首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A Gram-positive, spore-forming bacterium, Clostridium perfringens, possesses genes for citrate metabolism, which might play an important role in the utilization of citrate as a sole carbon source. In this study, we identified a chromosomal citCDEFX-mae-citS operon in C. perfringens strain 13, which is transcribed on three mRNAs of different sizes. Expression of the cit operon was significantly induced when 5 mM extracellular citrate was added to the growth medium. Most interestingly, three regulatory systems were found to be involved in the regulation of the expression of cit genes: 1) the two upstream divergent genes citG and citI; 2) two different two-component regulatory systems, CitA/CitB (TCS6 consisted of CPE0531/CPE0532) and TCS5 (CPE0518/CPE0519); and 3) the global two-component VirR/VirS-VR-RNA regulatory system known to regulate various genes for toxins and degradative enzymes. Our results suggest that in C. perfringens the citrate metabolism might be strictly controlled by a complex regulatory system.  相似文献   

3.
4.
5.
Transporters and their roles in LAB cell physiology   总被引:3,自引:0,他引:3  
  相似文献   

6.
Lactic acid bacteria (LAB) represent a functional group of bacteria that are fundamental in human nutrition because of their prominent role in fermented food production and their presence as commensals in the gut. LAB co-evolution and niche-adaptation have been analyzed in several phylogenomic studies due to the availability of complete genome sequences. The aim of this study was to provide novel insights into LAB evolution through the comparative analysis of the metabolic pathways related to carbohydrate metabolism. The analysis was based on 42 LAB genome sequences of representative strains belonging to Enterococcaceae, Lactobacillaceae, Leuconostocaceae and Streptococcaceae. A reference phylogenetic tree was inferred from concatenation of 42 ribosomal proteins; then 42 genes belonging to the Embden–Meyerhof–Parnas (or glycolysis; EMPP) and pentose phosphate (PPP) pathways were analyzed in terms of their distribution and organization in the genomes. Phylogenetic analyses confirmed the paraphyly of the Lactobacillaceae family, while the distribution and organization of the EMPP and PPP genes revealed the occurrence of lineage-specific trends of gene loss/gain within the two metabolic pathways examined. In addition, the investigation of the two pathways as structures resulting from different evolutionary processes provided new information concerning the genetic bases of heterofermentative/homofermentative metabolism.  相似文献   

7.
Solventogenic clostridia are an important class of microorganisms that can produce various biofuels. One of the bottlenecks in engineering clostridia stems from the fact that central metabolic pathways remain poorly understood. Here, we utilized the power of (13) C-based isotopomer analysis to re-examine central metabolic pathways of Clostridium acetobutylicum ATCC 824. We demonstrate using [1,2-(13) C]glucose, MS analysis of intracellular metabolites, and enzymatic assays that C. acetobutylicum has a split TCA cycle where only Re-citrate synthase (CS) contributes to the production of α-ketoglutarate via citrate. Furthermore, we show that there is no carbon exchange between α-ketoglutarate and fumarate and that the oxidative pentose-phosphate pathway (oxPPP) is inactive. Dynamic gene expression analysis of the putative Re-CS gene (CAC0970), its operon, and all glycolysis, pentose-phosphate pathway, and TCA cycle genes identify genes and their degree of involvement in these core pathways that support the powerful primary metabolism of this industrial organism.  相似文献   

8.
9.
10.
Metabolic pathway engineering in lactic acid bacteria   总被引:9,自引:0,他引:9  
Lactic acid bacteria (LAB) display a relatively simple carbon and energy metabolism where the sugar source is converted mainly to lactic acid. In Lactococcus lactis metabolic engineering has been very successful in the re-routing of lactococcal pyruvate metabolism to products other than lactic acid. Current metabolic engineering approaches tend to focus on more complex, biosynthetic pathways leading to end-products that generate a health benefit for the consumer (nutraceuticals). Several examples of research on these minor pathways in L. lactis have illustrated the potential of LAB as producers of these metabolites. Whole genome sequencing efforts and corresponding global technologies will have an impact on metabolic engineering in the future.  相似文献   

11.
12.
Flux distribution in central metabolic pathways of Desulfovibrio vulgaris Hildenborough was examined using 13C tracer experiments. Consistent with the current genome annotation and independent evidence from enzyme activity assays, the isotopomer results from both gas chromatography-mass spectrometry (GC-MS) and Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) indicate the lack of an oxidatively functional tricarboxylic acid (TCA) cycle and an incomplete pentose phosphate pathway. Results from this study suggest that fluxes through both pathways are limited to biosynthesis. The data also indicate that >80% of the lactate was converted to acetate and that the reactions involved are the primary route of energy production [NAD(P)H and ATP production]. Independently of the TCA cycle, direct cleavage of acetyl coenzyme A to CO and 5,10-methyl tetrahydrofuran also leads to production of NADH and ATP. Although the genome annotation implicates a ferredoxin-dependent oxoglutarate synthase, isotopic evidence does not support flux through this reaction in either the oxidative or the reductive mode; therefore, the TCA cycle is incomplete. FT-ICR MS was used to locate the labeled carbon distribution in aspartate and glutamate and confirmed the presence of an atypical enzyme for citrate formation suggested in previous reports [the citrate synthesized by this enzyme is the isotopic antipode of the citrate synthesized by the (S)-citrate synthase]. These findings enable a better understanding of the relation between genome annotation and actual metabolic pathways in D. vulgaris and also demonstrate that FT-ICR MS is a powerful tool for isotopomer analysis, overcoming the problems with both GC-MS and nuclear magnetic resonance spectroscopy.  相似文献   

13.
14.
15.
16.
17.
Carbohydrate/citrate cometabolism in Lactococcus lactis results in the formation of the flavor compound acetoin. Resting cells of strain IL1403(pFL3) rapidly consumed citrate while producing acetoin when substoichiometric concentrations of glucose or l-lactate were present. A proton motive force was generated by electrogenic exchange of citrate and lactate catalyzed by the citrate transporter CitP and proton consumption in decarboxylation reactions in the pathway. In the absence of glucose or l-lactate, citrate consumption was biphasic. During the first phase, hardly any citrate was consumed. In the second phase, citrate was converted rapidly, but without the formation of acetoin. Instead, significant amounts of the intermediates pyruvate and α-acetolactate, and the end product acetate, were excreted from the cells. It is shown that the intermediates and acetate are excreted in exchange with the uptake of citrate catalyzed by CitP. The availability of exchangeable substrates in the cytoplasm determines both the rate of citrate consumption and the end product profile. It follows that citrate metabolism in L. lactis IL1403(pFL3) splits up in two routes after the formation of pyruvate, one the well-characterized route yielding acetoin and the other a new route yielding acetate. The flux distribution between the two branches changes from 85:15 in the presence of l-lactate to 30:70 in the presence of pyruvate. The proton motive force generated was greatest in the presence of l-lactate and zero in the presence of pyruvate, suggesting that the pathway to acetate does not generate proton motive force.  相似文献   

18.
19.
20.
生理和行为的昼夜节律性调控对健康生活是必需的。越来越多的流行病学和遗传学证据显示昼夜节律的破坏与代谢紊乱性疾病相关联。在分子水平上,昼夜节律受到时钟蛋白组成的转录一翻译负反馈环的调控。时钟蛋白通过以下两种途径调节代谢:首先,时钟蛋白作为转录因子直接调节一些代谢关键步骤的限速酶和代谢相关核受体的表达,其次作为代谢相关核受体的辅调节因子来激活或抑制其转录活性。虽然时钟蛋白对代谢途径的调节导致代谢物水平呈昼夜节律振荡,但是产生的代谢物反过来又可以影响昼夜节律钟基因的表达,进而影响昼夜节律钟。深入研究昼夜节律钟与代谢的交互调节可能为治疗某些代谢紊乱性疾病提供新的治疗方案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号