首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An efficient insertion mutagenesis strategy for bacterial genomes based on the phage Mu DNA transposition reaction was developed. Incubation of MuA transposase protein with artificial mini-Mu transposon DNA in the absence of divalent cations in vitro resulted in stable but inactive Mu DNA transposition complexes, or transpososomes. Following delivery into bacterial cells by electroporation, the complexes were activated for DNA transposition chemistry after encountering divalent metal ions within the cells. Mini-Mu transposons were integrated into bacterial chromosomes with efficiencies ranging from 10(4) to 10(6) CFU/microg of input transposon DNA in the four species tested, i.e., Escherichia coli, Salmonella enterica serovar Typhimurium, Erwinia carotovora, and Yersinia enterocolitica. Efficiency of integration was influenced mostly by the competence status of a given strain or batch of bacteria. An accurate 5-bp target site duplication flanking the transposon, a hallmark of Mu transposition, was generated upon mini-Mu integration into the genome, indicating that a genuine DNA transposition reaction was reproduced within the cells of the bacteria studied. This insertion mutagenesis strategy for microbial genomes may be applicable to a variety of organisms provided that a means to introduce DNA into their cells is available.  相似文献   

2.
3.
All organisms contain transposons with the potential to disrupt and rearrange genes. Despite the presence of these destabilizing sequences, some genomes show remarkable stability over evolutionary time. Do bacteria defend the genome against disruption by transposons? Phage Mu replicates by transposition and virtually all genes are potential insertion targets. To test whether bacteria limit Mu transposition to specific parts of the chromosome, DNA arrays of Salmonella enterica were used to quantitatively measure target site preference and compare the data with Escherichia coli. Essential genes were as susceptible to transposon disruption as non‐essential ones in both organisms, but the correlation of transposition hot spots among homologous genes was poor. Genes in highly transcribed operons were insulated from transposon mutagenesis in both organisms. A 10 kb cold spot on the pSLT plasmid was near parS, a site to which the ParB protein binds and spreads along DNA. Deleting ParB erased the plasmid cold spot, and an ectopic parS site placed in the Salmonella chromosome created a new cold spot in the presence of ParB. Our data show that competition between cellular proteins and transposition proteins on plasmids and the chromosome is a dominant factor controlling the genetic footprint of transposons in living cells.  相似文献   

4.
The small sizes of the DNA fragments transduced by lysates of phage Mu and of mixed lysates of Mu and mini-Mu18A-1 (an internally deleted Mu phage) provide a method for the selection of insertions of transposon Tn10 located very close to givenEscherichia coli genes. Generalized transduction with Mu lysates selected for those insertions located within 38 kilobase pairs of the gene of interest whereas insertions located within about half that distance are directly selected by use of mini-Mu phages. Use of these transduction systems avoids screening of individual colonies by phage P1 transduction for those transposon insertions closely linked to a given gene. Such insertions are most useful for localized mutagenesis and for in vitro molecular cloning.  相似文献   

5.
A method for construction of bacterial strains with multiple DNA inserted into their chromosomes has been developed based on the mini-Mu transposon and FLP/FRT recombination. Exogenous DNA can be integrated by Mu transposition with an FRT cassette containing selection marker and conditional replicative origin (R6Kγori). Subsequently, with the introduction of a helper plasmid bearing gene of FLP recombinase, drug-resistant selection marker is excised from the chromosome. Cells cured of the helper plasmid can undergo the next cycle of transposition and excision of selection marker. Each cycle can add further foreign gene(s) to the chromosome. As an example, resistance genes of chloramphenicol, tetracycline, and gentamicin were successively integrated into the chromosome of Escherichia coli BW25113 by three cycles of insertion and excision as described above. This method proved to be simple and time-saving, which could be applicable to a variety of microorganisms.  相似文献   

6.
Site-directed transposon integration in human cells   总被引:2,自引:1,他引:1       下载免费PDF全文
The Sleeping Beauty (SB) transposon is a promising gene transfer vector that integrates nonspecifically into host cell genomes. Herein, we attempt to direct transposon integration into predetermined DNA sites by coupling a site-specific DNA-binding domain (DBD) to the SB transposase. We engineered fusion proteins comprised of a hyperactive SB transposase (HSB5) joined via a variable-length linker to either end of the polydactyl zinc-finger protein E2C, which binds a unique sequence on human chromosome 17. Although DBD linkage to the C-terminus of SB abolished activity in a human cell transposition assay, the N-terminal addition of the E2C or Gal4 DBD did not. Molecular analyses indicated that these DBD-SB fusion proteins retained DNA-binding specificity for their respective substrate molecules and were capable of mediating bona fide transposition reactions. We also characterized transposon integrations in the presence of the E2C-SB fusion protein to determine its potential to target predefined DNA sites. Our results indicate that fusion protein-mediated tethering can effectively redirect transposon insertion site selection in human cells, but suggest that stable docking of integration complexes may also partially interfere with the cut-and-paste mechanism. These findings illustrate the feasibility of directed transposon integration and highlight potential means for future development.  相似文献   

7.
Summary We compared the transducing properties of Mucts62 and Mucts62/mini-Mu lysates, using Mu immune and non immune Rec+ and recA recipient strains. The Mu/mini-Mu lysates transduced all bacterial markers tested 10 times more efficiently than the Mucts62 lysates in Rec+ recipients. Most of the transductants obtained after infection with the Mu/mini-Mu lysates result from the substitution of the mutated gene of the recipient by the wild type allele from the donor, most probably carried on the gigantic variable end linked to the mini-Mu genome.Moreover the Mu/mini-Mu lysates gave a new type of Rec-independent transduction that we called mini-muduction. Mini-muduction requires the activity of Mu gene A and provides transductants which carry the transduced marker surrounded by two mini-Mu genomes similarly oriented, and inserted at random location in the recipient chromosome. The mini-Mu/transduced DNA/mini-Mu structures are able to transpose spontaneously, for instance into a transmissible plasmid, in the presence of Mu gene A product.  相似文献   

8.
Bacteriophage Mu in vitro transposition constitutes a versatile tool in molecular biology, with applications ranging from engineering of single genes or proteins to modification of genome segments or entire genomes. A new strategy was devised on the basis of Mu transposition that via a few manipulation steps simultaneously generates a nested set of gene constructions encoding deletion variants of proteins. C-terminal deletions are produced using a mini-Mu transposon that carries translation stop signals close to each transposon end. Similarly, N-terminal deletions are generated using a transposon with appropriate restriction sites, which allows deletion of the 5′-distal part of the gene. As a proof of principle, we produced a set of plasmid constructions encoding both C- and N-terminally truncated variants of yeast Mso1p and mapped its Sec1p-interacting region. The most important amino acids for the interaction in Mso1p are located between residues T46 and N78, with some weaker interactions possibly within the region E79–N105. This general-purpose gene truncation strategy is highly efficient and produces, in a single reaction series, a comprehensive repertoire of gene constructions encoding protein deletion variants, valuable in many types of functional studies. Importantly, the methodology is applicable to any protein-encoding gene cloned in an appropriate vector.  相似文献   

9.
The advantages of phage Mu transposition-based systems for the chromosomal editing of plasmid-less strains are reviewed. The cis and trans requirements for Mu phage-mediated transposition, which include the L/R ends of the Mu DNA, the transposition factors MuA and MuB, and the cis/trans functioning of the E element as an enhancer, are presented. Mini-Mu(LR)/(LER) units are Mu derivatives that lack most of the Mu genes but contain the L/R ends or a properly arranged E element in cis to the L/R ends. The dual-component system, which consists of an integrative plasmid with a mini-Mu and an easily eliminated helper plasmid encoding inducible transposition factors, is described in detail as a tool for the integration/amplification of recombinant DNAs. This chromosomal editing method is based on replicative transposition through the formation of a cointegrate that can be resolved in a recombination-dependent manner. (E-plus)- or (E-minus)-helpers that differ in the presence of the trans-acting E element are used to achieve the proper mini-Mu transposition intensity. The systems that have been developed for the construction of stably maintained mini-Mu multi-integrant strains of Escherichia coli and Methylophilus methylotrophus are described. A novel integration/amplification/fixation strategy is proposed for consecutive independent replicative transpositions of different mini-Mu(LER) units with “excisable” E elements in methylotrophic cells.  相似文献   

10.
The effect of flanking host sequences on the cleavage step of the in vitro Mu DNA strand transfer reaction was investigated. Insertion of a mini-Mu molecule into certain sites in pUC19 results in insertions that demonstrate a decreased ability to form Type 1 complexes in subsequent rounds of transposition. Similarly, changes in the flanking host sequences directly adjacent to the Mu ends by in vitro mutagenesis can also result in Type 1-deficient mini-Mu molecules. Further examination of the inhibition revealed that Type 1 deficient mini-Mu molecules are capable of forming uncut synaptic complexes at normal levels but are compromised in their ability to serve as substrates for phosphodiester bond hydrolysis at the Mu ends. This cleavage defect can be overcome by addition of the Mu B protein and ATP to the reaction. Our data suggest that one of the roles of the B protein may be to provide a mechanism whereby Mu prophages with inhibitory flanking sequences can overcome this obstacle and avoid being trapped at unproductive locations.  相似文献   

11.
A Tn5 transposition vector, pMOD-tet-egfp, was constructed and used for the random insertional mutagenesis of Bacillus pumilus. Various parameters were investigated to increase the transformation efficiency B. pumilus DX01 via Tn5 transposition complexes (transposome): bacterial growth phase, type of electroporation buffer, electric field strength, and recovery medium. Transformation efficiency was up to 3?×?104?transformants/μg of DNA under the optimized electroporation conditions, and a total of 1,467 gfp-tagged transformants were obtained. Fluorescence-activated cell sorting analysis showed that all gfp-tagged bacterial cells expressed GFP, indicating that foreign DNA has been successfully integrated into the genome of B. pumilus and expressed. Finally, flanking DNA sequences were isolated from several transformants and colonization of rice roots by B. pumilus DX01 was also studied. The method developed here will be useful for creating an insertion mutant library of gram-positive bacteria, thus facilitating their molecular genetic and cytological studies.  相似文献   

12.
Transposon mutagenesis is a tool that is widely used for the identification of genes involved in the virulence of bacteria. Until now, transposon mutagenesis in Clostridium perfringens has been restricted to the use of Tn916-based methods with laboratory reference strains. This system yields primarily multiple transposon insertions in a single genome, thus compromising its use for the identification of virulence genes. The current study describes a new protocol for transposon mutagenesis in C. perfringens, which is based on the bacteriophage Mu transposition system. The protocol was successfully used to generate a single-insertion mutant library both for a laboratory strain and for a field isolate. Thus, it can be used as a tool in large-scale screening to identify virulence genes of C. perfringens.Clostridium perfringens is a gram-positive, anaerobic bacterium that forms heat-resistant spores. It is widespread in the soil and commonly found in the gastrointestinal tract of mammals. It has been implicated in several medical conditions in humans, ranging from mild food poisoning to necrotic enteritis and gas gangrene. C. perfringens strains also cause a variety of important diseases in domestic animals, including several enteric syndromes, such as enterotoxemia in cattle, sheep, and pigs, necrotic enteritis in poultry, and typhocolitis in equines (17, 40).Understanding the pathogenesis of these infections is of crucial importance for the development of new tools for the prevention and control of C. perfringens-related diseases. Genetic modification is a valuable approach to identify new virulence factors and to study their role in the pathogenesis of C. perfringens.Since the 1980s, several tools for manipulation of C. perfringens at the molecular level have been developed (1, 5, 28, 35, 38). Among these tools, transposon mutagenesis is a method that is widely used for identification of virulence genes. Until now, the only reproducible method for transposon mutagenesis in C. perfringens was based on Tn916, a tetracycline resistance-encoding conjugative transposon originally isolated from Enterococcus faecalis (10, 11, 13). Tn916 has been used extensively for transposon mutagenesis due to its broad host range and has been proven to be valuable for the identification of genes in C. perfringens (3, 7, 22). Nevertheless, this method has major disadvantages; multiple Tn916 insertion events occur with an incidence of 65% to 75%, severely complicating identification of genes responsible for phenotype changes (3, 7, 19). Furthermore, Tn916 is still active after insertion, resulting in unstable mutants (6, 39, 42). To our knowledge, generation of Tn916-derived transposon mutants in C. perfringens field strains has never been described.Although a variety of transposon mutagenesis methods are available for gram-positive bacteria (4, 37, 41, 43), the inherent species nonspecificity, as well as the lack of mobility of the integrated transposon, makes the bacteriophage Mu-based transposon delivery system a system of choice for a variety of species (16, 26, 46). The Mu transposition approach includes in vitro assembly of a complex between the transposon DNA and the transposase enzyme, the transpososome, followed by delivery of the transpososome into the recipient cells. Once inside a cell, the Mu transpososome becomes activated in the presence of divalent cations, resulting in genomic integration of the delivered transposon. The bacteriophage Mu transposition system is also functional in vitro (15, 32, 33), in contrast to the Tn916 mutagenesis strategy, which is restricted to transposon mobilization in vivo following conjugation or electroporation. Under the optimal in vitro conditions, the Mu transposition reaction requires only the MuA transposase, a mini-Mu transposon, and target DNA as macromolecular components (15).In this study, a novel protocol is described for transposon mutagenesis in C. perfringens that exploits the bacteriophage Mu transposition system. To our knowledge, this report is the first report describing a mutagenesis method generating single-insertion transposon mutants in laboratory and field isolates of C. perfringens. This method is important for the identification of C. perfringens virulence factors involved in the numerous diseases caused by this bacterium.  相似文献   

13.
Transposons are mobile genetic elements that are part of the genomic DNA of numerous organisms and belong to two classes. Unlike class I transposons, class II DNA transposons do not use the stage of RNA synthesis in their transition; they perform it by the cut-and-paste mechanism or with a replicative transposition. The integration of a DNA transposon in a new site results in the duplication of a target sequence on either side of a transposon, and its excision is, as a rule, associated with insertions and deletions. The piggyBac transposon isolated from the Trichoplusia ni moth differs from other mobile elements of its class. Due to its unique ability to leave no traces after excision from an insertion site and to perform successful transposition and transference of large DNA fragments, piggyBac is a convenient tool for the development of gene engineering approaches. The TTAA sequence serves as a target site for transposon integration: insertion in the AT-rich DNA regions is more frequent. The ability of piggyBac to be transferred to a new area independently of the cell apparatus and to restore a DNA site without error after excision lies in the mechanism of its transposition, which is discussed in detail in the present review. Along with other transposons and viruses, the piggyBac transposon is widely used in the transgenesis of various organisms; it also finds application in insertion mutagenesis and gene therapy.  相似文献   

14.
Mini-Mu transduction: cis-inhibition of the insertion of Mud transposons   总被引:4,自引:0,他引:4  
Mud (mini-Mu) transposons are defective phage Mu genomes that conserve the Mu ends. The transduction of Mud transposons is strictly dependent on Mu complementation, inefficient, and affected by modifications in the Mud internal sequences. The transduction of Mud transposons depends on transposition, which appears to be low, relative to wild-type Mu. Insertions of Mud into a plasmid can be frequently recovered among transductants; new Mud insertions into plasmids that already have both Mu ends, or just one, are rarely found. This suggests that the presence of Mu ends "immunizes" the plasmid against further insertion. This phenomenon may be similar to the transposition immunity of Tn3.  相似文献   

15.
Bacteriophage Mu has one of the best studied, most efficient and largest transposition machineries of the prokaryotic world. To harness this attractive integration machinery for use in mammalian cells, we cloned the coding sequences of the phage factors MuA and MuB in a eukaryotic expression cassette and fused them to a FLAG epitope and a SV40-derived nuclear localization signal. We demonstrate that these N-terminal extensions were sufficient to target the Mu proteins to the nucleus, while their function in Escherichia coli was not impeded. In vivo transposition in mammalian cells was analysed by co-transfection of the MuA and MuB expression vectors with a donor construct, which contained a miniMu transposon carrying a Hygromycin-resistance marker (HygR). In all co-transfections, a significant but moderate (up to 2.7-fold) increase in HygR colonies was obtained if compared with control experiments in which the MuA vector was omitted. To study whether the increased efficiency was the result of bona fide Mu transposition, integrated vector copies were cloned from 43 monoclonal and one polyclonal cell lines. However, in none of these clones, the junction between the vector and the chromosomal DNA was localized precisely at the border of the Att sites. From our data we conclude that expression of MuA and MuB increases the integration of miniMu vectors in mammalian cells, but that this increase is not the result of bona fide Mu-induced transposition.  相似文献   

16.
[目的]:研究与铜绿假单胞菌运动能力相关的基因.[方法]:以一株临床分离的铜绿假单胞菌PA68做受体菌,应用人工Mu转座技术建立了库容为2000的突变子文库,从中筛选出泳动能力和蹭动能力丧失或减弱的突变子,通过基因克隆、测序,GenBankBLAST比对测序结果,互补基因表达确定与铜绿假单胞菌运动能力相关的基因.[结果]:突变子Y46在丧失了泳动运动能力的同时,蹭动能力也发生了减弱.在Y46突变子中,Mu转座子插入到功能完全未知的基因PA1550中.对极性效应及PA1550所在操纵子的分析表明,Mu转座子对插入点下游的基因的转录并不造成影响.[结论]:PA1550与铜绿假单胞菌的泳动及蹭动能力有关.  相似文献   

17.
Genomic parasites have evolved distinctive lifestyles to optimize replication in the context of the genomes they inhabit. Here, we introduced new DNA into eukaryotic cells using bacteriophage Mu DNA transposition complexes, termed ‘transpososomes’. Following electroporation of transpososomes and selection for marker gene expression, efficient integration was verified in yeast, mouse and human genomes. Although Mu has evolved in prokaryotes, strong biases were seen in the target site distributions in eukaryotic genomes, and these biases differed between yeast and mammals. In Saccharomyces cerevisiae transposons accumulated outside of genes, consistent with selection against gene disruption. In mouse and human cells, transposons accumulated within genes, which previous work suggests is a favorable location for efficient expression of selectable markers. Naturally occurring transposons and viruses in yeast and mammals show related, but more extreme, targeting biases, suggesting that they are responding to the same pressures. These data help clarify the constraints exerted by genome structure on genomic parasites, and illustrate the wide utility of the Mu transpososome technology for gene transfer in eukaryotic cells.  相似文献   

18.
19.
Preformed transposase-transposon complexes called Transposomes have been electroporated into bacterial cells. The magnesium dependent process of insertion of the transposable element into bacterial chromosomal DNA occurs in vivo. The transposition efficiency of a Transposome containing a kanamycin marker was between 1.0×104and 1.0×107kanamycin resistant clones per microgram of transposon DNA in three gram-negative enteric bacterial species. Transposon integration sites were examined by direct genome sequencing of chromosomal DNA. Genomic DNA was isolated from transposition clones and directly cycle sequenced with primers specific for the ends of the transposon. The precise location of genome interruption for a transposition clone was identified by homology to known genes or sequences. Mutant phenotypes were rapidly correlated with genomic insertions sites.  相似文献   

20.
A phage Mu-driven two-plasmid system for DNA integration in Escherichia coli genome has been adjusted for Methylophilus methylotrophus. Constructed helper plasmids with broad-host-range replicons carry thermo-inducible genes for transposition factors MuA and MuB. Integrative plasmids that are only replicated in E. coli could be mobilized to M. methylotrophus and contained mini-Mu unit with a short terminus of Mu DNA, Mu-attL/R. Mini-Mu unit was integrated in the M. methylotrophus genome via mobilization of the integrative plasmid to the cells carrying the helper in conditions of thermo-induced expression of MuA and MuB. In this system, mini-Mu unit was mainly integrated due to replicative transposition, and the integrated copy could be amplified in the M. methylotrophus chromosome in the presence of helper plasmid. A kan-gene flanked by FRT sites was inserted in one of the mini-Mu units, and it could be readily excised by yeast FLP recombinase that is encoded by the designed plasmid. The multiple Mu-driven gene insertion was carried out by integration of the Bacillus amyloliquefaciens α-amylase gene followed by curing the KmR marker before integration of the second mini-Mu unit with Pseudomonas putida xylE gene encoding catechol 2,3-dioxygenase (C23O).
Irina L. TokmakovaEmail:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号