首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
Objective: To test the hypothesis that adipose tissue could be one of the primary targets through which medium‐chain fatty acids (MCFAs) exert their metabolic influence. Research Methods and Procedures: Sprague‐Dawley rats were fed a control high‐fat diet compared with an isocaloric diet rich in medium‐chain triglycerides (MCTs). We determined the effects of MCTs on body fat mass, plasma leptin and lipid levels, acyl chain composition of adipose triglycerides and phospholipids, adipose tissue lipoprotein lipase activity, and the expression of key adipogenic genes. Tissue triglyceride content was measured in heart and gastrocnemius muscle, and whole body insulin sensitivity and glucose tolerance were also measured. The effects of MCFAs on lipoprotein lipase activity and adipogenic gene expression were also assessed in vitro using cultured adipose tissue explants or 3T3‐L1 adipocytes. Results: MCT‐fed animals had smaller fat pads, and they contained a considerable amount of MCFAs in both triglycerides and phospholipids. A number of key adipogenic genes were down‐regulated, including peroxisome proliferator activated receptor γ and CCAAT/enhancer binding protein α and their downstream metabolic target genes. We also found reduced adipose tissue lipoprotein lipase activity and improved insulin sensitivity and glucose tolerance in MCT‐fed animals. Analogous effects of MCFAs on adipogenic genes were found in cultured rat adipose tissue explants and 3T3‐L1 adipocytes. Discussion: These results suggest that direct inhibitory effects of MCFAs on adiposity may play an important role in the regulation of body fat development.  相似文献   

4.
Objective: This study was designed to determine when peroxisome proliferator‐activated receptor γ (PPARγ) is expressed in developing fetal adipose tissue and stromal‐vascular adipose precursor cells derived from adipose tissue. In addition we examined developing tissue for CCAAT/enhancer‐binding protein β (C/EBPβ) expression to see if it was correlated with PPARγ expression. Pituitary function and hormones involved with differentiation (dexamethasone and retinoic acid) were also tested for their effects on PPARγ expression to determine if hormones known to affect differentiation also effect PPARγ expression in vivo and in cell culture. Research Methods and Procedures: Developing subcutaneous adipose tissues from the dorsal region of the fetal pig were collected at different gestation times and assayed using Western blot analysis to determine levels of PPARγ and C/EBPβ. Hypophysectomy was performed on 75‐day pig fetuses and tissue samples were then taken at 105 days for Western blot analysis. Adipose tissue was also taken from postnatal pigs to isolate stromal‐vascular (S‐V) cells. These adipose precursor cells were grown in culture and samples were taken for Western blot analysis to determine expression levels of PPARγ. Results: Our results indicate that PPARγ is expressed as early as 50 days of fetal development in adipose tissue and continues through 105 days. Expression of PPARγ was found to be significantly enhanced in adipose tissue from hypophysectomized fetuses at 105 days of fetal development (p < 0.05). C/EBPβ was not found in 50‐ or 75‐day fetal tissues and was found only at low levels in 105‐day tissues. C/EBPβ was not found in hypophysectomized (hypoxed) 105‐day tissue where PPARγ was elevated. S‐V cells freshly isolated from adipose tissue of 5‐ to 7‐day postnatal pigs showed the expression of PPARγ1. When S‐V cells were cultured, both PPARγ1 and 2 were expressed after the first day and continued as cells differentiated. High concentrations of retinoic acid decreased PPARγ expression in early S‐V cultures (p < 0.05). Discussion: Our data indicate that PPARγ is expressed in fetal adipose tissue very early before distinct fat cells are observed and can be expressed without the expression of C/EBPβ. The increase in PPARγ expression after hypophysectomy may explain the increase in fat cell size under these conditions. Adipose precursor cells (S‐V cells) from 5‐ to 7‐day postnatal pigs also express PPARγ in the tissue before being induced to differentiate in culture. Thus S‐V cells from newborn pig adipose tissue are probably more advanced in development than the 3T3‐L1 cell model. S‐V cells may be in a state where PPARγ and C/EBPα are expressed but new signals or vascularization are needed before cells are fully committed and lipid filling begins.  相似文献   

5.
6.
Obesity is characterized by chronic low‐grade inflammation originating from expanding adipose tissue. In the present study, we examined the adipogenic expression levels of IL‐1F6 and IL‐1F8, both members of the IL‐1 family of cytokines, and their effects on adipose tissue gene expression. Although IL‐1F6 is primarily present in adipose tissue resident macrophages and induced by inflammation, IL‐1F8 is absent. IL‐1F6, but not IL‐1F8, reduces adipocyte differentiation, as shown by a significant decrease in PPARγ gene expression. Finally, both IL‐1F6 and IL‐1F8 are able to induce inflammatory gene expression in mature adipocytes. In conclusion, we demonstrate for the first time that IL‐1F6 is present in adipose tissue and that IL‐1F6 and IL‐1F8 are involved in the regulation of adipose tissue gene expression. Importantly, IL‐1F6 inhibits PPARγ expression which may lead to reduced adipocyte differentiation suggesting metabolic effects of this cytokine.  相似文献   

7.
8.
Objective: We investigated subcutaneous adipose tissue expression of FOXC2 and selected genes involved in brown adipogenesis in adult human subjects in whom we have previously identified a reduced potential of precursor cell commitment to adipose‐lineage differentiation in relation to insulin resistance. Research Methods and Procedure: Gene expression was studied using quantitative real time polymerase chain reaction. The relation between the expression of brown adipogenic genes and the genes involved in progenitor cell commitment, adipose cell size, and insulin sensitivity in vivo was analyzed. Results: The expression of FOXC2, MASK, MAP3K5, retinoblastoma protein (pRb), peroxisome proliferator‐activated protein gamma (PPARγ), and retinoid X receptor gamma (RXRγ) was decreased in the insulin‐resistant compared with insulin‐sensitive subjects, whereas PPARγ‐2 and CCAAT/enhancer binding protein alpha (C/EBPα) showed no differential expression. The FOXC2 expression correlated with that of Notch and Wnt signaling genes, as well as of the genes studied participating in brown adipogenesis, including MASK, MAP3K5, PPARγ, pRb, RXRγ, and PGC‐1. A second‐level correlation between PPARγ and UCP‐1 was also significant. In addition, the expression of MASK, MAP3K5, pRb, RXRγ, and PGC‐1 inversely correlated with adipose cell mass and also correlated with the glucose disposal rate in vivo. Discussion: Our results suggest that a reduced brown adipose phenotype is associated with insulin resistance and that a basal brown adipose phenotype may be important for maintaining normal insulin sensitivity.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号