首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This is the ninth update of the human obesity gene map, incorporating published results through October 2002 and continuing the previous format. Evidence from single‐gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, quantitative trait loci (QTLs) from human genome‐wide scans and various animal crossbreeding experiments, and association and linkage studies with candidate genes and other markers is reviewed. For the first time, transgenic and knockout murine models exhibiting obesity as a phenotype are incorporated (N = 38). As of October 2002, 33 Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and the causal genes or strong candidates have been identified for 23 of these syndromes. QTLs reported from animal models currently number 168; there are 68 human QTLs for obesity phenotypes from genome‐wide scans. Additionally, significant linkage peaks with candidate genes have been identified in targeted studies. Seven genomic regions harbor QTLs replicated among two to five studies. Attempts to relate DNA sequence variation in specific genes to obesity phenotypes continue to grow, with 222 studies reporting positive associations with 71 candidate genes. Fifteen such candidate genes are supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. More than 300 genes, markers, and chromosomal regions have been associated or linked with human obesity phenotypes. The electronic version of the map with links to useful sites can be found at http:obesitygene.pbrc.edu .  相似文献   

2.
This paper presents the eleventh update of the human obesity gene map, which incorporates published results up to the end of October 2004. Evidence from single‐gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, transgenic and knockout murine models relevant to obesity, quantitative trait loci (QTLs) from animal cross‐breeding experiments, association studies with candidate genes, and linkages from genome scans is reviewed. As of October 2004, 173 human obesity cases due to single‐gene mutations in 10 different genes have been reported, and 49 loci related to Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and causal genes or strong candidates have been identified for most of these syndromes. There are 166 genes which, when mutated or expressed as transgenes in the mouse, result in phenotypes that affect body weight and adiposity. The number of QTLs reported from animal models currently reaches 221. The number of human obesity QTLs derived from genome scans continues to grow, and we have now 204 QTLs for obesity‐related phenotypes from 50 genome‐wide scans. A total of 38 genomic regions harbor QTLs replicated among two to four studies. The number of studies reporting associations between DNA sequence variation in specific genes and obesity phenotypes has also increased considerably with 358 findings of positive associations with 113 candidate genes. Among them, 18 genes are supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. Overall, >600 genes, markers, and chromosomal regions have been associated or linked with human obesity phenotypes. The electronic version of the map with links to useful publications and genomic and other relevant sites can be found at http:obesitygene.pbrc.edu .  相似文献   

3.
This paper presents the 12th update of the human obesity gene map, which incorporates published results up to the end of October 2005. Evidence from single-gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, transgenic and knockout murine models relevant to obesity, quantitative trait loci (QTL) from animal cross-breeding experiments, association studies with candidate genes, and linkages from genome scans is reviewed. As of October 2005, 176 human obesity cases due to single-gene mutations in 11 different genes have been reported, 50 loci related to Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and causal genes or strong candidates have been identified for most of these syndromes. There are 244 genes that, when mutated or expressed as transgenes in the mouse, result in phenotypes that affect body weight and adiposity. The number of QTLs reported from animal models currently reaches 408. The number of human obesity QTLs derived from genome scans continues to grow, and we now have 253 QTLs for obesity-related phenotypes from 61 genome-wide scans. A total of 52 genomic regions harbor QTLs supported by two or more studies. The number of studies reporting associations between DNA sequence variation in specific genes and obesity phenotypes has also increased considerably, with 426 findings of positive associations with 127 candidate genes. A promising observation is that 22 genes are each supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. The electronic version of the map with links to useful publications and relevant sites can be found at http://obesitygene.pbrc.edu.  相似文献   

4.
This report constitutes the seventh update of the human obesity gene map incorporating published results up to the end of October 2000. Evidence from the rodent and human obesity cases caused by single‐gene mutations, Mendelian disorders exhibiting obesity as a clinical feature, quantitative trait loci uncovered in human genome‐wide scans and in cross‐breeding experiments in various animal models, and association and linkage studies with candidate genes and other markers are reviewed. Forty‐seven human cases of obesity caused by single‐gene mutations in six different genes have been reported in the literature to date. Twenty‐four Mendelian disorders exhibiting obesity as one of their clinical manifestations have now been mapped. The number of different quantitative trait loci reported from animal models currently reaches 115. Attempts to relate DNA sequence variation in specific genes to obesity phenotypes continue to grow, with 130 studies reporting positive associations with 48 candidate genes. Finally, 59 loci have been linked to obesity indicators in genomic scans and other linkage study designs. The obesity gene map reveals that putative loci affecting obesity‐related phenotypes can be found on all chromosomes except chromosome Y. A total of 54 new loci have been added to the map in the past 12 months and the number of genes, markers, and chromosomal regions that have been associated or linked with human obesity phenotypes is now above 250. Likewise, the number of negative studies, which are only partially reviewed here, is also on the rise.  相似文献   

5.
This report constitutes the eighth update of the human obesity gene map, incorporating published results up to the end of October 2001. Evidence from the rodent and human obesity cases caused by single-gene mutations, Mendelian disorders exhibiting obesity as a clinical feature, quantitative trait loci (QTLs) uncovered in human genome-wide scans and in crossbreeding experiments in various animal models, association and linkage studies with candidate genes and other markers is reviewed. The human cases of obesity related in some way to single-gene mutations in six different genes are incorporated. Twenty-five Mendelian disorders exhibiting obesity as one of their clinical manifestations have now been mapped. The number of different QTLs reported from animal models currently reaches 165. Attempts to relate DNA sequence variation in specific genes to obesity phenotypes continue to grow, with 174 studies reporting positive associations with 58 candidate genes. Finally, 59 loci have been linked to obesity indicators in genomic scans and other linkage study designs. The obesity gene map depicted in Figure 1 reveals that putative loci affecting obesity-related phenotypes can be found on all chromosomes except chromosome Y. A total of 54 new loci have been added to the map in the past 12 months, and the number of genes, markers, and chromosomal regions that have been associated or linked with human obesity phenotypes is now above 250. Likewise, the number of negative studies, which are only partially reviewed here, is also on the rise.  相似文献   

6.
This report constitutes the sixth update of the human obesity gene map incorporating published results up to the end of October 1999. Evidence from the rodent and human obesity cases caused by single gene mutations, Mendelian disorders exhibiting obesity as a clinical feature, quantitative trait loci (QTL) uncovered in human genome‐wide scans and in crossbreeding experiments with mouse, rat, pig and chicken models, association and linkage studies with candidate genes and other markers is reviewed. Twenty‐five human cases of obesity can now be explained by variation in five genes. Twenty Mendelian disorders exhibiting obesity as one of their clinical manifestations have now been mapped. The number of different QTLs reported from animal models reaches now 98. Attempts to relate DNA sequence variation in specific genes to obesity phenotypes continue to grow, with 89 reports of positive associations pertaining to 40 candidate genes. Finally, 44 loci have linked to obesity indicators in genomic scans and other linkage study designs. The obesity gene map depicted in Figure 1 reveals that putative loci affecting obesity‐related phenotypes can be found on all autosomes, with chromosomes 14 and 21 showing each one locus only. The number of genes, markers, and chromosomal regions that have been associated or linked with human obesity phenotypes continues to increase and is now well above 200.
Figure 1 Open in figure viewer PowerPoint The 1999 human obesity gene map. The map includes all putative obesity‐related phenotypes identified from the various lines of evidence reviewed in the article. The chromosomes and their regions are from the Gene Map of the Human Genome web site hosted by the National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD (URL: http:www.ncbi.nlm.nih.gov ). The chromosome number and the size of each chromosome in megabases (Mb) are given at the top and bottom of the chromosomes, respectively. Loci abbreviations and full names are given in the Appendix. The abbreviations for QTLs are given in Table 4 .  相似文献   

7.
An update of the human obesity gene map incorporating published results up to October 1997 is presented. Evidence from Mendelian disorders exhibiting obesity as a clinical feature; single-gene mutation rodent models; quantitative trait loci uncovered in human genome-wide scans and in crossbreeding experiments with mouse, rat, and pig models; association and case-control studies with candidate genes; and linkage studies with genes and other markers is reviewed. All chromosomal locations of the animal loci are converted into human genome locations based on syntenic relationships between the genomes. A complete listing of all of these loci reveals that all but chromosome Y of the 24 human chromosomes are represented. Some chromosomes show at least three putative loci related to obesity on both arms (1, 2, 6, 8, 11, and 20) and several on one chromosome arm only (3p, 4q, 5q, 7q, 12q, 13q, 15q, 15p, 22q, and Xq). Studies reporting negative association and linkage results are also listed, with the exception of the unlinked markers from genome-wide scans.  相似文献   

8.
PÉRUSSE, LOUIS, YVON C. CHAGNON, JOHN WEISNAGEL, AND CLAUDE BOUCHARD. The human obesity gene map: the 1998 update. Obes Res. 1999;7:111–129. An update of the human obesity gene map incorporating published results up to the end of October 1998 is presented. Evidence from the human obesity cases caused by single gene mutations; other Mendelian disorders exhibiting obesity as a clinical feature; quantitative trait loci uncovered in human genome-wide scans and in crossbreeding experiments with mouse, rat, and pig models; association and case-control studies with candidate genes; and linkage studies with genes and other markers is reviewed. The most noticeable changes from the 1997 update is the number of obesity cases due to single gene mutations that increased from three cases due to mutations in two genes to 25 cases due to 12 mutations in seven genes. A look at the obesity gene map depicted in Figure 1 reveals that putative loci affecting obesity-related phenotypes are found on all but chromosome Y of the human chromosomes. Some chromosomes show at least three putative loci related to obesity on both arms (1, 2, 3, 6, 7, 8, 9, 11, 17, 19, 20, and X) and several on one chromosome arm only (4q, 5q, 10q, 12q, 13q, 15q, 16p, and 22q). The number of genes and other markers that have been associated or linked with human obesity phenotypes is increasing very rapidly and now approaches 27.  相似文献   

9.
An update of the human obesity gene map up to October 1996 is presented. Evidence from Mendelian disorders exhibiting obesity as a clinical feature, single-gene mutation rodent models, quantitative trait loci uncovered in crossbreeding experiments with mouse, rat, and pig models, association and case-control studies with candidate genes, and linkage studies with genes and other markers is reviewed. All chromosomal locations of the animal loci are converted into human genome locations based on syntenic relationships between the genomes. A complete listing of all these loci reveals that only 4 of the 24 human chromosomes are not yet represented, i.e., 9, 18, 21, and Y. Several chromosome arms are characterized by the presence of several putative loci. The following arms include at least three such loci: 1p, 1q, 3p, 4q, 6p, 7q, 8p, 8q, 11p, 11q, 15q, 20q, and Xq. Studies with negative association and linkage results are also reviewed.  相似文献   

10.
An overview of the status of the human obesity gene map up to October 1995 is presented. The evidence is drawn from several lines of clinical and experimental research. First, 12 loci linked to Mendelian disorders exhibiting obesity as one clinical feature are reviewed. Second, six loci causing obesity in rodent models of the disease are considered. Third, eight chromosomal regions where quantitative trait loci, identified by crossbreeding experiments with informative strains of mice, are defined. Fourth, 10 candidate genes exhibiting a statistical association with BMI or body fat are introduced. Fifth, nine loci found to be linked to a relevant phenotype are listed and the four cases for which the evidence for linkage is strongest are emphasized. The latter are mapped to 2p25, 6p21.3, 7q33 and 20q12-13.11. Finally, the studies that have concluded that there was no association or linkage with a marker or gene are also reviewed. It is recommended that a system be developed by the obesity research community to ensure that an accurate and easily accessible computerized version of the human obesity gene map becomes available in the near future.  相似文献   

11.
Liu P  Vikis H  Lu Y  Wang D  You M 《PloS one》2007,2(7):e651
Understanding the genetic basis of common disease and disease-related quantitative traits will aid in the development of diagnostics and therapeutics. The processs of gene discovery can be sped up by rapid and effective integration of well-defined mouse genome and phenome data resources. We describe here an in silico gene-discovery strategy through genome-wide association (GWA) scans in inbred mice with a wide range of genetic variation. We identified 937 quantitative trait loci (QTLs) from a survey of 173 mouse phenotypes, which include models of human disease (atherosclerosis, cardiovascular disease, cancer and obesity) as well as behavioral, hematological, immunological, metabolic, and neurological traits. 67% of QTLs were refined into genomic regions <0.5 Mb with approximately 40-fold increase in mapping precision as compared with classical linkage analysis. This makes for more efficient identification of the genes that underlie disease. We have identified two QTL genes, Adam12 and Cdh2, as causal genetic variants for atherogenic diet-induced obesity. Our findings demonstrate that GWA analysis in mice has the potential to resolve multiple tightly linked QTLs and achieve single-gene resolution. These high-resolution QTL data can serve as a primary resource for positional cloning and gene identification in the research community.  相似文献   

12.
13.
Objectives: To investigate possible obesity candidate genes in regions of porcine quantitative trait loci (QTL) for fat deposition and obesity‐related phenotypes. Research Methods and Procedures: Chromosome mapping and QTL analyses of obesity candidate genes were performed using DNA panels from a reference pig family. Statistical association analyses of these genes were performed for fat deposition phenotypes in several other commercial pig populations. Results: Eight candidate genes were mapped to QTL regions of pig chromosomes in this study. These candidate genes also served as anchor loci to determine homologous human chromosomal locations of pig fat deposition QTL. Preliminary analyses of relationships among polymorphisms of individual candidate genes and a variety of phenotypic measurements in a large number of pigs were performed. On the basis of available data, gene‐gene interactions were also studied. Discussion: Comparative analysis of obesity‐related genes in the pig is not only important for development of marker‐assisted selection on growth and fat deposition traits in the pig but also provides for an understanding of their genetic roles in the development of human obesity.  相似文献   

14.
Effective utilization of the domestic cat as an animal model for hereditary and infectious disease requires the development and implementation of high quality gene maps incorporating microsatellites and conserved coding gene markers. Previous feline linkage and radiation hybrid maps have lacked sufficient microsatellite coverage on all chromosomes to make effective use of full genome scans. Here we report the isolation and genomic mapping of 304 novel polymorphic repeat loci in the feline genome. The new loci were mapped in the domestic cat radiation hybrid panel using an automated fluorescent TAQ-Man based assay. The addition of these 304 microsatellites brings the total number of microsatellites mapped in the feline genome to 580, and the total number of loci placed onto the RH map to 1,126. Microsatellites now span every autosome with an average spacing of roughly one polymorphic STR every five centimorgans, and full genome coverage of one marker every 2.7 megabases. These loci now provide a useful tool for undertaking full-genome scans to identify genes associated with phenotypes of interest, such as those relating to hereditary disease, coat color, patterning and morphology. These resources can also be extended to the remaining 36 species of the cat family for population genetic and evolutionary genomic analyses.  相似文献   

15.
An incredible amount of progress has occurred in the past decade since the pig genome map began to develop. The porcine genetic linkage map now has nearly 5,000 loci including several hundred genes, microsatellites and amplified fragment length polymorphism (AFLP) markers being added to the map. Thanks to somatic cell hybrid panels and then radiation hybrid panels the physical genetic map is also growing rapidly and now has over 4,000 genes and markers. Many quantitative trait loci (QTL) scans have been completed and together with candidate gene analyses have identified important chromosomal regions and individual genes associated with traits of economic interests. Using marker assisted selection (MAS) the commercial pig industry is actively using this information and traditional performance information to improve pig production. Large scale pig arrays are just now beginning to be used and co-expression of thousands of genes is now advancing our understanding of gene function. The pig's role in xenotransplantation and biomedical research makes the study of its genome important for the study of human disease. Sequencing of the pig genome appears on the near horizon. This commentary will discuss recent advances in pig genomics, directions for future research and the implications to both the pig industry and human health.  相似文献   

16.
The past decade has yielded new tools for pig geneticists and breeders thanks to the considerable developments resulting from efforts to map the pig genome. The pig genetic linkage map now has nearly 5000 loci including several hundred genes, microsatellites and amplified fragment length polymorphisms (AFLP) markers. Using tools that include somatic cell hybrid panels and radiation hybrid panels, the physical genetic map is also growing rapidly and has over 4000 genes and markers. Scientists using both exotic and commercial breeds for quantitative trait loci (QTL) scans and candidate gene analyses have identified a number of important chromosomal regions and individual genes associated with growth rate, leanness, feed intake, meat quality, litter size and disease resistance. Using marker-assisted selection (MAS) the commercial pig industry is actively incorporating these gene markers and traditional performance information to improve traits of economic importance in pig production. Researchers now have novel tools including pig gene arrays and advanced bioinformatics that are being exploited to find new candidate genes and to advance the understanding of gene function in the pig. Sequencing of the pig genome has been initiated and further sequencing is now being considered. Advances in pig genomics and directions for future research and the implications to both the pig industry and human health are reviewed.  相似文献   

17.
Advances in pig genomics and functional gene discovery   总被引:1,自引:0,他引:1  
Advances in pig gene identification, mapping and functional analysis have continued to make rapid progress. The porcine genetic linkage map now has nearly 3000 loci, including several hundred genes, and is likely to expand considerably in the next few years, with many more genes and amplified fragment length polymorphism (AFLP) markers being added to the map. The physical genetic map is also growing rapidly and has over 3000 genes and markers. Several recent quantitative trait loci (QTL) scans and candidate gene analyses have identified important chromosomal regions and individual genes associated with traits of economic interest. The commercial pig industry is actively using this information and traditional performance information to improve pig production by marker-assisted selection (MAS). Research to study the co-expression of thousands of genes is now advancing and methods to combine these approaches to aid in gene discovery are under way. The pig's role in xenotransplantation and biomedical research makes the study of its genome important for the study of human disease. This review will briefly describe advances made, directions for future research and the implications for both the pig industry and human health.  相似文献   

18.
Obesity develops in response to a combination of environmental effects and multiple genes of small effect. Although there has been significant progress in characterizing genes in many pathways contributing to metabolic disease, knowledge about the relationships of these genes to each other and their joint effects upon obesity lags behind. The LG,SM advanced intercross line (AIL) model of obesity has been used to characterize over 70 loci involved in fatpad weight, body weight, and organ weights. Each of these quantitative trait loci (QTLs) encompasses large regions of the genome and require fine‐mapping to isolate causative sequence changes and possible mechanisms of action as indicated by the genetic architecture. In this study we fine‐map QTLs first identified in the F2 and F2/3 populations in the combined F9/10 advanced intercross generations. We observed significantly narrowed QTL confidence regions, identified many single QTL that resolve into multiple QTL peaks, and identified new QTLs that may have been previously masked due to opposite gene effects at closely linked loci. We also present further characterization of the pleiotropic and epistatic interactions underlying these obesity‐related traits.  相似文献   

19.
Genome scans have become a common approach to identify genomic signatures of natural selection and reproductive isolation, as well as the genomic bases of ecologically relevant phenotypes, based on patterns of polymorphism and differentiation among populations or species. Here, we review the results of studies taking genome scan approaches in plants, consider the patterns of genomic differentiation documented and their possible causes, discuss the results in light of recent models of genomic differentiation during divergent adaptation and speciation, and consider assumptions and caveats in their interpretation. We find that genomic regions of high divergence generally appear quite small in comparisons of both closely and more distantly related populations, and for the most part, these differentiated regions are spread throughout the genome rather than strongly clustered. Thus, the genome scan approach appears well-suited for identifying genomic regions or even candidate genes that underlie adaptive divergence and/or reproductive barriers. We consider other methodologies that may be used in conjunction with genome scan approaches, and suggest further developments that would be valuable. These include broader use of sequence-based markers of known genomic location, greater attention to sampling strategies to make use of parallel environmental or phenotypic transitions, more integration with approaches such as quantitative trait loci mapping and measures of gene flow across the genome, and additional theoretical and simulation work on processes related to divergent adaptation and speciation.  相似文献   

20.
We report the localization by linkage analysis in the rat genome of 148 new markers derived from 128 distinct known gene sequences, ESTs, and anonymous sequences selected in GenBank database on the basis of the presence of a repeated element. The composite linkage map of the rat contributed by our group integrates mapping information on a total of 370 different known genes, ESTs, and anonymous mouse or human sequences, and provides a valuable tool for comparative genome analysis. 206 and 254 homologous loci were identified in the mouse and human genomes respectively. Our linkage map, which combines both anonymous markers and gene markers, should facilitate the advancement of genetic studies for a wide variety of rat models characterized for complete phenotypes. The comparative genome mapping should define genetic regions in human likely to be homologous to susceptibility loci identified in rat and provide useful information for the identification of new potential candidates for genetic disorders. Received: 2 January 1999 / Accepted: 7 March 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号