular range in which the leg is moved (Table 2, Fig. 4), the activation and the kind of predominance of the antagonistic muscles (Table 6, 7, 8, 9), and especially the function of the single legs. Additionally, when looking at the direction of movement of a limb one cannot say which of the antagonistic muscles is predominating. Sometimes just the muscle opposite to the actual movement predominates (Table 7).
5.  For two walking situations the function of the legs can be demonstrated in a simple way. In a walk on the horizontal plane: the forelegs mainly have feeler function, the middlelegs have only supporting function, while the hindlegs have supporting as well as propulsive function. In a walk with the body hanging from the horizontal beam: forelegs and hindlegs are used mainly to support the body, while the middlelegs additionally provide the propulsive forces.
6.  In walking up the vertical path all legs provide support and propulsive forces. When walking on the horizontal path fore- and middlelegs on the
one hand and hindlegs on the other form the static construction of a three centered arch (Fig. 11). In the same way when the insect walks hanging from the horizontal beam, a hanging three centered arch is assumed. The importance of this construction is discussed.  相似文献   

12.
A model of interleg coordination presented in a separate report is evaluated here by perturbing the step pattern in three ways. First, when the initial leg configuration is varied, the simulated leg movements assume a stable coordination from natural starting configurations in a natural way (Fig. 1a). They also rapidly re-establish the normal coordination when started from unnatural configurations (Fig. 1b-d). An explicit hierarchy of natural frequencies for the legs of the three thoracic segments is not required. Second, when the coordination is perturbed by assigning one or more legs a retraction velocity different from the rest, gliding coordination or various integer step ratios can be produced (Figs. 2–4). Third, when the swing of one leg is obstructed, characteristic changes in the stepping of other legs occur (Fig. 5). Overall differences between the step patterns of the model and those of the stick insect are related to the form of the coordinating mechanisms. Errors made by the model, such as overlapping swings by adjacent legs or discrepancies in step timing and step end-points, point out the limitations of a model restricted to kinematic parameters.  相似文献   

13.
14.
Mechanisms dependent upon leg position coordinate the alternate stepping of adjacent ipsilateral and contralateral legs in the stick insect. In this insect, swing duration and step amplitude are independent of walking speed. A simple geometrical model of the leg controller is used here to test different mechanisms for compatibility with these two invariant features. Leg position is the state variable of a relaxation oscillator and position thresholds determine the transitions between swing and stance. The coordination mechanisms alter these thresholds. The position-dependent mechanisms considered differ either in the form or the speed-dependence of the function relating the shift in the posterior threshold of the receiving leg to the position of the sending leg. The results identify parameter combinations leading to alternate stepping with symmetric or asymmetric phase distributions, to shifts in the posterior extreme position as a function of speed, to double stepping or to in-phase stepping. An optimal position-dependent excitatory mechanism is described. Finally the consequences of adding either inhibitory influences or time-dependent excitatory influences are analyzed.  相似文献   

15.
16.
17.
Summary A detailed kinematical analysis of oscillating fly wings using high speed cine films in three-table projection and model reconstructions show a variety of quick changes in beating and rotating movements. There are especially quick changes in the geometrical angle of attack during the upper and lower reversal phases and quick twisting movements and bending oscillations during some of the beating phases. A dozen possibilities for instationary aerodynamic effects are discussed, including quick oscillations in angle of attack, quick turning movements in the reversal points, circulation possibly induced by a quick supination during the beginning of upstroke (fast supination effect), oblique attack by the fluid, circulation possibly induced by a forced oscillation of the trailing edge during the beginning of downstroke (swinging edge effect), tangential transport of the boundary layer by undulatory movements, rolling movements during the turning phases, high-frequency small oscillations of the wing surface, and a quick oscillation during late upstroke. Weis-Fogh's clap and fling mechanism and flip mechanism could not be detected in Calliphorid flies.

Mit Unterstützung der Deutschen Forschungsgemeinschaft  相似文献   

18.
Summary The ionic requirements for the action potentials recorded from the axon of the dorsal longitudinal stretch receptor inCarausius morosus have been studied using extracellular electrodes.In the intact preparation prolonged exposure to sodium-free, calcium-free, or magnesium-free salines produces no observable change in the amplitude of action potentials. Similarly, tetrodotoxin (1×10–6 M) and cobaltous chloride (1×10–2 M) are both ineffective in blocking the action potentials.In preparations in which the ionic barrier has been disrupted by removal of the nerve sheath the action potentials show sodium dependence. They are sustained in high sodium salines (150 mM) but are reversibly abolished in sodium-free salines. They are also reversibly abolished in 1×10–6 M TTX, but unaffected by calcium-free or magnesium-free salines, or by cobaltous chloride (1×10–2 M).It is concluded that the action currents in the axon of the stretch receptor are carried by sodium ions.  相似文献   

19.
The stick insect Carausius morosus continuously moves its antennae during locomotion. Active antennal movements may reflect employment of antennae as tactile probes. Therefore, this study treats two basic aspects of the antennal motor system: First, the anatomy of antennal joints, muscles, nerves and motoneurons is described and discussed in comparison with other species. Second, the typical movement pattern of the antennae is analysed, and its spatio-temporal coordination with leg movements described. Each antenna is moved by two single-axis hinge joints. The proximal head-scape joint is controlled by two levator muscles and a three-partite depressor muscle. The distal scape-pedicel joint is controlled by an antagonistic abductor/ adductor pair. Three nerves innervate the antennal musculature, containing axons of 14-17 motoneurons, including one common inhibitor. During walking, the pattern of antennal movement is rhythmic and spatiotemporally coupled with leg movements. The antennal abduction/adduction cycle leads the protraction/retraction cycle of the ipsilateral front leg with a stable phase shift. During one abduction/adduction cycle there are typically two levation/depression cycles, however, with less strict temporal coupling than the horizontal component. Predictions of antennal contacts with square obstacles to occur before leg contacts match behavioural performance, indicating a potential role of active antennal movements in obstacle detection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号