首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The N-methyl-d-aspartate (NMDA) receptors play critical roles in synaptic plasticity, neuronal development, and excitotoxicity. Tyrosine phosphorylation of NMDA receptors by Src-family tyrosine kinases such as Fyn is implicated in synaptic plasticity. To precisely address the roles of NMDA receptor tyrosine phosphorylation, we identified Fyn-mediated phosphorylation sites on the GluR epsilon 2 (NR2B) subunit of NMDA receptors. Seven out of 25 tyrosine residues in the C-terminal cytoplasmic region of GluR epsilon 2 were phosphorylated by Fyn in vitro. Of these 7 residues, Tyr-1252, Tyr-1336, and Tyr-1472 in GluR epsilon 2 were phosphorylated in human embryonic kidney fibroblasts when co-expressed with active Fyn, and Tyr-1472 was the major phosphorylation site in this system. We then generated rabbit polyclonal antibodies specific to Tyr-1472-phosphorylated GluR epsilon 2 and showed that Tyr-1472 of GluR epsilon 2 was indeed phosphorylated in murine brain using the antibodies. Importantly, Tyr-1472 phosphorylation was greatly reduced in fyn mutant mice. Moreover, Tyr-1472 phosphorylation became evident when hippocampal long term potentiation started to be observed, and its magnitude became larger in murine brain. Finally, Tyr-1472 phosphorylation was significantly enhanced after induction of long term potentiation in the hippocampal CA1 region. These data suggest that Tyr-1472 phosphorylation of GluR epsilon 2 is important for synaptic plasticity.  相似文献   

2.
The number and subunit composition of synaptic N-methyl-d-aspartate receptors (NMDARs) play critical roles in synaptic plasticity, learning, and memory and are implicated in neurological disorders. Tyrosine phosphorylation provides a powerful means of regulating NMDAR function, but the underling mechanism remains elusive. In this study we identified a tyrosine site on the GluN2B subunit, Tyr-1070, which was phosphorylated by a proto-oncogene tyrosine-protein (Fyn) kinase and critical for the surface expression of GluN2B-containing NMDARs. The phosphorylation of GluN2B at Tyr-1070 was required for binding of Fyn kinase to GluN2B, which up-regulated the phosphorylation of GluN2B at Tyr-1472. Moreover, our results revealed that the phosphorylation change of GluN2B at Tyr-1070 accompanied the Tyr-1472 phosphorylation and Fyn associated with GluN2B in synaptic plasticity induced by both chemical and contextual fear learning. Taken together, our findings provide a new mechanism for regulating the surface expression of NMDARs with implications for synaptic plasticity.  相似文献   

3.
Cleavage of the intracellular carboxyl terminus of the N-methyl-d-aspartate (NMDA) receptor 2 subunit (NR2) by calpain regulates NMDA receptor function and localization. Here, we show that Fyn-mediated phosphorylation of NR2B controls calpain-mediated NR2B cleavage. In cultured neurons, calpain-mediated NR2B cleavage is significantly attenuated by blocking NR2B phosphorylation of Tyr-1336, but not Tyr-1472, via inhibition of Src family kinase activity or decreasing Fyn levels by small interfering RNA. In HEK cells, mutation of Tyr-1336 eliminates the potentiating effect of Fyn on calpain-mediated NR2B cleavage. The potentiation of NR2B cleavage by Fyn is limited to cell surface receptors and is associated with calpain translocation to plasma membranes during NMDA receptor activation. Finally, reducing full-length NR2B by calpain does not decrease extrasynaptic NMDA receptor function, and truncated NR1/2B receptors similar to those generated by calpain have electrophysiological properties matching those of wild-type receptors. Thus, the Fyn-controlled regulation of NMDA receptor cleavage by calpain may play critical roles in controlling NMDA receptor properties during synaptic plasticity and excitotoxicity.  相似文献   

4.
5.
The C-terminal Src kinase (Csk) is an essential signaling factor guiding central nervous system (CNS) development. In the adult brain, Csk-mediated control of Src may also modulate glutamatergic synaptic transmission and N-methyl-d-aspartate receptor (NMDAR)-dependent synaptic plasticity. The regulation of N-methyl-d-aspartate (NMDA)-dependent plasticity by a myriad of kinase cascades has been investigated intensively during spatial and fear learning, while little is known about the regulatory kinases and role of NMDA-dependent plasticity during equally critical forms of social learning. We assessed social memory in Csk(+/+) and Csk(+/-) mice backcrossed onto 129P2, an inbred strain with wild-type impairments in social memory. Reduced Csk expression in Csk(+/-) mice was associated with increased NMDAR subunit 2B (NR2B) phosphorylation in the amygdala (AM) and olfactory bulb (OB), and with markedly improved social recognition memory and social transmission of food preference (STFP). In contrast, phosphorylation of NR2B was only slightly increased in the hippocampus of 129P2/Csk(+/-) mice, and the poor spatial object recognition memory of wild-type 129P2/Csk(+/+) mice was not rescued by reduced Csk expression. The Csk pathway appears to be a critical signaling cascade regulating social learning and memory, and presents a possible therapeutic target in diseases such as autism that are characterized by aberrant social behaviors.  相似文献   

6.
Cui Y  Jin J  Zhang X  Xu H  Yang L  Du D  Zeng Q  Tsien JZ  Yu H  Cao X 《PloS one》2011,6(5):e20312
Prefrontal cortex plays an important role in working memory, attention regulation and behavioral inhibition. Its functions are associated with NMDA receptors. However, there is little information regarding the roles of NMDA receptor NR2B subunit in prefrontal cortical synaptic plasticity and prefrontal cortex-related working memory. Whether the up-regulation of NR2B subunit influences prefrontal cortical synaptic plasticity and working memory is not yet clear. In the present study, we measured prefrontal cortical synaptic plasticity and working memory function in NR2B overexpressing transgenic mice. In vitro electrophysiological data showed that overexpression of NR2B specifically in the forebrain region resulted in enhancement of prefrontal cortical long-term potentiation (LTP) but did not alter long-term depression (LTD). The enhanced LTP was completely abolished by a NR2B subunit selective antagonist, Ro25-6981, indicating that overexpression of NR2B subunit is responsible for enhanced LTP. In addition, NR2B transgenic mice exhibited better performance in a set of working memory paradigms including delay no-match-to-place T-maze, working memory version of water maze and odor span task. Our study provides evidence that NR2B subunit of NMDA receptor in prefrontal cortex is critical for prefrontal cortex LTP and prefrontal cortex-related working memory.  相似文献   

7.
NMDA receptors (NMDARs) activation in the hippocampus and insular cortex is necessary for spatial memory formation. Recent studies suggest that localization of NMDARs to lipid rafts enhance their signalization, since the kinases that phosphorylate its subunits are present in larger proportion in lipid raft membrane microdomains. We sought to determine the possibility that NMDAR translocation to synaptic lipid rafts occurs during plasticity processes such as memory formation. Our results show that water maze training induces a rapid recruitment of NMDAR subunits (NR1, NR2A, NR2B) and PSD-95 to synaptic lipid rafts and decrease in the post-synaptic density plus an increase of NR2B phosphorylation at tyrosine 1472 in the rat insular cortex. In the hippocampus, spatial training induces selective translocation of NR1 and NR2A subunits to lipid rafts. These results suggest that NMDARs translocate from the soluble fraction of post-synaptic membrane (non-raft PSD) to synaptic lipid raft during spatial memory formation. The recruitment of NMDA receptors and other proteins to lipid rafts could be an important mechanism for increasing the efficiency of synaptic transmission during synaptic plasticity process.  相似文献   

8.
While the spatiotemporal development of Tau pathology has been correlated with occurrence of cognitive deficits in Alzheimer's patients, mechanisms underlying these deficits remain unclear. Both brain‐derived neurotrophic factor (BDNF) and its tyrosine kinase receptor TrkB play a critical role in hippocampus‐dependent synaptic plasticity and memory. When applied on hippocampal slices, BDNF is able to enhance AMPA receptor‐dependent hippocampal basal synaptic transmission through a mechanism involving TrkB and N‐methyl‐d‐Aspartate receptors (NMDAR). Using THY‐Tau22 transgenic mice, we demonstrated that hippocampal Tau pathology is associated with loss of synaptic enhancement normally induced by exogenous BDNF. This defective response was concomitant to significant memory impairments. We show here that loss of BDNF response was due to impaired NMDAR function. Indeed, we observed a significant reduction of NMDA‐induced field excitatory postsynaptic potential depression in the hippocampus of Tau mice together with a reduced phosphorylation of NR2B at the Y1472, known to be critical for NMDAR function. Interestingly, we found that both NR2B and Src, one of the NR2B main kinases, interact with Tau and are mislocalized to the insoluble protein fraction rich in pathological Tau species. Defective response to BDNF was thus likely related to abnormal interaction of Src and NR2B with Tau in THY‐Tau22 animals. These are the first data demonstrating a relationship between Tau pathology and synaptic effects of BDNF and supporting a contribution of defective BDNF response and impaired NMDAR function to the cognitive deficits associated with Tauopathies.  相似文献   

9.
Plasticity of the nervous system is dependent on mechanisms that regulate the strength of synaptic transmission. Excitatory synapses in the brain undergo long-term potentiation (LTP) and long-term depression (LTD), cellular models of learning and memory. Protein phosphorylation is required for the induction of many forms of synaptic plasticity, including LTP and LTD. However, the critical kinase substrates that mediate plasticity have not been identified. We previously reported that phosphorylation of the GluR1 subunit of AMPA receptors, which mediate rapid excitatory transmission in the brain, is modulated during LTP and LTD. To test if GluR1 phosphorylation is necessary for plasticity and learning and memory, we generated mice with knockin mutations in the GluR1 phosphorylation sites. The phosphomutant mice show deficits in LTD and LTP and have memory defects in spatial learning tasks. These results demonstrate that phosphorylation of GluR1 is critical for LTD and LTP expression and the retention of memories.  相似文献   

10.
Li Y  Zhang X  Liu H  Cao Z  Chen S  Cao B  Liu J 《Journal of neurochemistry》2012,121(4):662-671
The NR2B subunit of NMDA receptor in the anterior cingulate cortex (ACC) is up-regulated in viscerally hypersensitive (VH) rats induced by colonic anaphylaxis. It plays a critical role in modulation of ACC sensitization and visceral pain responses. Given the key role of calcium/calmodulin-dependent protein kinase II (CaMKII) in synaptic plasticity and behavior learning and memory, we hypothesize that phosphorylation of CaMKII binding to NR2B mediates visceral pain in VH states. We performed in vivo electroporation of CaMKII siRNA produced inhibition of colorectal distension-induced visceromotor response in the VH rats. The NR2B, CaMKII and P-CaMKII-Thr2?? protein levels were increased in 180%, 220% and 304% fold in the post-synaptic density (PSD) fraction in VH rats separately. Western blotting following co-immunoprecipitation showed that P-CaMKII-Thr2?? bound to NR2B in the PSD, which was increased to 267% of control in VH rats. Administration of CaMKII antagonist Antennapedia-CaMKIINtide suppressed visceromotor response in VH rats in parallel with decrease of NR2B levels and reduction of the NR2B-P-CaMKII-Thr2?? protein complex in PSD. In conclusion, CaMKII is a critical signaling molecule in the ACC glutamatergic synaptic transmission and phosphorylation of CaMKII at Thr286, which binds to NR2B subunit at post-synaptic site, modulates visceral pain in viscerally hypersensitive state.  相似文献   

11.
Tyrosine phosphorylation of the NR2A and NR2B subunits of the N-methyl-d-aspartate (NMDA) receptor by Src protein-tyrosine kinases modulates receptor channel activity and is necessary for the induction of long term potentiation (LTP). Deletion of H-Ras increases both NR2 tyrosine phosphorylation and NMDA receptor-mediated hippocampal LTP. Here we investigated whether H-Ras regulates phosphorylation and function of the NMDA receptor via Src family protein-tyrosine kinases. We identified Src as a novel H-Ras binding partner. H-Ras bound to Src but not Fyn both in vitro and in brain via the Src kinase domain. Cotransfection of H-Ras and Src inhibited Src activity and decreased NR2A tyrosine phosphorylation. Treatment of rat brain slices with Tat-H-Ras depleted NR2A from the synaptic membrane, decreased endogenous Src activity and NR2A phosphorylation, and decreased the magnitude of hippocampal LTP. No change was observed for NR2B. We suggest that H-Ras negatively regulates Src phosphorylation of NR2A and retention of NR2A into the synaptic membrane leading to inhibition of NMDA receptor function. This mechanism is specific for Src and NR2A and has implications for studies in which regulation of NMDA receptor-mediated LTP is important, such as synaptic plasticity, learning, and memory and addiction.  相似文献   

12.
The NMDA receptor (NMDAR) is a component of excitatory synapses and a key participant in synaptic plasticity. We investigated the role of two domains in the C terminus of the NR2B subunit--the PDZ binding domain and the clathrin adaptor protein (AP-2) binding motif--in the synaptic localization of NMDA receptors. NR2B subunits lacking functional PDZ binding are excluded from the synapse. Mutations in the AP-2 binding motif, YEKL, significantly increase the number of synaptic receptors and allow the synaptic localization of NR2B subunits lacking PDZ binding. Peptides corresponding to YEKL increase the synaptic response within minutes. In contrast, the NR2A subunit localizes to the synapse in the absence of PDZ binding and is not altered by mutations in its motif corresponding to YEKL of NR2B. This study identifies a dynamic regulation of synaptic NR2B-containing NMDARs through PDZ protein-mediated stabilization and AP-2-mediated internalization that is modulated by phosphorylation by Fyn kinase.  相似文献   

13.
H C Lu  E Gonzalez  M C Crair 《Neuron》2001,32(4):619-634
The regulation of NMDA receptor (NMDAR) subunit composition and expression during development is thought to control the process of thalamocortical afferent innervation, segregation, and plasticity. Thalamocortical synaptic plasticity in the mouse is dependent on NMDARs containing the NR2B subunit, which are the dominant form during the "critical period" window for plasticity. Near the end of the critical period there is a gradual increase in the contribution of NR2A subunits that happens in parallel to changes in NMDAR-mediated current kinetics. However, no extension of the critical period occurs in NR2A knockout mice, despite the fact that NMDA subunit composition and current kinetics remain immature past the end of the critical period. These data suggest that regulation of NMDAR subunit composition is not essential for closing the critical period plasticity window in mouse somatosensory barrel cortex.  相似文献   

14.
Zhao MG  Toyoda H  Lee YS  Wu LJ  Ko SW  Zhang XH  Jia Y  Shum F  Xu H  Li BM  Kaang BK  Zhuo M 《Neuron》2005,47(6):859-872
Cortical plasticity is thought to be important for the establishment, consolidation, and retrieval of permanent memory. Hippocampal long-term potentiation (LTP), a cellular mechanism of learning and memory, requires the activation of glutamate N-methyl-D-aspartate (NMDA) receptors. In particular, it has been suggested that NR2A-containing NMDA receptors are involved in LTP induction, whereas NR2B-containing receptors are involved in LTD induction in the hippocampus. However, LTP in the prefrontal cortex is less well characterized than in the hippocampus. Here we report that the activation of the NR2B and NR2A subunits of the NMDA receptor is critical for the induction of cingulate LTP, regardless of the induction protocol. Furthermore, pharmacological or genetic blockade of the NR2B subunit in the cingulate cortex impaired the formation of early contextual fear memory. Our results demonstrate that the NR2B subunit of the NMDA receptor in the prefrontal cortex is critically involved in both LTP and contextual memory.  相似文献   

15.
Previous studies have shown that Csk plays critical roles in the regulation of neural development, differentiation and glutamate-mediated synaptic plasticity. It has been found that Csk associates with the NR2A and 2B subunits of N-methyl-D-aspartate receptors (NMDARs) in a Src activity-dependent manner and serves as an intrinsic mechanism to provide a “brake” on the induction of long-term synaptic potentiation (LTP) mediated by NMDARs. In contrast to the NR2A and 2B subunits, no apparent tyrosine phosphorylation is found in the NR1 subunit of NMDARs. Here, we report that Csk can also associate with the NR1 subunit in a Src activity-dependent manner. The truncation of the NR1 subunit C-tail which contains only one tyrosine (Y837) significantly reduced the Csk association with the NR1-1a/NR2A receptor complex. Furthermore, we found that either the truncation of NR2A C-tail at aa 857 or the mutation of Y837 in the NR1-1a subunit to phenylalanine blocked the inhibition of NR1-1a/NR2A receptors induced by intracellular application of Csk. Thus, both the NR1 and NR2 subunits are required for the regulation of NMDAR activity by Csk.  相似文献   

16.
NMDA受体是兴奋性氨基酸谷氨酸(Glu)的特异性受体,属配体门控离子通道,是由不同的亚单位组成.现已发现,NMDA受体至少存在7个亚单位(NR1,NR2A-D,NR3A-B),其中NR2B在7个亚单位中扮演非常重要的角色.近年来对NR2B研究表明,其在调控神经元突触的可塑性、学习与记忆以及治疗精神紊乱方面具有重要的意义.对近期有关NR2B亚单位的结构、功能特性及其表达与调控的研究进展做一综述.  相似文献   

17.
Recently, the role of EphB receptor (EphBR) tyrosine kinase and their ephrinB ligands in pain-related neural plasticity at the spinal cord level have been identified. To test whether Src-family tyrosine kinase-dependent glutamatergic N-methyl-d-aspartate receptor NR2B subunit phosphorylation underlies lumbosacral spinal EphBR activation to mediate pelvic-urethra reflex potentiation, we recorded external urethra sphincter electromyogram reflex activity and analyzed protein expression in the lumbosacral (L(6)-S(2)) dorsal horn in response to intrathecal ephrinB2 injections. When compared with vehicle solution, exogenous ephrinB2 (5 μg/rat it)-induced reflex potentiation, in associated with phosphorylation of EphB1/2, Src-family kinase, NR2B Y1336 and Y1472 tyrosine residues. Both intrathecal EphB1 and EphB2 immunoglobulin fusion protein (both 10 μg/rat it) prevented ephrinB2-dependent reflex potentiation, as well as protein phosphorylation. Pretreatment with PP2 (50 μM, 10 μl it), an Src-family kinase antagonist, reversed the reflex potentiation, as well as Src kinase and NR2B phosphorylation. Together, these results suggest the ephrinB2-dependent EphBR activation, which subsequently provokes Src kinase-mediated N-methyl-d-aspartate receptor NR2B phosphorylation in the lumbosacral dorsal horn, is crucial for the induction of spinal reflex potentiation contributing to the development of visceral pain and/or hyperalgesia in the pelvic area.  相似文献   

18.
In animal models of diabetes mellitus, such as the streptozotocin-diabetic rat (STZ-rat), spatial learning impairments develop in parallel with a reduced expression of long-term potentiation (LTP) and enhanced expression of long-term depression (LTD) in the hippocampus. This study examined the time course of the effects of STZ-diabetes and insulin treatment on the hippocampal post-synaptic glutamate N-methyl-D-aspartate (NMDA) receptor complex and other key proteins regulating hippocampal synaptic transmission in the post-synaptic density (PSD) fraction. In addition, the functional properties of the NMDA-receptor complex were examined. One month of STZ-diabetes did not affect the NMDA receptor complex. In contrast, 4 months after induction of diabetes NR2B subunit immunoreactivity, CaMKII and Tyr-dependent phosphorylation of the NR2A/B subunits of the NMDA receptor were reduced and alphaCaMKII autophosphorylation and its association to the NMDA receptor complex were impaired in STZ-rats compared with age-matched controls. Likewise, NMDA currents in hippocampal pyramidal neurones measured by intracellular recording were reduced in STZ-rats. Insulin treatment prevented the reduction in kinase activities, NR2B expression levels, CaMKII-NMDA receptor association and NMDA currents. These findings strengthen the hypothesis that altered post-synaptic glutamatergic transmission is related to deficits in learning and plasticity in this animal model.  相似文献   

19.
20.
One major theory in learning and memory posits that the NR2B gene is a universal genetic factor that acts as rate-limiting molecule in controlling the optimal NMDA receptor''s coincidence-detection property and subsequent learning and memory function across multiple animal species. If so, can memory function be enhanced via transgenic overexpression of NR2B in another species other than the previously reported mouse species? To examine these crucial issues, we generated transgenic rats in which NR2B is overexpressed in the cortex and hippocampus and investigated the role of NR2B gene in NMDA receptor-mediated synaptic plasticity and memory functions by combining electrophysiological technique with behavioral measurements. We found that overexpression of the NR2B subunit had no effect on CA1-LTD, but rather resulted in enhanced CA1-LTP and improved memory performances in novel object recognition test, spatial water maze, and delayed-to-nonmatch working memory test. Our slices recordings using NR2A- and NR2B-selective antagonists further demonstrate that the larger LTP in transgenic hippocampal slices was due to contribution from the increased NR2B-containing NMDARs. Therefore, our genetic experiments suggest that NR2B at CA1 synapses is not designated as a rate-limiting factor for the induction of long-term synaptic depression, but rather plays a crucial role in initiating the synaptic potentiation. Moreover, our studies provide strong evidence that the NR2B subunit represents a universal rate-limiting molecule for gating NMDA receptor''s optimal coincidence-detection property and for enhancing memory function in adulthood across multiple mammalian species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号