首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The interaction of melittin, a polypeptide consisting of 26 amino acid residues, with dimyristoyl phosphatidylcholine bilayers was investigated by vibrational Raman spectroscopy. Spectral peak height intensity ratios, involving vibrational transitions in both the 3000 cm?1 acyl chain methylene carbon-hydrogen stretching mode region and the 1100 cm?1 acyl chain carbon-carbon skeletal stretching mode interval, served as temperature profile indices for monitoring the bilayer order-disorder processes. For a lipid : melittin molar ratio of 14 : 1 two order-disorder transitions were observed. In comparison to a gel to liquid crystalline phase transition of 22.5°C for the pure lipid, the lower transition, exhibiting a 2°C width, is centered at 17°C and is associated with a depression of the main lipid phase transition of dimyristoyl phosphatidylcholine. The second thermal transition, displaying a 7°C interval, occurs at approx. 29°C and is associated with the melting behavior of approximately seven immobilized boundary lipids which surround the inserted hydrophobic segment of the polypeptide. For a lipid : melittin molar ratio of 10 : 1 two thermal transitions are also observed at 11 and 30°C. As before, they represent, respectively, the main gel to liquid crystalline phase transition and the melting behavior of approximately four boundary lipids attached to melittin. From these data alternative schemes are suggested for disposing the immobilized lipids around the hydrophobic portion of the polypeptide within the bilayer.  相似文献   

3.
Interactions of proteins and cholesterol with lipids in bilayer membranes.   总被引:6,自引:0,他引:6  
Mixtures of lipids and protein, the ATPase from rabbit sarcoplasmic reticulum, were studied by freeze-fracture electron microscopy and by measurement of the amount of fluid lipid with the spin label 2,2,6,6-tetramethylpiperidine-1-oxyl (TEM-PO). In dimyristoyl phosphatidylcholine vesicles the protein molecules were randomly distributed above the transition temperature, Tt, of the lipid and aggregated below Tt. For mixtures of dimyristoyl and dipalmitoyl phosphatidylcholine the existence of fluid and solid domains were shown in the temperature interval predicted from earlier TEMPO measurements. When protein was incorporated into this lipid mixture, freeze-fracture particles were randomly distributed in fluid lipids, or aggregated when only solid lipids were present. In mixtures of dimyristoyl phosphatidylcholine with cholesterol the protein was distributed randomly above the transition temperature of the phosphatidylcholine. Below that transition temperature the protein was excluded from a banded phase of solid lipid in the case of 10 mol% cholesterol. In mixtures containing 20 mol% cholesterol, protein molecules formed linear arrays, 50-200 nm in length, around smooth patches of lipid. Phase diagrams for lipid/cholesterol and lipid/protein systems are proposed which account for many of the available data. A model for increasing solidification of lipid around protein molecules or cholesterol above the transition temperature of the lipid is discussed.  相似文献   

4.
Summary The interaction of furosemide with different phospholipids was investigated. Its influence on the lipid structure was inferred from its effect on the phase transition properties of lipids and on the conductance of planar bilayer membranes. The thermotropic properties of dipalmitoyl phosphatidylcholine, phosphatidylethanolamine (natural), dipalmitoyl phosphatidylethanolamine, brain sphingomyelin, brain cerebrosides and phosphatidylserine in the presence and absence of furosemide were investigated by differential scanning calorimetry,. The modifying effect of furosemide seems to be strongest on phosphatidylethanolamine (natural) and sphingomyelin bilayers. The propensity of furosemide to decrease the electrical resistance of planar lipid membranes was also studied and it is shown that the drug facilitates the transport of ions. Partition coefficients of furosemide between lipid bilayers and water were measured.Abbreviations DSC differential scanning calorimetry - PLM planar lipid membranes - DPPC dipalmitoyl phosphatidylcholine - DMPC dimyristoyl phosphatidylcholine - PE phosphatidyl ethanol  相似文献   

5.
Activation of the first component of human complement (C1) by bilayer-embedded nitroxide spin label lipid haptens and specific rabbit antinitroxide antibody has been measured. The nitroxide spin label hapten was contained in host bilayers of either dimyristoyl phosphatidylcholine or dipalmitoyl phosphatidylcholine in the form of both liposomes and vesicles. At a temperature of 32 degrees C, which is intermediate between the hydrocarbon chain-melting temperatures of the two phospholipids, activation of C1 in such vesicles and liposomes is more efficient in the fluid membrane. Studies of C1 activation in binary mixtures of cholesterol and dipalmitoyl phosphatidylcholine indicate that the activation of C1 is not limited by the lateral diffusion of the lipid haptens in these membranes.  相似文献   

6.
Two pure phospholipids, dimyristoyl phosphatidylcholine and dipalmitoyl phosphatidylcholine, have been studied using freeze-fracture electron microscopy and the partitioning of the spin label, TEMPO. It is found that the characteristic band pattern, corresponding to monoclinic symmetry in multilamellar liposomes, is observed only in freeze-fracture electron microphotographs when samples are quenched from temperatures intermediate between the chain melting transition temperature and the pretransition temperature of the membrane. Markings are also observed on fracture faces of samples quenched from below the pretransition, but these "bands" are few in number and are widely and irregularly spaced. The lipid membranes used for freeze-fracture were prepared using detergent dialysis and are thought to consist of one, two, or some small number of concentric bilayer shells. These observations are in excellent accord with the recent, prior studies of Janiak, M.J., Small, D.M. and Shirley, G.G., ((1976) Biochemistry 15, 4575--4580), who found monoclinic symmetry (Pbeta' structure) in multilamellar liposomes of these phospholipids only when the sample temperature was intermediate between the main, chain melting transition temperature, and the pretransition temperature. The significance of these results for relating freeze-fracture electron microphotographis to phase diagrams derived from spin label or calorimetric data is discussed briefly. 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO) partitioning data show distinct differences between liposomal preparations of these lipids, and other preparations having fewer bilayers per vesicular structure, with respect to the position, width, and hysteresis of the pretransition.  相似文献   

7.
The association of ethanol with unilamellar dimyristoyl phosphatidylcholine (DMPC) liposomes of varying cholesterol content has been investigated by isothermal titration calorimetry over a wide temperature range (8-45 degrees C). The calorimetric data show that the interaction of ethanol with the lipid membranes is endothermic and strongly dependent on the phase behavior of the mixed lipid bilayer, specifically whether the lipid bilayer is in the solid ordered (so), liquid disordered (ld), or liquid ordered (lo) phase. In the low concentration regime (<10 mol%), cholesterol enhances the affinity of ethanol for the lipid bilayer compared to pure DMPC bilayers, whereas higher levels of cholesterol (>10 mol%) reduce affinity of ethanol for the lipid bilayer. Moreover, the experimental data reveal that the affinity of ethanol for the DMPC bilayers containing small amounts of cholesterol is enhanced in the region around the main phase transition. The results suggest the existence of a close relationship between the physical structure of the lipid bilayer and the association of ethanol with the bilayer. In particular, the existence of dynamically coexisting domains of gel and fluid lipids in the transition temperature region may play an important role for association of ethanol with the lipid bilayers. Finally, the relation between cholesterol content and the affinity of ethanol for the lipid bilayer provides some support for the in vivo observation that cholesterol acts as a natural antagonist against alcohol intoxication.  相似文献   

8.
9.
Raman spectroscopic frequency differences between selected carbon-carbon stretching modes of lipid hydrocarbon chains were determined as a function of temperature for use in monitoring lipid phase transition behavior and acyl chain disorder in both multilamellar and single-wall vesicles. Transition temperatues detected by this procedure for pure dipalmitoyl phosphatidylcholine and dimyristoyl phosphatidylcholine multilayers were observed at 39±1 °C and 23±1 °C, respectively. Although the phase transition for unilamellar vesicles of dipalmitoyl phosphatidylcholine occurred at nearly the same temperature as the multilayers, the crystal-liquid crystalline transition for the single-shell vesicles appeared to span a slightly broader temperature range, a characteristic consistent with irregularities in the packing arrangement of the hydrocarbon chains. Within the precision of the Raman spectroscopic method, however, the temperature behavior of both the multilamellar and the unilamellar dimyristoyl phosphatidylcholine assemblies appeared nearly identical. The temperature profile for the Raman frequency differences of an excess water sonicate of 25 mol percent cholesterol in dipalmitoyl phosphatidylcholine served as an example of the effect upon lipid phase transition characteristics of a bilayer component intercalated between the acyl chains. For this particular cholesterol-lipid system the phase transition was broadened over a 30 °C temperature range, in contrast to the narrow 5?4 °C range observed for pure multilayer and single-shell vesicle particles.  相似文献   

10.
Two pure phospholipids, dimyristoyl phosphatidylcholine and dipalmitoyl phosphatidylcholine, have been studied using freeze-fracture electron microscopy and the partitioning of the spin label, TEMPO. It is found that the characteristic band pattern, corresponding to monoclinic symmetry in multilamellar liposomes, is observed only in freeze-fracture electron microphotographs when samples are quenched from temperatures intermediate between the chain melting transition temperature and the pretransition temperature of the membrane. Markings are also observed on fracture faces of samples quenched from below the pretransition, but these “bands” are few in number and are widely and irregularly spaced. The lipid membranes used for freeze-fracture were prepared using detergent dialysis and are thought to consist of one, two, or some small number of concentric bilayer shells. These observations are in excellent accord with the recent, prior studies of Janiak, M.J., Small, D.M. and Shipley, G.G., ((1976) Biochemistry, 15, 4575–4580), who found monoclinic symmetry (Pβ′ structure) in multimellar liposomes of these phospholipids only when the sample temperature was intermediate between the main, chain melting transition temperature, and the presentation temperature. The significance of these results for relating freeze-fracture electron microphotographis to phase diagrams derived from spin label or calorimetric data is discussed briefly.2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO) partitioning data show distinct differences between liposomal preparations of these lipids, and other preparations having fewer bilayers per vesicular structure, with respect to the position, width, and hysteresis of the pretransition.  相似文献   

11.
Multilamellar spin labelled liposomes were prepared from dipalmitoyl or dimyristoyl phosphatidylcholine, dicetyl phosphate, and the spin probe 12-doxyl stearate methyl ester. The effects of a series of benzene and adamantane derivatives, on fatty acyl chain motion was measured through changes in the electron spin resonance spectra of these liposomes. All the compounds tested, increased lipid chain motion to a variable degree. In general, molecules possessing a polar group were more potent than those lacking such a group and lipophilicity per se correlated poorly with the relative order of these compounds. Within the adamantane series separating the polar group from the cage structure by the insertion of methylene groups further enhanced the capacity of the molecule to increase hydrocarbon chain mobility. These observations are consistent with the hypothesis that the location of the additive within the bilayer is the main determinant of its effectiveness in increasing fatty acyl chain motion.  相似文献   

12.
We examined the action of porcine pancreatic and bee-venom phospholipase A2 towards bilayers of phosphatidylcholine as a function of several physical characteristics of the lipid-water interface. 1. Unsonicated liposomes of dimyristoyl phosphatidylcholine are degraded by both phospholipases in the temperature region of the phase transition only (cf. Op den Kamp et al. (1974) Biochim. Biophys. Acta 345, 253--256 and Op den Kamp et al. (1975) Biochim. Biophys. Acta 406, 169--177). With sonicates the temperature range in which hydrolysis occurs is much wider. This discrepancy between liposomes and sonicates cannot be ascribed entirely to differences in available substrate surface. 2. Below the phase-transition temperature the phospholipases degrade dimyristoyl phosphatidylcholine single-bilayer vesicles with a strongly curved surface much more effectively than larger single-bilayer vesicles with a relatively low degree of curvature. 3. Vesicles composed of egg phosphatidylcholine can be degraded by pancreatic phospholipase A2 at 37 degrees C, provided that the substrate bilayer is strongly curved. The bee-venom enzyme shows a similar, but less pronounced, preference for small substrate vesicles. 4. In a limited temperature region just above the transition temperature of the substrate the action of both phospholipases initially proceeds with a gradually increasing velocity. This stimulation is presumably due to an increase of the transition temperature, effectuated by the products of the phospholipase action. 5. Structural defects in the substrate bilayer, introduced by sonication below the phase-transition temperature (cf. Lawaczeck et al. (1976) Biochim. Biophys. Acta 443, 313--330) facilitate the action of both phospholipases. The results lead to the general conclusion that structural irregularities in the packing of the substrate molecules facilitate the action of phospholipases A2 on phosphatidylcholine bilayers. Within the phase transition and with bilayers containing structural defects these irregularities represent boundaries between separate lipid domains. The stimulatory effect of strong bilayer curvature can be ascribed to an overall perturbation of the lipid packing as well as to a change in the phase-transition temperature.  相似文献   

13.
Low ionic strength aqueous dispersion of dimyristoyl phosphatidylglycerol (DMPG) presents a rather peculiar gel-fluid thermal transition behavior. The lipid main phase transition occurs over a large temperature interval (ca. 17 degrees C), along which several calorimetric peaks are observed. Using lipids spin labeled at the acyl chain end, a two-peak electron spin resonance (ESR) spectrum is observed along that temperature transition region (named intermediate phase), at three different microwave frequencies: L-, X- and Q-bands. The intermediate phase ESR spectra are analyzed, and shown to be most likely due to spin labels probing two distinct types of lipid organization in the DMPG bilayer. Based on the ESR spectra parameters, a model for the DMPG intermediate phase is proposed, where rather fluid and hydrated domains, possibly high curvature regions, coexist with patches that are more rigid and hydrophobic.  相似文献   

14.
Bovine thyroid peroxidase (TPO), an enzyme requiring lipids for demonstrating catalytic activity, was incorporated in liposomes made of pure phospholipids. The enzyme did not show high differences in activity when bilayer thickness was changed, but dipalmitoyl phosphatidyl choline (DPPC) seemed to be more appropiate for activity. The perturbation caused on lipid fluidity by enzyme incorporation was studied by differential scanning calorimetry (DSC) and fluorescence polarization of the apolar probe 1,6-diphenyl-1,3,5-hexatriene (DPH). The complexes of TPO with dimyristoyl phosphatidyl choline (DMPC), DPPC, and distearoyl phosphatidyl choline (DSPC) bilayers showed transition temperatures (Tc) which were lower than the characteristic ones shown by liposomes with the respective phospholipids alone. The microsomal fraction from which TPO was extracted was in the fluid state at 37°C, the temperature at which thyroid peroxidase works ‘in vivo’. Since the effect of the protein in lowering the transition temperature of the phospholipids was so low, the contribution of phospholipids containing unsaturated fatty acids has to be essential for obtaining a fluid bilayer at body temperature.  相似文献   

15.
The lipid distribution in binary mixed membranes containing charged and uncharged lipids and the effect of Ca2+ and polylysine on the lipid organization was studied by the spin label technique. Dipalmitoyl phosphatidic acid was the charged, and spin labelled dipalmitoyl lecithin was the uncharged (zwitterionic) component. The ESR spectra were analyzed in terms of the spin exchange frequency, Wex. By measuring Wex as a function of the molar percentage of labelled lecithin a distinction between a random and a heterogeneous lipid distribution could be made. It is established that mixed lecithin-phosphatidic acid membranes exhibit lipid segregation (or a miscibility gap) in the fluid state. Comparative experiments with bilayer and monolayer membranes strongly suggest a lateral lipid segregation. At low lecithin concentration, aggregates containing between 25% and 40% lecithin are formed in the fluid phosphatidic acid membrane. This phase separation in membranes containing charged lipids is understandable on the basis of the Gouy-Chapman theory of electric double layers. In dipalmitoyl lecithin and in dimyristoyl phosphatidylethanolamine membranes the labelled lecithin is randomly distributed above the phase transition and has a coefficient of lateral diffusion of D = 2.8-10(-8) cm2/s at 59 degrees C. Addition of Ca2+ dramatically increases the extent of phase separation in lecithin-phosphatidic acid membranes. This chemically (and isothermally) induced phase separation is caused by the formation of crystalline patches of the Ca2+-bound phosphatidic acid. Lecithin is squeezed out from these patches of rigid lipid. The observed dependence of Wex on the Ca2+ concentration could be interpreted quantitatively on the basis of a two-cluster model. At low lecithin and Ca2+ concentration clusters containing about 30 mol % lecithin are formed. At high lecithin or Ca2+ concentrations a second type of precipitation containing 100% lecithin starts to form in addition. A one-to-one binding of divalent ions and phosphatidic acid at pH 9 was assumed. Such a one-to-one binding at pH 9 was established for the case of Mn2+ using ESR spectroscopy. Polylysine leads to the same strong increase in the lecithin segregation as Ca2+. The transition of the phosphatidic acid bound by the polypeptide is shifted from Tt = 47.5 degrees to Tt = 62 degrees C. This finding suggests the possibility of cooperative conformational changes in the lipid matrix and in the surface proteins in biological membranes.  相似文献   

16.
The permeation of water through liposomal membranes composed of various saturated phosphatidylcholine plus gramicidin A was studied as a function of temperature. 1. The presence of gramicidin in the liposomal bilayers caused an increase in water permeability. Below the phase transition temperature this effect could be measured quite clearly in all the systems we tested, but the extent of the increase was largely dependent on the length of the hydrocarbon chains. 2. Increasing amounts of gramicidin caused a gradual disappearance of the abrupt change in the rate of water permeation near the gel-liquid crystalline phase transition temperature of dipalmitoyl phosphatidylcholine liposomes. Differential scanning calorimetry analysis of the system containing these relatively small amounts of gramicidin still showed a clear transition from the liquid crystalline to the gel state with only a slight reduction in the enthalpy change. 3. In liposomes composed of dimyristoyl, dipalmitoyl and saturated egg phosphatidylcholine there was a concomitant decrease in the activation energy of water permeation in the presence of gramicidin below and above the phase transition temperature. The activation energy for water permeation through longer chained distearoyl phosphatidylcholine liposomal bilayers was the same with or without gramicidin in the bilayer. 4. It is concluded that the ability of gramicidin to form conducting channels in a gel state bilayer depends on the thickness of the paraffin core.  相似文献   

17.
Mixtures of lipids and proteins, the ATPase from rabbit sarcoplasmic reticulum, were studied by freeze-fracture electron microscopy and by measurement of the amount of fluid lipid with the spin label 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO). In dimyristoyl phosphatidylcholine vesicles the protein molecules were randomly distributed above the transition temperature, Tt, of the lipid and aggregated below Tt. For mixtures af dimyristoyl and dipalmitoyl phosphatidylcholine the existence of fluid and solid domains was shown in the temperature interval predicted from earlier TEMPO measurements. When protein was incorporated into this lipid mixture, freeze-fracture particles were randomly distributed in fluid lipids, or aggregated when only solid lipids were present.In mixtures of dimyristoyl phosphatidylcholine with cholesterol the protein was distributed randomly above the transition temperature of the phosphatidylcholine. Below that transition temperature the protein was excluded from a banded phase of solid lipid in the case of 10 mol% cholesterol. In mixtures containing 20 mol% cholesterol, protein molecules formed linear arrays, 50–200 nm in length, around smooth patches of lipid.Phase diagrams for lipid/cholesterol and lipid/protein systems are proposed which account for many of the available data. A model for increasing solidification of lipid around protein molecules or cholesterol above the transition temperarture of the lipid is discussed.  相似文献   

18.
The effect of cholesterol on the structure of phosphatidylcholine bilayers was investigated by X-ray diffraction methods. Electron density profiles at 5 Å resolution along with chain tilt and chain packing parameters were obtained and compared for phosphatidylcholine/cholesterol bilayers and for pure phosphatidylcholine bilayers in both the gel and liquid crystalline states. The cholesterol in the bilayer was localized by noting the position of discrete elevations in the electron density profiles. Cholesterol can either increase or decrease the width of the bilayer depending on the physical state and chain length of the lipid before the introduction of cholesterol. For saturated phosphatidylcholines containing 12–16 carbons per chain, cholesterol increases the width of the bilayer as it removes the chain tilt from gel state lipids or increases the trans conformations of the chains for liquid crystalline lipids. However, cholesterol reduces the width of 18 carbon chain bilayers below the phase transition temperature as the long phospholipid chains must deform or kink to accomodate the significantly shorter cholesterol molecule. Although cholesterol has a marked effect on hydrocarbon chain organization, it was found that, within the resolution limits of the data, the phosphatidylcholine head group conformation is unchanged by the addition of cholesterol to the bilayer. The head group is oriented parallel to the plane of the bilayer for phosphatidylcholine in the gel and liquid crystalline states and this orientation is not changed by the addition of cholesterol.  相似文献   

19.
New structural model for mixed-chain phosphatidylcholine bilayers   总被引:13,自引:0,他引:13  
Multilamellar suspensions of a mixed-chain saturated phosphatidylcholine with 18 carbon atoms in the sn-1 chain and 10 carbon atoms in the sn-2 chain have been analyzed by X-ray diffraction techniques. The structural parameters for this lipid in the gel state are quite different than usual phosphatidylcholine bilayer phases. A symmetric and sharp wide-angle reflection at 4.11 A indicates that the hydrocarbon chains in hydrated C(18):C(10)PC bilayers are more tightly packed than in usual gel-state phosphatidylcholine bilayers and that there is no hydrocarbon chain tilt. The lipid thickness is about 12 A smaller than would be expected in a normal bilayer phase, and the area per molecule is 3 times the area per hydrocarbon chain. In addition, the bilayer thickness increases upon melting to the liquid-crystalline state, whereas normal bilayer phases decrease in thickness upon melting. On the basis of these data, we propose a new lipid packing model for gel-state C(18):C(10)PC bilayers in which the long C(18) chain spans the entire width of the hydrocarbon region of the bilayer and the short C(10) chain aligns or abuts with the C(10) chain from the apposing molecule. This model is novel in that there are three hydrocarbon chains per head group at the lipid-water interface. Calculations show that this phase is energetically favorable for mixed-chain lipids provided the long acyl chain is nearly twice the length of the shorter chain. In the liquid-crystalline state C(18):C(10)PC forms a normal fluid bilayer, with two chains per head group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Differential scanning calorimetry, fluorescence spectroscopy and freeze-fracture electron microscopy have been applied to a study of the reconstituted Ca2+-ATPase proteins from sarcoplasmic reticulum when they are incorporated into pure lipid/water systems. The results obtained with these techniques have been used to examine the effects of this intrinsic protein upon the surrounding lipid at temperatures above and below the main lipid solid-fluid phase transition temperature (Tc). 1. Above this Tc value, the freeze-fracture data show that the proteins are randomly distributed within the plane of the bilayer. The fluorescence data show that as the protein content in the bilayer increases, so does the 'microviscosity'. 2. Below Tc the proteins occur in high protein to lipid patches, separate from the remaining crystalline lipid. The fluorescence data indicate that at these temperatures the presence of the protein causes a decrease in microviscosity, whilst the calorimetric data indicate a decrease in enthalpy of the main lipid transition. 3. A premelting of the high protein to lipid patches formed by phase separation within the lipid bilayers is indicated by the calorimetric and fluorescence data. This observation is used to rationalise the 'anomalous' properties of the dipalmitoyl phosphatidylcholine-ATPase of exhibiting activity at temperatures well below the lipid phase transition at 41 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号