首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
5,5-Dimethyl-1-pyrroline N-oxide (DMPO) spin trapping in conjunction with antibodies specific for the DMPO nitrone epitope was used on hydrogen peroxide-treated sperm whale and horse heart myoglobins to determine the site of protein nitrone adduct formation. The present study demonstrates that the sperm whale myoglobin tyrosyl radical, formed by hydrogen peroxide-dependent self-peroxidation, can either react with another tyrosyl radical, resulting in a dityrosine cross-linkage, or react with the spin trap DMPO to form a diamagnetic nitrone adduct. The reaction of sperm whale myoglobin with equimolar hydrogen peroxide resulted in the formation of a myoglobin dimer detectable by electrophoresis/protein staining. Addition of DMPO resulted in the trapping of the globin radical, which was detected by Western blot. The location of this adduct was demonstrated to be at tyrosine-103 by MS/MS and site-specific mutagenicity. Interestingly, formation of the myoglobin dimer, which is known to be formed primarily by cross-linkage of tyrosine-151, was inhibited by the addition of DMPO.  相似文献   

3.
We have reinvestigated the biochemistry of H2O2-induced Cu,Zn-superoxide dismutase (SOD1)-centered radicals, detecting them by immuno-spin trapping. These radicals are involved in H2O2-induced structural and functional damage to SOD1, and their mechanism of generation depends on copper and/or (bi)carbonate (i.e., CO2, CO3(-2), or HCO3-). First, in the absence of DTPA and (bi)carbonate, Cu(II) was partially released and rebound at His, Cys, and Tyr residues in SOD1 with the generation of protein-copper-bound oxidants outside the SOD1 active site by reaction with excess H2O2. These species produced immuno-spin trapping-detectable SOD1-centered radicals associated with H2O2-induced active site ( approximately 5 and approximately 10 kDa fragments) and non-active site (smearing between 3 and 16 kDa) copper-dependent backbone oxidations and subsequent fragmentation of SOD1. Second, in the presence of DTPA, which inhibits H2O2-induced SOD1 non-active site fragmentation, (bi)carbonate scavenged the enzyme-bound oxidant at the SOD1 active site to produce the carbonate radical anion, CO3*-, thus protecting against active site SOD1 fragmentation. CO3*- diffuses and produces side chain oxidations forming DMPO-trappable radical sites outside the enzyme active site. Both mechanisms for generating immuno-spin trapping-detectable SOD1-centered radicals were susceptible to inhibition by cyanide and enhanced at high pH values. In addition, (bi)carbonate enhanced H2O2-induced SOD1 turnover as demonstrated by an enhancement in oxygen evolution and SOD1 inactivation. These results help clarify the free radical chemistry involved in the functional and structural oxidative damage to SOD1 by H2O2 with the intermediacy of copper- and CO3*--mediated oxidations.  相似文献   

4.
Assessment of tissue free radical production is routinely accomplished by measuring secondary by-products of redox reactions and/or diminution of key antioxidants such as reduced thiols. However, immuno-spin trapping, a newly developed immunohistochemical technique for detection of free radical formation, is garnering considerable interest as it allows for the visualization of 5,5-dimethyl-1-pyrroline N-oxide (DMPO)-adducted molecules. Yet, to date, immuno-spin trapping reports have utilized in vivo models in which successful detection of free radical adducts required exposure to lethal levels of oxidative stress not reflective of chronic inflammatory disease. To study the extents and anatomic locations of more clinically relevant levels of radical formation, we examined tissues from high-fat (HF) diet-fed mice, a model of low-grade chronic inflammation known to demonstrate enhanced rates of reactive species production. Mice subjected to 20 weeks of HF diet displayed increased free radical formation (anti-DMPO mean fluorescence staining) in skeletal muscle (0.863±0.06 units vs 0.512±0.07 units), kidney (0.076±0.0036 vs 0.043±0.0025), and liver (0.275±0.012 vs 0.135±0.014) compared to control mice fed normal laboratory chow (NC). Western blot analysis of tissue homogenates confirmed these results showing enhanced DMPO immunoreactivity in HF mice compared to NC samples. The obesity-related results were confirmed in a rat model of pulmonary hypertension and right heart failure in which intense immunodetectable radical formation was observed in the lung and right ventricle of monocrotaline-treated rats compared to saline-treated controls. Combined, these data affirm the utility of immuno-spin trapping as a tool for in vivo assessment of altered extents of macromolecule oxidation to radical intermediates under chronic inflammatory conditions.  相似文献   

5.
Chondrocytes have been shown to produce superoxide and hydrogen peroxide, suggesting possible formation of hydroxyl radical in these cells. In this study, we used electron spin resonance/spin trapping technique to detect hydroxyl radicals in chondrocytes. We found that hydroxyl radicals could be detected as α-hydroxyethyl spin trapped adduct of 4-pyridyl 1-oxide N-tert-butylnitrone (4-POBN) in chondrocytes stimulated with phorbol 12-myristate 13-acetate in the presence of ferrous ion. The formation of hydroxyl radical appears to be mediated by the transition metal-catalyzed Haber-Weiss reaction since no hydroxyl radical was detected in the absence of exogenous iron. The hydroxyl radical formation was inhibited by catalase but not by superoxide dismutase, suggesting that the hydrogen peroxide is the precursor. Cytokines, IL-1 and TNF enhanced the hydroxyl radical formation in phorbol 12-myristate 13-acetate treated chondrocytes. Interestingly, hydroxyl radical could be detected in unstimulated fresh human and rabbit cartilage tissue pieces in the presence of iron. These results suggest that the formation of hydroxyl radical in cartilage could play a role in cartilage matrix degradation.  相似文献   

6.
Oxidative stress-related damage to the DNA macromolecule produces lesions that are implicated in various diseases. To understand damage to DNA, it is important to study the free radical reactions causing the damage. Measurement of DNA damage has been a matter of debate as most of the available methods measure the end product of a sequence of events and provide limited information on the initial free radical formation. We report a measurement of free radical damage in DNA induced by a Cu(II)-H(2)O(2) oxidizing system using immuno-spin trapping supplemented with electron paramagnetic resonance. In this investigation, the short-lived radical generated is trapped by the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) immediately upon formation. The DMPO adduct formed is initially electron paramagnetic resonance active, but is subsequently oxidized to the stable nitrone adduct, which can be detected and visualized by immuno-spin trapping and has the potential to be further characterized by other analytical techniques. The radical was found to be located on the 2'-deoxyadenosine (dAdo) moiety of DNA. The nitrone adduct was repaired on a time scale consistent with DNA repair. In vivo experiments for the purpose of detecting DMPO-DNA nitrone adducts should be conducted over a range of time in order to avoid missing adducts due to the repair processes.  相似文献   

7.
Neutrophils stimulated with phorbol myristate acetate (PMA) in the presence of the spin trap 5,5-dimethyl-1-pyrroline 1-oxide (DMPO), dimethyl sulfoxide, and diethylenetriaminepentaacetic acid (DETAPAC) fail to generate hydroxyl radical (.OH), detected as the methyl spin-trapped adduct of DMPO (2,2,5-trimethyl-1-pyrrolidinyloxyl, DMPO-CH3), unless ferric salts (Fe3+) are also added (Britigan, B. E., Rosen, G. M., Chai, Y., and Cohen, M. S. (1986) J. Biol. Chem. 261, 4426-4431). Even then, .OH formation wanes in spite of ongoing superoxide (O2-.) production. In contrast, ferric salt supplementation of a hypoxanthine/xanthine oxidase O2-. generating system containing DETAPAC produces continual .OH, suggesting that neutrophils limit the formation of this free radical. To evaluate this hypothesis, neutrophil cytoplasts (largely devoid of granules but able to generate O2-.) were stimulated with PMA in the presence of Fe3+, DETAPAC, dimethyl sulfoxide, and DMPO. This resulted in continual production of DMPO-CH3. In the presence of dimethyl sulfoxide, HL-60 (promyelocytic) cells differentiate into cells similar in morphology and O2-. generating capacity to neutrophils. However, their granules lack the iron-binding protein lactoferrin (LF). Ferric salt supplementation of HL-60 cells stimulated with PMA yielded an EPR spectrum similar to cytoplasts. Supernatant obtained following PMA-induced neutrophil degranulation (which releases LF extracellularly) suppressed DMPO-CH3 formation by the hypoxanthine/xanthine oxidase/Fe3+/DETAPAC system. Anti-LF antibody, but not anti-transferrin antibody, prevented stimulated neutrophil supernatant inhibition of hypoxanthine/xanthine oxidase/Fe3+/DETAPAC-mediated .OH formation. Similarly, neutrophils stimulated with PMA in the presence of Fe3+, DETAPAC, and anti-LF antibody (but not anti-transferrin antibody) demonstrated continual formation of .OH. Neutrophil degranulation of LF limits Fe3+-catalyzed .OH formation which in vivo could protect tissue from possible .OH-mediated injury.  相似文献   

8.
The cyanyl radical was formed during the oxidation of potassium or sodium cyanide by horseradish peroxidase, lactoperoxidase, chloroperoxidase, NADH peroxidase, or methemoglobin in the presence of hydrogen peroxide. The spin adducts of the cyanyl radical with 5,5-dimethyl-1-pyrroline-N-oxide and N-tert-butyl-alpha-phenylnitrone were quite stable at neutral pH. The identity of these spin adducts could be demonstrated using 13C-labeled cyanide and by comparison with the spin adducts of the formamide radical, a hydrolysis product of the cyanyl radical adduct. The enzymatic conversion of cyanide to cyanyl radical by peroxidases should be considered in addition to its well-known role as a metal ligand. Furthermore, since cyanide is used routinely as an inhibitor of peroxidases, some consideration should be given to the biochemical consequences of this formation of the cyanyl radical by the catalytic activity of these enzymes.  相似文献   

9.
Aqueous solutions of cyanide react with hydrogen peroxide/horseradish peroxidase and form the cyanyl radical, which can be trapped by 2-methyl-2-nitrosopropane (t-nitrosobutane, tNB) at pH 9.8. At lower pH a variety of radical adducts are formed; at higher pH, the main product was the spin adduct of the formamide radical with tNB. The use of deuterated tNB and 15N-labeled potassium cyanide allowed the observation of the very small nitrogen coupling of this radical adduct. Experiments using 3,5-dibromo-4-nitrosobenzenesulfonic acid (DBNBS) as the spin trap yielded only the formamide radical adduct, which was identified by an independent synthesis starting from formamide. Both hydrogen splittings of its amino group could be resolved using deuterated DBNBS as the spin trap.  相似文献   

10.
A mixture of ADP, ferrous ions, and hydrogen peroxide (H2O2) generates hydroxyl radicals (OH) that attack the spin trap DMPO (5,5-dimethyl-pyrollidine-N-oxide) to yield the hydroxyl free radical spin-adduct, degrade deoxyribose and benzoate with the release of thiobarbituric acid-reactive material, and hydroxylate benzoate to give fluorescent products. Inhibition studies, with scavengers of the OH radical, suggest that the behavior of iron-ADP in the reaction is complicated by the formation of ternary complexes with certain scavengers and detector molecules. In addition, iron-ADP reacting with H2O2 appears to release a substantial number of OH radicals free into solution. During the generation of OH radicals the ADP molecule was, as expected, damaged by the iron bound to it. Damage to the iron ligand in this way is not normally monitored in reaction systems that use specific detector molecules for OH radical damage. Under certain reaction conditions the ligand may be the major recipient of OH radical damage thereby leading to the incorrect assumption that the iron ligand is a poor Fenton reactant.  相似文献   

11.
《Autophagy》2013,9(7):1037-1038
In a recent study, we investigated the relationship between inclusion body (IB) formation and the activity of the ubiquitin-

proteasome system (UPS) in a primary neuron model of Huntington disease. We followed individual neurons over the

course of days and monitored the level of mutant huntingtin (htt) (which causes Huntington disease), IB formation, UPS function,

and neuronal toxicity. The accumulation of UPS substrates and neuronal toxicity increased with increasing levels of proteasome

inhibition. The UPS was more impaired in neurons that subsequently formed IBs than in those that did not; however, after IBs

formed, UPS function improved. These findings suggest that IB formation is a protective cellular response mediated in part by

increased degradation of intracellular protein.  相似文献   

12.
In an effort to understand the mechanism of radical formation on heme proteins, the formation of radicals on hemoglobin was initiated by reaction with hydrogen peroxide in the presence of the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO). The DMPO nitrone adducts were analyzed by mass spectrometry (MS) and immuno-spin trapping. The spin-trapped protein adducts were then subjected to tryptic digestion and MS analyses. When hemoglobin was reacted with hydrogen peroxide (H(2)O(2)) in the presence of DMPO, a DMPO nitrone adduct could be detected by immuno-spin trapping. To verify that DMPO adducts of the protein free radicals had been formed, the reaction mixtures were analyzed by flow injection electrospray ionization mass spectrometry (ESI/MS). The ESI mass spectrum of the hemoglobin/H(2)O(2)/DMPO sample shows one adduct each on both the alpha chain and the beta chain of hemoglobin which corresponds in mass to the addition of one DMPO molecule. The nature of the radicals formed on hemoglobin was explored using proteolysis techniques followed by liquid chromatography/mass spectrometry (LC/MS) and tandem mass spectrometry (MS/MS) analyses. The following sites of DMPO addition were identified on hemoglobin: Cys-93 of the beta chain, and Tyr-42, Tyr-24, and His-20 of the alpha chain. Because of the pi-pi interaction of Tyr-24 and His-20, the unpaired electron is apparently delocalized on both the tyrosine and histidine residue (pi-pi stacked pair radical).  相似文献   

13.
14.
15.
Role of oxygen during horseradish peroxidase turnover and inactivation   总被引:1,自引:0,他引:1  
Horseradish peroxidase catalyzed oxidation of phenol has been reinvestigated to determine the requirements of facile enzyme autoinactivation. Turnover of this peroxidase was monitored spectrophotometrically at 400 nm and found dependent on the concentration of phenol and hydrogen peroxide. The inactivation of the peroxidase required both substrates, phenol and H2O2, but surprisingly was also potentiated by molecular oxygen. Exclusion of diffusible superoxide or hydroxyl radicals had slight effect on product formation or loss of catalytic activity. A mechanism is proposed to explain the unanticipated role of oxygen during enzyme inactivation.  相似文献   

16.
Using the electron spin resonance/spin trapping system, 4-pyridyl 1-oxide N-tert-butylnitrone (4-POBN)/ethanol, hydroxyl radical was detected as the alpha-hydroxyethyl spin trapped adduct of 4-POBN, 4-POBN-CH(CH3)OH, from phorbol 12-myristate 13-acetate-stimulated human neutrophils and monocytes without the addition of supplemental iron. 4-POBN-CH(CH3)OH was stable in the presence of a neutrophil-derived superoxide flux. Hydroxyl radical formation was inhibited by treatment with superoxide dismutase, catalase, and azide. Treatment with a series of transition metal chelators did not appreciably alter 4-POBN-CH(CH3)OH, which suggested that hydroxyl radical generation was mediated by a mechanism independent of the transition metal-catalyzed Haber-Weiss reaction. Kinetic differences between transition metal-dependent and -independent mechanisms of hydroxyl radical generation by stimulated neutrophils were demonstrated by a greater rate of 4-POBN-CH(CH3)-OH accumulation in the presence of supplemental iron. Detection of hydroxyl radical from stimulated monocyte-derived macrophages, which lack myeloperoxidase, required the addition of supplemental iron. The addition of purified myeloperoxidase to an enzymatic superoxide generating system resulted in the detection of hydroxyl radical that was dependent upon the presence of chloride and was inhibited by superoxide dismutase, catalase, and azide. These findings implicated the reaction of hypochlorous acid and superoxide to produce hydroxyl radical. 4-POBN-CH(CH3)OH was not observed upon stimulation of myeloperoxidase-deficient neutrophils, whereas addition of myeloperoxidase to the reaction mixture resulted in the detection of hydroxyl radical. These results support the ability of human neutrophils and monocytes to generate hydroxyl radical through a myeloperoxidase-dependent mechanism.  相似文献   

17.
Thyroidal particulate protein with peroxidase activity has been studied to determined wetherr it could be induced to form a sulfenyl iodide, postulated as a reactive intermediate in the iodination of tyrosine. The protein was solubilized with digitonin and purified by tryptic digestion and filtration through Sephadex G-200. When supplemented with H2O2 it catalyzed the oxidation of guaiacol iodide or thiourea at 37°C. With iodide as substrate the product was an iodoprotein. In the absence of H2O2 the protein did not bind 131I? or thio[14C] urea unless it first had been dialyzed against [36Cl] chlorinated buffer. During dialysis a portion of the 36Cl from the dialysis medium was bound by protein. Subsequent binding of iodide or thiourea was accompanied by loss of protein-bound 36Cl.Addition of iodide to dialyzed protein at 4°C resulted in formation of a yellow compound with maximum absorbance at 355 nm. It was postulated to be a sulfenyl periodide on the basis of its absorption spectrum and its behavior with thio[14C] urea and 2-mercaptoethanol. The stability of the colored species was dependent on temperature and concentration of iodide. Disappearance of color as the solution was warmed was accompanied by formation of iodo-protein. Predialysis of the protein against p-chloromercuribenzoate, but not 2-mercaptoethanol or bisulfite, prevented the formation of the yellow proteiniodide species, indicating that a reactive sulfhydryl group was involved in the reaction. It was concluded that a particulate protein closely asscociated with thyroid peroxidase could be induced by non-enzymatic means to form a species which has properties consistent with those of a sulfenyl iodide. Further investigation will be required to determine whether the same protein-iodine species can be identified during the peroxidase-catalyzed oxidation of iodide.  相似文献   

18.
The peroxidase from Coprinus cinereus (CPX) catalyzed oxidative oligomerization of 4-chloroaniline (4-CA) forming several products: N-(4-chlorophenyl)-benzoquinone monoamine (dimer D), 4,4'-dichloroazobenzene (dimer E); 2-(4-chloroanilino)-N-(4-chlorophenyl)-benzoquinone (trimer F); 2-amino-5-chlorobenzoquinone-di-4-chloroanil (trimer G); 2-(4-chloroanilino)-5-hydroxybenzoquinone-di-4-chloroanil (tetramer H) and 2-amino-5-(-4-chlroanilino)-benzoquinone-di-4-chloroanil (tetramer 1). In the presence of 4-CA and H2O2, CPX was irreversibly inactivated within 10 min. Inactivation of CPX in the presence of H2O2 was a time-dependent, first-order process when the concentration of 4-CA was varied between 0 and 2.5 mM. The apparent dissociation constant (Ki) for CPX and 4-CA was 0.71 mM. The pseudo-first order rate constant for inactivation (k(inact)), was 1.15 x 10(-2) s(-1). Covalent incorporation of 20 mole 14C-4-CA per mole of inactivated CPX was observed. The partition ratio was about 2200 when either 4-CA or H2O2 was used as the limiting substrate. These results show that 4-CA is a metabolically activated inactivator (i.e. a suicide substrate). Unmodified heme and hydroxymethyl heme were isolated from native, 4-CA-inactivated and H2O2-incubated CPX. Inactivation resulted in significant losses in both heme contents. Analysis of tryptic peptides from 4-CA-inactivated CPX by MALDI-TOF/ MS and UV-VIS spectrophotometry suggested that trimer G and tetramer H were the major 4-CA derivatives that were covalently bound, including to a peptide (MGDAGF-SPDEVVDLLAAHSLASQEGLNSAIFR) containing the heme binding site. These studies show that heme destruction and covalent modification of the polypeptide chain are both important for the inactivation of CPX. These results were compared with similar studies on 4-CA-inactivated horseradish peroxidase (HRP) and bovine lactoperoxidase (LPO) during the oxidation of 4-CA.  相似文献   

19.
Rat liver microsomal incubation systems containing the free radical spin trap, phenyl-t-butyl nitrone, as well as an NADPH generating system and [13C]CCl4 (90 atom % 13C) produce electron spin resonance spectra consistent with that expected for a trichloromethyl-phenyl-t-butyl nitrone adduct. This same spectrum is observed in a lipid extract of the liver from a rat orally administered [13C]CCl4 as well as in a solution of phenyl-t-butyl nitrone and [13C]CCl4 irradiated with ultraviolet light.  相似文献   

20.
Malondialdehyde, a product of lipid peroxidation, and acetylacetone undergo one-electron oxidation by peroxidase enzymes to form free radical metabolites, which were detected with ESR using the spin-trapping technique. The structures of the radical adducts were assigned using isotope substitution. With both malondialdehyde and acetylacetone and the enzymes myeloperoxidase and chloroperoxidase, carbon-centered radicals were detected. With horseradish peroxidase, a carbon-centered radical was initially trapped and then disappeared with the concomitant appearance of an iminoxyl radical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号