首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Brown adipose tissue (BAT) plays a key role in energy expenditure through its thermogenic function, making its activation a popular target to reduce obesity. We recently reported that male mice housed at thermoneutrality with uncoupling protein 1 (UCP1) deficiency had increased weight gain and glucose intolerance, but eicosapentaenoic acid (EPA) ameliorated these effects.Whether female mice respond similarly to lack of UCP1 and to EPA remains unknown. We hypothesize that the effects of EPA on BAT activation are independent of UCP1 expression. We used female wild type (WT) and UCP1 knockout (KO) mice housed at thermoneutrality (30°C) as an obesogenic environment and fed them high fat (HF) diets with or without EPA for up to 14 weeks. Body weight (BW), body composition, and insulin and glucose tolerance tests were performed during the feeding trial. At termination, serum and BAT were harvested for further analyses. Mice in the KO-EPA group had significantly lower BW than KO-HF mice. In addition, KO-HF mice displayed significantly impaired glucose tolerance compared to their WT-HF littermates. However, EPA significantly enhanced glucose clearance in the KO mice compared to KO-HF mice. Protein levels of the mitochondrial cytochrome C oxidase subunits I, II, and IV were significantly lower in KO mice compared to WT. Our findings support that ablation of UCP1 is detrimental to energy metabolism of female mice in thermoneutral conditions. However, unexpectedly, EPA's protective effects against diet-induced obesity and glucose intolerance in these mice were independent of UCP1.  相似文献   

2.
Expression of brown adipose tissue (BAT) associated proteins like uncoupling protein 1 (UCP1) in inguinal WAT (iWAT) has been suggested to alter iWAT metabolism. The aim of this study was to investigate the role of interleukin-6 (IL-6) in exercise training and cold exposure-induced iWAT UCP1 expression. The effect of daily intraperitoneal injections of IL-6 (3 ng/g) in C57BL/6 mice for 7 days on iWAT UCP1 expression was examined. In addition, the expression of UCP1 in iWAT was determined in response to 3 days of cold exposure (4°C) and 5 weeks of exercise training in wild type (WT) and whole body IL-6 knockout (KO) mice. Repeated injections of IL-6 in C57BL/6 mice increased UCP1 mRNA but not UCP1 protein content in iWAT. Cold exposure increased iWAT UCP1 mRNA content similarly in IL-6 KO and WT mice, while exercise training increased iWAT UCP1 mRNA in WT mice but not in IL-6 KO mice. Additionally, a cold exposure-induced increase in iWAT UCP1 protein content was blunted in IL-6 KO mice, while UCP1 protein content in iWAT was lower in both untrained and exercise trained IL-6 KO mice than in WT mice. In conclusion, repeated daily increases in plasma IL-6 can increase iWAT UCP1 mRNA content and IL-6 is required for an exercise training-induced increase in iWAT UCP1 mRNA content. In addition IL-6 is required for a full induction of UCP1 protein expression in response to cold exposure and influences the UCP1 protein content iWAT of both untrained and exercise trained animals.  相似文献   

3.
4.
Acylation-stimulating protein (ASP) acts as a paracrine signal to increase triglyceride synthesis in adipocytes. In mice, C3 (the precursor to ASP) knock-out (KO) results in ASP deficiency and leads to reduced body fat and leptin levels yet they are hyperphagic. In the present study, we investigated the mechanism for this energy repartitioning. Compared with wild-type (WT) mice, male and female C3(-/-) ASP-deficient mice had elevated oxygen consumption (VO2) in both the active (dark) and resting (light) phases of the diurnal cycle: +8.9% males (p < 0.05) +9.4% females (p < 0.05). Increased physical activity (movement) was observed during the dark phase in female but not in male KO animals. Female WT mice moved 16.9 +/- 2.4 m whereas KO mice moved 30.1 +/- 5.4 m, over 12 h, +78.4%, p < 0.05). In contrast, there was no difference in physical activity in male mice, but a repartitioning of dietary fat following intragastric fat administration was noted. This was reflected by increased fatty acid oxidation in liver and muscle in KO mice, with increased UCP2 (inguinal fat) and UCP3 (muscle) mRNA expression (p = 0.005 and 0.036, respectively). Fatty acid uptake into brown adipose tissue (BAT) and white adipose tissue (WAT) was reduced as reflected by a decrease in the fatty acid incorporation into lipids (BAT -68%, WAT -29%. The decrease of FA incorporation was normalized by intraperitoneal administration of ASP at the time of oral fat administration. These results suggest that ASP deficiency results in energy repartitioning through different mechanisms in male and female mice.  相似文献   

5.
Objective: Chronic central administration of neuropeptide Y (NPY) has dramatic effects on energy balance; however, the exact role of the hypothalamic paraventricular nucleus (PVN) in this is unknown. The aim of this study was to further unravel the contribution of NPY signaling in the PVN to energy balance. Research Methods and Procedures: Recombinant adeno‐associated viral particles containing NPY (rAAV‐NPY) were injected in the rat brain with coordinates targeted at the PVN. For three weeks, body weight, food intake, endocrine parameters, body temperature, and locomotor activity were measured. Furthermore, effects on insulin sensitivity and expression of NPY, agouti‐related protein (AgRP), and pro‐opiomelanocortin in the arcuate nucleus were studied. Results: Food intake was increased specifically in the light period, and dark phase body temperature and locomotor activity were reduced. This resulted in obesity characterized by increased fat mass; elevated plasma insulin, leptin, and adiponectin; decreased AgRP expression in the arcuate nucleus; and decreased insulin sensitivity; whereas plasma corticosterone was unaffected. Discussion: These data suggest that increased NPY expression targeted at the PVN is sufficient to induce obesity. Interestingly, plasma concentrations of leptin and insulin were elevated before a rise in food intake, which suggests that NPY in the PVN influences leptin and insulin secretion independently from food intake. This strengthens the role of the PVN in regulation of energy balance by NPY.  相似文献   

6.
7.
Peroxisome proliferator‐activated receptors (PPARs) play a major role in metabolism and inflammatory control. Exercise can modulate PPAR expression in skeletal muscle, adipose tissue, and macrophages. Little is known about the effects of PPAR‐α in metabolic profile and cytokine secretion after acute exercise in macrophages. In this context, the aim of this study was to understand the influence of PPAR‐α on exercise‐mediated immune metabolic parameters in peritoneal macrophages. Mice C57BL/6 (WT) and PPAR‐α knockout (KO) were examined in non‐exercising control (n = 4) or 24 hours after acute moderate exercise (n = 8). Metabolic parameters (glucose, non‐esterified fatty acids, total cholesterol [TC], and triacylglycerol [TG]) were assessed in serum. Cytokine concentrations (IL‐1β, IL‐6, IL‐10, TNF‐α, and MCP‐1) were measured from peritoneal macrophages cultured or not with LPS (2.5 μg/mL) and Rosiglitazone (1 μM). Exercised KO mice exhibited low glucose concentration and higher TC and TG in serum. At baseline, no difference in cytokine production between the genotypes was observed. However, IL‐1β was significantly higher in KO mice after LPS stimulus. IL‐6 and IL‐1β had increased concentrations in KO compared with WT, even after exercise. MCP‐1 was not restored in exercised KO LPS group. Rosiglitazone was not able to reduce proinflammatory cytokine production in KO mice at baseline level or associated with exercise. Acute exercise did not alter mRNA expression in WT mice. Conclusion: PPAR‐α seems to be needed for metabolic glucose homeostasis and anti‐inflammatory effect of acute exercise. Its absence may induce over‐expression of pro‐inflammatory cytokines in LPS stimulus. Moreover, moderate exercise or PPAR‐γ agonist did not reverse this response.  相似文献   

8.
Objective: Obese transgenic UCP‐DTA mice have largely ablated brown adipose tissue and develop obesity and diabetes, which are highly susceptible to a high‐fat diet. We investigated macronutrient self‐selection and its effect on development of obesity, diabetes, and energy homeostasis in UCP‐DTA mice. Research Methods and Procedures: UCP‐DTA and wild‐type littermates were fed a semisynthetic macronutrient choice diet (CD) ad libitum from weaning until 17 weeks. Energy homeostasis was assessed by measurement of food intake, food digestibility, body composition, and energy expenditure. Diabetes was assessed by blood glucose measurements and insulin tolerance test. Results: Wild‐type and UCP‐DTA mice showed a high fat preference and increased energy digestion on CD compared with a low‐fat standard diet. On CD, wild‐type mice accumulated less body fat (16.9%) than UCP‐DTA (32.6%) mice, although they had a higher overall energy intake. Compared with wild‐type mice, resting metabolic rate was reduced in UCP‐DTA mice irrespective of diet. UCP‐DTA mice progressively decreased their carbohydrate intake, resulting in an almost complete avoidance of carbohydrate. UCP‐DTA mice developed severe insulin resistance but showed decreased fed and fasted blood glucose on CD. Discussion: In contrast to wild‐type mice, UCP‐DTA mice were not able to reduce their weight gain efficiency on CD. This suggests that, because of the high fat preference of the background strain and the increased metabolic efficiency, brown adipose tissue‐deficient mice still develop obesity and insulin resistance on a macronutrient CD even when decreasing overall energy intake. Through the avoidance of carbohydrates, however, they are able to maintain normoglycemia.  相似文献   

9.
White and brown adipocytes are usually located in distinct depots; however, in response to cold, brown adipocytes appear in white fat. This response is mediated by beta-adrenoceptors but there is a controversy about the subtype(s) involved. In the present study, we exposed to cold beta 3-adrenoceptor knockout mice (beta 3KO) on a C57BL/6J genetic background and measured in white adipose tissue the density of multilocular cells and the expression of the brown adipocyte marker uncoupling protein-1 (UCP1). In brown fat of beta 3KO mice, UCP1 expression levels were normal at 24 degrees C as well as after a 10-day cold exposure. Strikingly, under both conditions, in the white fat of beta 3KO mice the levels of UCP1 mRNA and protein as well as the density of multilocular cells were decreased. These results indicate that beta 3-adrenoceptors play a major role in the appearance of brown adipocytes in white fat and suggest that the brown adipocytes present in white fat differ from those in brown fat.  相似文献   

10.
11.
Myostatin knockout in mice increases myogenesis and decreases adipogenesis   总被引:34,自引:0,他引:34  
Growth differentiation factor-8 (GDF-8), or Myostatin, plays an important inhibitory role during muscle development. Since muscle and adipose tissue develop from the same mesenchymal stem cells, we hypothesized that Myostatin gene knockout may cause a switch between myogenesis and adipogenesis. Male and female wild type (WT) and Myostatin knockout (KO) mice were sacrificed at 4, 8, and 12 weeks of age. The gluteus muscle (GM) was larger in KO mice compared to WT mice at 8 (P < 0.01) and 12 (P < 0.001) weeks. At 12 weeks, KO mice had decreased fat depots (P < 0.01). Compared to 12-week-old WT mice, serum leptin concentration in KO mice was lower (P < 0.001) and leptin mRNA expression was decreased (P < 0.01) in inguinal adipose tissue. CCAAT/enhancer binding protein-alpha (C/EBPalpha) and peroxisome proliferator-activated receptor-gamma (PPARgamma) levels in adipose tissue were significantly lower in KO mice compared to WT mice. Thus, increased muscle development in Myostatin knockout mice is associated with reduced adipogenesis and consequently, decreased leptin secretion.  相似文献   

12.
Sex as a physiologic factor has a strong association with the features of metabolic syndrome. Our previous study showed that loss of the voltage-gated proton channel Hv1 inhibits insulin secretion and leads to hyperglycemia and glucose intolerance in male mice. However, there are significant differences in blood glucose between male and female Hv1-knockout (KO) mice. Here, we investigated the differences in glucose metabolism and insulin sensitivity between male and female KO mice and how sex steroids contribute to these differences. We found that the fasting blood glucose in female KO mice was visibly lower than that in male KO mice, which was accompanied by hypotestosteronemia. KO mice in both sexes exhibited higher expression of gluconeogenesis-related genes in liver compared with WT mice. Also, the livers from KO males displayed a decrease in glycolysis-related gene expression and an increase in gluconeogenesis-related gene expression compared with KO females. Furthermore, exogenous testosterone supplementation decreased blood glucose levels in male KO mice, as well as enhancing insulin signaling. Taken together, our data demonstrate that knockout of Hv1 results in higher blood glucose levels in male than female mice, despite a decreased insulin secretion in both sexes. This sex-related difference in glucose homeostasis is associated with the glucose metabolism in liver tissue, likely due to the physiological levels of testosterone in KO male mice.  相似文献   

13.
Objective: The aim of this study was to determine the sex‐dependent differences in the response of key parameters involved in thermogenesis and control of body weight in brown adipose tissue (BAT) and white adipose tissue (WAT) in postcafeteria‐fed rats, a model of dietary obesity. Research Methods and Procedures: BAT and WAT were obtained from male and female control and postcafeteria‐fed Wistar rats. Postcafeteria‐fed rats were initially fed with cafeteria diet from day 10 of life until day 110 (cafeteria period) and with standard chow diet from then until day 180 of life (postcafeteria period). Body mass and energy intake were evaluated. Biometric parameters were analyzed in interscapular BAT (IBAT). Levels of uncoupling protein 1 (UCP1), α2‐adrenergic receptor (AR), and β3‐AR proteins and UCP1, UCP2, UCP3, β3‐AR, and leptin mRNAs, in IBAT or WAT, were studied by Western blot and Northern blot analyses, respectively. Results: Rats attained 59% (females) and 39% (males) increase in body weight at the end of the cafeteria period. During the postcafeteria period, the rats showed a loss of body weight, which was higher in females. Postcafeteria‐fed female rats also presented higher activation of thermogenic parameters in IBAT, including UCP1, UCP2, and UCP3 mRNAs. Female control rats showed lower levels of both α2 and β3‐ARs in BAT compared with male rats, but these levels in postcafeteria‐fed female and male rats were the same, because males tended to down‐regulate them. Levels of leptin mRNA in response to the postcafeteria state depended on gender and the specific WAT depot studied. Discussion: It is suggested that in postcafeteria‐fed female rats, BAT thermogenic capacity becomes more efficiently activated than in males. Female rats also showed a bigger weight loss. The parallel regulation of the levels of UCP2 and UCP3 mRNAs, with respect to UCP1 mRNA, with higher activation in female postcafeteria‐fed rats, suggests a possible role of both UCP2 and UCP3 in the regulation of energy expenditure and in the control of body weight. The distinct responses to overweight of α2 and β3‐ARs—which were sex dependent—and leptin mRNA—which depended on both sex and WAT depot—also support the different response of thermogenesis‐related parameters between overweight males and females.  相似文献   

14.
In the sexually dimorphic anteroventral periventricular nucleus (AVPV) of the hypothalamus, females have a greater number of tyrosine hydroxylase‐immunoreactive (TH‐ir) and kisspeptin‐immunoreactive (kisspeptin‐ir) neurons than males. In this study, we used proteomics analysis and gene‐deficient mice to identify proteins that regulate the number of TH‐ir and kisspeptin‐ir neurons in the AVPV. Analysis of protein expressions in the rat AVPV on postnatal day 1 (PD1; the early phase of sex differentiation) using two‐dimensional fluorescence difference gel electrophoresis followed by MALDI‐TOF‐MS identified collapsin response mediator protein 4 (CRMP4) as a protein exhibiting sexually dimorphic expression. Interestingly, this sexually differential expressions of CRMP4 protein and mRNA in the AVPV was not detected on PD6. Prenatal testosterone exposure canceled the sexual difference in the expression of Crmp4 mRNA in the rat AVPV. Next, we used CRMP4‐knockout (CRMP4‐KO) mice to determine the in vivo function of CRMP4 in the AVPV. Crmp4 knockout did not change the number of kisspeptin‐ir neurons in the adult AVPV in either sex. However, the number of TH‐ir neurons was increased in the AVPV of adult female CRMP4‐KO mice as compared with the adult female wild‐type mice. During development, no significant difference in the number of TH‐ir neurons was detected between sexes or genotypes on embryonic day 15, but a female‐specific increase in TH‐ir neurons was observed in CRMP4‐KO mice on PD1, when the sex difference was not yet apparent in wild‐type mice. These results indicate that CRMP4 regulates the number of TH‐ir cell number in the female AVPV. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 502–517, 2013  相似文献   

15.
Uncoupling protein-3 (UCP3) is a poorly understood mitochondrial inner membrane protein expressed predominantly in skeletal muscle. The aim of this study was to examine the effects of the absence or constitutive physiological overexpression of UCP3 on whole body energy metabolism, glucose tolerance, and muscle triglyceride content. Congenic male UCP3 knockout mice (Ucp3-/-), wild-type, and transgenic UCP3 overexpressing (UCP3Tg) mice were fed a 10% fat diet for 4 or 8 mo after they were weaned. UCP3Tg mice had lower body weights and were less metabolically efficient than wild-type or Ucp3-/- mice, but they were not hyperphagic. UCP3Tg mice had smaller epididymal white adipose tissue and brown adipose tissue (BAT) depots; however, there were no differences in muscle weights. Glucose and insulin tolerance tests revealed that both UCP3Tg and Ucp3-/- mice were protected from development of impaired glucose tolerance and were more sensitive to insulin. 2-Deoxy-D-[1-3H]glucose tracer studies showed increased uptake of glucose into BAT and increased storage of liver glycogen in Ucp3-/- mice. Assessments of intramuscular triglyceride (IMTG) revealed decreases in quadriceps of UCP3Tg mice compared with wild-type and Ucp3-/- mice. When challenged with a 45% fat diet, Ucp3-/- mice showed increased accumulation of IMTG compared with wild-type mice, which in turn had greater IMTG than UCP3Tg mice. Results are consistent with a role for UCP3 in preventing accumulation of triglyceride in both adipose tissue and muscle.  相似文献   

16.
17.
Production of Annexin A1 (ANXA1), a protein that mediates the anti-inflammatory action of glucocorticoids, is altered in obesity, but its role in modulation of adiposity has not yet been investigated. The objective of this study was to investigate modulation of ANXA1 in adipose tissue in murine models of obesity and to study the involvement of ANXA1 in diet-induced obesity in mice. Significant induction of ANXA1 mRNA was observed in adipose tissue of both C57BL6 and Balb/c mice with high fat diet (HFD)-induced obesity versus mice on chow diet. Upregulation of ANXA1 mRNA was independent of leptin or IL-6, as demonstrated by use of leptin-deficient ob/ob mice and IL-6 KO mice. Compared to WT mice, female Balb/c ANXA1 KO mice on HFD had increased adiposity, as indicated by significantly elevated body weight, fat mass, leptin levels, and adipocyte size. Whereas Balb/c WT mice upregulated expression of enzymes involved in the lipolytic pathway in response to HFD, this response was absent in ANXA1 KO mice. A significant increase in fasting glucose and insulin levels as well as development of insulin resistance was observed in ANXA1 KO mice on HFD compared to WT mice. Elevated plasma corticosterone levels and blunted downregulation of 11-beta hydroxysteroid dehydrogenase type 1 in adipose tissue was observed in ANXA1 KO mice compared to diet-matched WT mice. However, no differences between WT and KO mice on either chow or HFD were observed in expression of markers of adipose tissue inflammation.These data indicate that ANXA1 is an important modulator of adiposity in mice, with female ANXA1 KO mice on Balb/c background being more susceptible to weight gain and diet-induced insulin resistance compared to WT mice, without significant changes in inflammation.  相似文献   

18.
In addition to their extended lifespans, slow‐aging growth hormone receptor/binding protein gene‐disrupted (knockout) (GHR‐KO) mice are hypoinsulinemic and highly sensitive to the action of insulin. It has been proposed that this insulin sensitivity is important for their longevity and increased healthspan. We tested whether this insulin sensitivity of the GHR‐KO mouse is necessary for its retarded aging by abrogating that sensitivity with a transgenic alteration that improves development and secretory function of pancreatic β‐cells by expressing Igf‐1 under the rat insulin promoter 1 (RIP::IGF‐1). The RIP::IGF‐1 transgene increased circulating insulin content in GHR‐KO mice, and thusly fully normalized their insulin sensitivity, without affecting the proliferation of any non‐β‐cell cell types. Multiple (nonsurvivorship) longevity‐associated physiological and endocrinological characteristics of these mice (namely beneficial blood glucose regulatory control, altered metabolism, and preservation of memory capabilities) were partially or completely normalized, thus supporting the causal role of insulin sensitivity for the decelerated senescence of GHR‐KO mice. We conclude that a delayed onset and/or decreased pace of aging can be hormonally regulated.  相似文献   

19.

Background

The uncoupling protein 1 (UCP1) is a hallmark of brown adipocytes and pivotal for cold- and diet-induced thermogenesis.

Methodology/Principal Findings

Here we report that cyclooxygenase (COX) activity and prostaglandin E2 (PGE2) are crucially involved in induction of UCP1 expression in inguinal white adipocytes, but not in classic interscapular brown adipocytes. Cold-induced expression of UCP1 in inguinal white adipocytes was repressed in COX2 knockout (KO) mice and by administration of the COX inhibitor indomethacin in wild-type mice. Indomethacin repressed β-adrenergic induction of UCP1 expression in primary inguinal adipocytes. The use of PGE2 receptor antagonists implicated EP4 as a main PGE2 receptor, and injection of the stable PGE2 analog (EP3/4 agonist) 16,16 dm PGE2 induced UCP1 expression in inguinal white adipose tissue. Inhibition of COX activity attenuated diet-induced UCP1 expression and increased energy efficiency and adipose tissue mass in obesity-resistant mice kept at thermoneutrality.

Conclusions/Significance

Our findings provide evidence that induction of UCP1 expression in white adipose tissue, but not in classic interscapular brown adipose tissue is dependent on cyclooxygenase activity. Our results indicate that cyclooxygenase-dependent induction of UCP1 expression in white adipose tissues is important for diet-induced thermogenesis providing support for a surprising role of COX activity in the control of energy balance and obesity development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号