首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously reported a quantitative trait locus for body weight, non-insulin-dependent diabetes 5 (Nidd5), on Chromosome 2 in the TSOD (Tsumura, Suzuki, Obese Diabetes) mouse, a model of polygenic obese type 2 diabetes. To find the gene responsible for a specific component of the pathogenesis, we used a marker-assisted selection protocol to produce congenic strains. These mice are designed to carry a control BALB/cA-derived genomic interval and a TSOD background to look for loss of phenotype. One of the strains with the widest congenic interval, D2Mit297-D2Mit304, showed reductions in both body weight and adiposity compared with TSOD mice. The phenotypic analyses of other congenic strains further narrowed the locus in a 9.4-Mb interval between D2Mit433 and D2Mit91, around which numerous loci for body weight and adiposity have been mapped previously. Although the locus showed a relatively modest effect on body weight, it had a major influence on fat mass that explains approximately 60% of the difference in the adipose index between parental TSOD and BALB/cA mice. Furthermore, the congenic strain with a minimal BALB/cA-derived region showed significantly smaller cell sizes of white and brown adipocytes compared with the control littermates. However, the locus did not primarily affect food consumption, general activity, or rectal temperature after cold exposure, although there are clear differences in these traits between the parental strains. The present work physically delineates the major locus for adiposity in the TSOD mouse.  相似文献   

2.
Linkage studies have identified many chromosomal regions containing obesity genes in mice. However, only a few of these quantitative trait loci (QTLs) have been used to guide the production of congenic mouse strains that retain obesity phenotypes. We seek to identify chromosomal regions containing obesity genes in the BSB model of spontaneous obesity because the BSB model is a multigenic obesity model. Previous studies identified QTLs on Chromosomes (Chrs) 2, 6, 7,12, and 15. BSB mice are made by backcross of lean C57BL/6J × Mus spretus. F1s were backcrossed to C57BL/6J mice to produce BSB progeny. We have constructed a new BSB cross and produced congenic mice with obesity phenotypes by marker-directed selection called B6.S–D2Mit194D2Mit311. We found a highly significant QTL for percentage body lipid on Chr 2 just proximal to the Agouti locus. Chr 2 congenics were constructed to determine whether the main effects would be detectable. We observed highly significant linkage of the Chr 2 congenic containing Agouti and containing markers distal to D2Mit311 and proximal to D2Mit194. Thus, this congenic contains approximately 14.6 cM or 30 Mb (about 1.1% of the spretus mouse genome) and several hundred genes. The obesity phenotype of the QTL is retained in the congenic. The congenic can now be used to model the genetic and physiological basis for a relatively simple, perhaps monogenic, obesity.  相似文献   

3.
In a previous study we characterized the B6.CAST-(D2Mit329-D2Mit457)N(6) (B62D) congenic strain, which possesses CAST/EiJ (CAST) chromosome 2 donor alleles from 74 to 180 Mbp on a C57BL6/J (B6) background. This strain exhibited significant decreases in body weight and adiposity attributable to the weight gain 2 (Wg2) quantitative trait locus (QTL). To refine the location of Wg2, we used a two-stage genetic dissection strategy consisting of a B62D × B6 backcross, which mapped Wg2 to the proximal portion of the B62D donor region, followed by the development of seven overlapping subcongenic F2 intercrosses targeting the Wg2 genomic interval. Surprisingly, five of the seven intercrosses displayed significant differences, dependent on genotype, in body weight and/or fat pad mass. These effects were the result of at least four independent QTLs that were named Wg2a, b, c, and d. In contrast to the lean and low body weight phenotype of the B62D parental strain, mice homozygous for CAST congenic alleles (cast/cast) at Wg2a were significantly heavier at 6 and 9 weeks of age, while cast/cast mice at Wg2c had higher levels of total fat. Consistent with the prior observed effects of Wg2, cast/cast mice at Wg2b displayed significant decreases in 6- and 9-week body weight as well as a decrease in total fat pad mass. All of the QTLs had additive effects on body composition except Wg2d, which displayed underdominance for total fat mass. Significant differences in weight and adiposity were also observed in genetically identical b6/b6 homozygous mice across the panel of subcongenics, suggesting either maternal or paternal contributions to body composition. These data represent a significant advancement toward the identification of mouse chromosome 2 growth and obesity quantitative trait genes.  相似文献   

4.
A region on rat Chromosome (Chr) 2 of the Dahl salt-sensitive rat (S) was shown previously to contain a quantitative trait locus (QTL) for blood pressure (BP). This was achieved first by linkage, followed by the use of congenic strains. A congenic strain, designated S.MNS-D2Mit6/Adh, contained a segment of Chr 2 from the Milan Normotensive (MNS) rat in the S genetic background. Since the region containing the QTL was roughly 80 cM in size, a further reduction was needed towards the positional or candidate gene cloning. Currently, two congenic substrains were made from the original strain S.MNS-D2Mit6/Adh. One of these two substrains showed a BP-lowering effect, whereas the other substrain did not. Deducing the segment not shared in the two substrains, the BP QTL has to be present in a chromosome region of roughly 5.7 cM between the marker D2Rat303 and the locus for the neutroendopeptidase gene (Nep). Nep is not included within the segment. This region does not seem to contain any candidate genes well known for the BP control. Thus, the final identification of the QTL will most likely lead to the discovery of a brand new gene for the BP regulation. Received: 14 December 2000 / Accepted: 18 January 2001  相似文献   

5.
Previous QTL studies have identified 24 QTLs for body weight and growth from 3 to 10 weeks after birth in an intersubspecific backcross mouse population between C57BL/6J and wild Mus musculus castaneus that has 60% of the body size of C57BL/6J. The castaneus allele at the most potent QTL (Pbwg1) on proximal chromosome 2 retards growth. In this study we have developed a congenic strain with a 44.1-Mb interval containing the castaneus allele at Pbwg1 by recurrent backcrossing to C57BL/6J. The congenic mouse developed was characterized by significantly higher body weight gain between 1 and 3 weeks of age and lower weight of white fat pads at 10 weeks of age than C57BL/6J. However, no clear difference in body weight at 1–10 weeks of age was observed between congenic and C57BL/6J strains. QTL analysis with 269 F2 mice between the two strains did not identify any QTLs for body weight at 1, 3, 6, and 10 weeks of age, but it discovered eight closely linked QTLs affecting body weight gain from 1 to 3 weeks of age, lean body weight, weight of white fat pads, and body length within the Pbwg1 region. The castaneus alleles at all fat pad QTLs reduced the phenotypes, whereas at the remaining growth and body composition QTLs, they increased the trait values. These results illustrate that Pbwg1, which initially appeared to be a single locus, was resolved into several loci with opposite effects on the composition traits of overall body weight. This gives a reason for the loss of the Pbwg1 effect found in the original backcross population. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Inbred strains of mice differ in their susceptibility to excitotoxin‐induced cell death, but the genetic basis of individual variation is unknown. Prior studies with crosses of the FVB/NJ (seizure‐induced cell death susceptible) mouse and the seizure‐induced cell death resistant mouse, C57BL/6J, showed the presence of three quantitative trait loci (QTLs), named seizure‐induced cell death 1 (Sicd1) to Sicd3. To better localize and characterize the Sicd2 locus, two reciprocal congenic mouse strains were created. While the B6.FVB‐Sicd2 congenic mouse was without effect on modifying susceptibility to seizure‐induced excitotoxic cell death, the FVB.B6‐Sicd2 congenic mouse, in which the chromosome (Chr) 15 region of C57BL/6J was introgressed into FVB/NJ, showed reduced seizure‐induced excitotoxic cell death following kainate administration. Phenotypic comparison between FVB and the congenic FVB.B6‐Sicd2 strain confirmed that the Sicd2 interval harbors gene(s) conferring strong protection against seizure‐induced excitotoxic cell death. Interval‐specific congenic lines (ISCLs) that encompass Sicd2 on Chr 15 were generated and were used to fine‐map this QTL. Resultant progeny were treated with kainate and examined for the extent of seizure‐induced cell death in order to deduce the Sicd2 genotypes of the recombinants through linkage analysis. All of the ISCLs exhibited reduced cell death associated with the C57BL/6J phenotype; however, ISCL‐2 showed the most dramatic reduction in seizure‐induced cell death in both area CA3 and in the dentate hilus. These findings confirm the existence of polymorphic loci within the reduced critical region of Sicd2 that regulate the severity of seizure‐induced cell death.  相似文献   

7.
We have previously reported suggestive evidence for a locus on Chromosome (Chr) 7 that affects adiposity in F2 mice from a CAST/Ei × C57BL/6J intercross fed a high-fat diet. Here we characterize the effect of a high-fat (32.6 Kcal% fat) diet on male and female congenic mice with a C57BL/6J background and a CAST/Ei-derived segment on Chr 7. Adiposity index (AI) and weights of certain fat pads were approximately 50% lower in both male and female congenic mice than in control C57BL/6J mice, and carcass fat content was significantly reduced. The reduction of fat depot weights was not seen, however, in congenic animals fed a low-fat chow diet (12 Kcal% fat). The congenic segment is approximately 25 cM in length, extending from D7Mit213 to D7Mit41, and includes the tub, Ucp2, and Ucp3, genes, all of which are candidate genes for this effect. Some polymorphisms have been found on comparing c-DNA sequences of the Ucp2 gene from C57BL/6J and CAST/Ei mice. These results suggest that one or more genes present in the congenic segment modulate the susceptibility to fat deposition on feeding a high-fat diet. We were unable to show any significant difference between the energy intakes of the congenic and the control C57BL/6J mice on the high-fat diet. Also, measurements of energy expenditure in male mice at 6 weeks of age, during the first 2 weeks of exposure to the high-fat diet, failed to show any differences between control and congenic animals. Received: 30 September 1998 / Accepted: 22 December 1998  相似文献   

8.
In this study, we performed a new genome‐wide association study using SLAF‐seq technology. A total of 19 single nucleotide polymorphism effects involving nine different SNP markers reached 5% Bonferroni‐corrected genome‐wide significance. In addition, a 5‐Mb region spanning 72.9–77.9 Mb on GGA4, exhibiting many significant SNP effects, was identified. The LDB2 gene in this region had a very strong association with body weight. Another SNP on GGA1, located in the INTS6 gene, had the strongest association with late body weight (weeks 10–16). Some of the SNPs that reached suggestive significance level overlapped with previously reported quantitative trait locus regions.  相似文献   

9.
Objective: To characterize the phenotypic consequences of long‐term selective breeding for rapid weight gain, with an emphasis on obesity and obesity‐induced diabetes (diabesity). Research Methods and Procedures: M16 is the result of long‐term selection for 3‐ to 6‐week weight gain from an ICR base population. Experiment 1 characterized males from both lines for body weights (3, 6, and 8 weeks), feed (4 to 8 weeks) and H2O (6 to 8 weeks) consumption, and heat loss, body composition, and levels of several plasma proteins at 8 weeks of age. Experiment 2 characterized differences between lines for both sexes at three ages (6, 8, and 16 weeks) and fed two diets (high and normal fat). Body weight, composition, blood glucose, and plasma insulin and leptin levels were evaluated after an 8‐hour fast. Results: At all ages measured, M16 mice were heavier, fatter, hyperphagic, hyperinsulinemic, and hyperleptinemic relative to ICR. M16 males and females were hyperglycemic relative to ICR, with 56% and 22% higher fasted blood glucose levels at 8 weeks of age. Discussion: M16 mice represent an outbred animal model to facilitate gene discovery and pathway regulation controlling early onset polygenic obesity and type 2 diabetic phenotypes. Phenotypes prevalent in the M16 model, with obesity and diabesity exhibited at a young age, closely mirror current trends in human populations.  相似文献   

10.
A lambda clone of mouse DNA containing a short array of telomere hexamers has been localized by FISH to a region close to the centromere of Chromosome (Chr) 6. Amplification of DNA with primers flanking an SSR showed that most inbred strains carry one of two alleles, although five other alleles were found among the inbred strains and 11 other alleles were found in wild-derived mice. Analysis of the DNA from four Robertsonian translocations suggests that the amplified sequence is still present in these chromosomes. The finding of two fragments associated with the Sig mutant suggests that the clone lies within a congenic region created when the mutant, obtained in a (C3H x 101)F1, was back-crossed to C57BL/6J. This region might include all or part of the centromere. Comparison of the segregation of the amplification product with the segregation of centromeric heterochromatin in an interspecies backcross, (C57BL/6 x M. spretus)F1 x M. spretus, (BSS) shows 1/72 recombinants with the centromeric heterochromatin, while 1/62 recombinants occurred in a BSB backcross. Analysis of other loci at the proximal end of Chr 6 gives the combined map Hc6-0.73-D6Mit86-0.73-D6Rp2-2.2-D6Mitl-2.2-Wnt2-3.0-Cpa. Data from a third cross show that Cola2 lies between D6Mit82 and D6Rp2. The portion of the telomere array, Tel-rs3, that has been sequenced contains only 13/31 repeats of the consensus sequence. A variety of sequence changes from the consensus hexamer suggests that this array has been removed for a long time from evolutionary pressures to retain the TTAGGG sequence.  相似文献   

11.
A previous genome-wide QTL study revealed many QTLs affecting postnatal body weight and growth in an intersubspecific backcross mouse population between the C57BL/6J (B6) strain and wild Mus musculus castaneus mice captured in the Philippines. Subsequently, several closely linked QTLs for body composition traits were revealed in an F2 intercross population between B6 and B6.Cg-Pbwg1, a congenic strain on the B6 genetic background carrying the growth QTL Pbwg1 on proximal chromosome 2. However, no QTL affecting body weight has been duplicated in the F2 population, except for mapping an overdominant QTL that causes heterosis of body weight. In this study, we developed 17 intersubspecific subcongenic strains with overlapping and nonoverlapping castaneus regions from the B6.Cg-Pbwg1 congenic strain in order to search for and genetically dissect QTLs affecting body weight into distinct closely linked loci. Phenotypic comparisons of several developed subcongenic strains with the B6 strain revealed that two closely linked but distinct QTLs that regulate body weight, named Pbwg1.11 and Pbwg1.12, are located on an 8.9-Mb region between D2Mit270 and D2Mit472 and on the next 3.6-Mb region between D2Mit205 and D2Mit182, respectively. Further analyses using F2 segregating populations obtained from intercrosses between B6 and each of the two selected subcongenic strains confirmed the presence of these two body weight QTLs. Pbwg1.11 had an additive effect on body weight at 6, 10, and 13?weeks of age, and its castaneus allele decreased it. In contrast, the castaneus allele at Pbwg1.12 acted in a dominant fashion and surprisingly increased body weight at 6, 10, and 13?weeks of age despite the body weight of wild castaneus mice being 60% of that of B6 mice. These findings illustrate the complex genetic nature of body weight regulation and support the importance of subcongenic mouse analysis to dissect closely linked loci.  相似文献   

12.
We previously used the C57BL/6J (B6) × A/J mouse chromosome substitution strain (CSS) panel to identify a major quantitative trait locus (QTL) on chromosome 11 influencing methamphetamine (MA)‐induced locomotor activity. We then made an F2 cross between CSS‐11 and B6 and narrowed the locus (Bayes credible interval: 79–109 Mb) which was inherited dominantly and accounted for 14% of the phenotypic variance in the CSS panel. In the present study, we created congenic and subcongenic lines possessing heterozygous portions of this QTL to narrow the interval. We identified one line (84–96 Mb) that recapitulated the QTL, thus narrowing the region to 12 Mb. This interval also produced a small decrease in locomotor activity following prior saline treatment. When we generated subcongenic lines spanning the entire 12‐Mb region, the phenotypic difference in MA sensitivity abruptly disappeared, suggesting an epistatic mechanism. We also evaluated the rewarding properties of MA (2 mg/kg, i.p.) in the 84‐ to 96‐Mb congenic line using the conditioned place preference (CPP) test. We replicated the locomotor difference in the MA‐paired CPP chamber yet observed no effect of genotype on MA‐CPP, supporting the specificity of this QTL for MA‐induced locomotor activity under these conditions. Lastly, to aid in prioritizing candidate genes responsible for this QTL, we used the Affymetrix GeneChip® Mouse Gene 1.0ST Array to identify genes containing expression QTLs (eQTL) in the striatum of drug‐naÏve, congenic mice. These findings highlight the difficulty of using congenic lines to fine map QTLs and illustrate how epistasis may thwart such efforts.  相似文献   

13.
The objective of the present study was to map quantitative trait loci (QTL) for alcohol intake using A × B/B × A recombinant inbred (RI) and AcB/BcA recombinant congenic (RC) strains of mice that were independently derived from the A/J and C57BL/6J progenitors. Mice were screened for levels of alcohol consumption with four days of forced exposure to alcohol, followed by three weeks of free choice between water and a 10% alcohol solution. Alcohol consumption data previously collected for 27 A × B/B × A RI strains were reanalyzed using a larger marker set and composite interval mapping. The reanalysis found markers on Chromosome 2 (D2Mit74, 107 cM) (males and females) and on Chromosome 11 (Pmv22, 8 cM) (females only) that exceeded the threshold for significant loci, and found suggestive loci (in males) on Chromosomes 10 (D10 Mit126, 21 cM), 12 (D12Mit37, 1 cM), 15 (Pdgfb, 46.8 cM), and 16 (D16Mit125, 29 cM). An additional suggestive locus was identified in female RI mice on Chromosome 11 (D11Mit120, 47.5 cM). Composite interval mapping (CIM) analysis indicated that there was a significant association between loci at Pdgfb and D2Mit74 in both males and females. Analysis of the AcB/BcA RC strains identified 11 QTL on Chromosomes 2, 3, 5,6, 7, 8, 9, 10, 12, 13, and 15. QTL on Chromosomes 7, 10, 12, and 15 were identified in both the A × B/B × A RI and AcB/BcA RC strains of mice. Additional QTLs identified on Chromosomes 2, 3, 7, 11, and 15 overlap with those previously identified in the literature using strains of mice with a C57BL/6J progenitor.  相似文献   

14.
Previous work identified a QTL affecting murine size (particularly tail length) in a cross between C57BL/6J and DBA/2J mice and refined its location to an 8-cM region between D1Mit30 and D1Mit57. The present study used recombinant progeny testing to fine map this QTL. Individuals from a partially congenic strain carrying chromosomes recombinant between D1Mit30 and D1Mit57 were mated to DBA/2J, generating 942 progeny. Two QTL affecting 10-week tail length were identified in this population: one at 9.7 cM distal to D1Mit30 (the position estimated in previous work), and another of smaller effect near D1Mit30. A second population (n=787) was generated by mating siblings from the progeny test population that were heterozygous for the same segment of chromosome, including only recombinants between D1Mit265 and D1Mit57. In the latter population, two QTL were also identified: one at 10.2 cM distal to D1Mit30, and another of smaller effect at the distal end of the mapped region (at D1Mit150). When the two populations were analyzed together, the estimated location of the central QTL was 10.2 cM distal to D1Mit30 and there was marginally significant evidence of the distal QTL. The central QTL explained approximately 7% of the phenotypic variance, and the 95% confidence interval for its position (determined by bootstrapping) was a 1.4-cM region, approximately the region from D1Mit451 to D1Mit219. The central QTL also affected tail length and body mass at 3 and 6 weeks of age, but to a lesser degree than 10-week tail length.  相似文献   

15.
Quantitative trait loci (QTLs) affecting body weight were investigated in the backcross population derived from nondiabetic BB/OK and spontaneously hypertensive rat (SHR) strains. The F1 hybrids were backcrossed onto SHR rats, and QTL analysis was performed separately with the resulting backcross populations for each sex on Chromosomes (Chrs) 1, 3, 4, 10, 13, and 18. The body weight was determined at the age of 14 weeks, and the statistical analysis was performed with MAPMAKER/QTL 1.1b computer program. According to the stringent threshold for a lod score of 3.0, markers on Chr 1 were found to be linked with body weight. The QTL with a peak lod score (5.1) on Chr 1 for a male population was located within markers Igf2 and D1Mgh12. In contrast, in the female population the body weight affecting QTL (lod = 5.7) on Chr 1 was located between the D1Mit3 and Lsn markers. The existence of QTLs on Chr 1 affecting body weight in the male population was confirmed by congenic BB.Sa rats, carrying chromosomal region of SHR (Sa-Igf2) on the genetic background of BB rat. Received: 14 July 1997 / Accepted: 22 December 1997  相似文献   

16.
Lengthened circadian period of locomotor activity is a characteristic of a congenic strain of mice carrying a nonsense mutation in exon 5 of the carbonic anhydrase II gene, car2. The null mutation in car2 is located on a DBA/2J inbred strain insert on proximal chromosome 3, on an otherwise C57BL/6J genomic background. Since reducing the size of the congenic region would narrow the possible candidate genes for period, two recombinant congenic strains (R1 and R2) were developed from the original congenic strain. These new congenic strains were assessed for period, genetic composition, and the presence of immunoreactive carbonic anhydrase II. R1 mice were homozygous DBA/2J for the distal portion of the original DBA/2J insert, while R2 mice were homozygous DBA/2J for the proximal portion. R1 mice had a significantly lengthened period compared to R2 mice and wild-type C57BL/6J mice, indicating that the gene(s) affecting period is likely found within the reduced DBA/2J insert (?1 cM) in the R1 mice. The R1 mice also possessed the null mutation in car2. This study confirmed the presence of a gene(s) affecting period on proximal chromosome 3 and significantly reduced the size of the congenic region and the number of candidate genes. Future studies will focus on identifying the gene influencing period.  相似文献   

17.
Farber CR  Medrano JF 《Genetics》2007,175(1):349-360
Previous speed congenic analysis has suggested that the expression of growth and obesity quantitative trait loci (QTL) on distal mouse chromosomes (MMU) 2 and 11, segregating between the CAST/EiJ (CAST) and C57BL/6J-hg/hg (HG) strains, is dependent on sex. To confirm, fine map, and further evaluate QTL x sex interactions, we constructed congenic by recipient F2 crosses for the HG.CAST-(D2Mit329-D2Mit457)N(6) (HG2D) and HG.CAST-(D11Mit260-D11Mit255)N(6) (HG11) congenic strains. Over 700 F2 mice were densely genotyped and phenotyped for a panel of 40 body and organ weight, skeletal length, and obesity-related traits at 9 weeks of age. Linkage analysis revealed 20 QTL affecting a representative subset of phenotypes in HG2DF2 and HG11F2 mice. The effect of sex was quantified by comparing two linear models: the first model included sex as an additive covariate and the second incorporated sex as an additive and an interactive covariate. Of the 20 QTL, 8 were sex biased, sex specific, or sex antagonistic. Most traits were regulated by single QTL; however, two closely linked loci were identified for five traits in HG2DF2 mice. Additionally, the confidence intervals for most QTL were significantly reduced relative to the original mapping results, setting the stage for quantitative trait gene (QTG) discovery. These results highlight the importance of assessing the contribution of sex in complex trait analyses.  相似文献   

18.
Objective: The A/J and C57BL/6J mouse strains differ markedly in their exploratory behavior and their weight gain on a high‐fat diet. We examined the genetic contributions of exploratory behavior to body weight and tested for shared, pleiotropic loci influencing energy homeostasis. Research Methods and Procedures: Segregating (A×B6)F2 intercross (n = 514) and (B6AF1×A/J)N2 backcross (N = 223) populations were studied, phenotyping for weight and exploratory behaviors. Relationships among traits were analyzed by correlations. Weight traits were dissected with a genome‐wide scan. Results: Modest correlations were found between exploratory behaviors and weight, explaining 2% to 14% of the variance. Quantitative trait loci (QTL) for body weight at 8 weeks (wgt8), 10 weeks (wgt10), and 2‐week weight gain (difference between weeks 8 and 10) on a 6% fat diet were mapped. Two QTL on chromosome 1 (peaks at 66 cM and 100 cM; Bw8q1) affected wgt8 [likelihood of the odds ratio (Lod), 3.0 and 4.4] and wgt10 (Lod, 2.2 and 3.4), respectively. In the backcross, a significant QTL on chromosome 4 (peak at 66 cM; Bw8q2) affected wgt 8 (Lod, 3.3) and wgt10 (Lod, 3.1). For 2‐week weight gain, suggestive QTL were mapped on chromosomes 4 and 6. The chromosome 6 QTL region overlaps a human 7q locus for obesity. A search for between‐strain sequence polymorphisms in the leptin and NPY genes was unrevealing. Discussion: In mice, loci influencing exploratory activity play a modest role in body‐weight regulation. Some forms of obesity may emerge from loci regulating normal body weight.  相似文献   

19.
Objective: The use of inbred animal models is an essential component of the genetic dissection of complex diseases. Because quantitative trait loci for serum triglycerides, total cholesterol, and body weight were mapped on chromosome 4 in a cross of BioBreeding/OttawaKarlsburg (BB/OK) and spontaneously hypertensive (SHR) rats, we established a congenic BB.SHR rat strain by introgressing a SHR segment of chromosome 4 (D4Got41‐Tacr1) into a BB/OK background. The phenotype of these BB.SHR rats (BB.4S) confirmed the quantitative trait loci. To discover whether the phenotype of BB.4S can only be attributed to the SHR segment per se, we established an additional congenic BB.WOKW strain by introgressing a similar segment of chromosome 4 (D4Got41‐Fabp1) of the Wistar Ottawa Karlsburg RT1u rat into a BB/OK background, termed briefly BB.4W. Research Methods and Procedures: Male normoglycemic BB/OK (20), BB.4S (20), and BB.4W (16) rats were longitudinally studied for body weight, serum triglycerides, total and high‐density lipoprotein‐cholesterol, and glucose tolerance. At the end of the observation period (32 weeks), serum insulin, leptin, and adiposity index (AI) were determined. Results and Discussion: Congenic BB.4S and BB.4W were significantly heavier, and AI, serum triglycerides, and total cholesterol values were significantly elevated in BB.4S and BB.4W compared with BB/OK but more pronounced in BB.4S. The highest serum insulin was found in BB.4W and highest leptin in BB.4S. Because the body weight gain and AI were comparable between BB.4S and BB.4W, the obviously higher insulin levels in BB.4W and higher leptin values in BB.4S suggest that the two congenics most probably define two subphenotypes of obesity and provide the unique opportunity to study their genetics.  相似文献   

20.
The aim of this study was to examine the effects of a QTL in different genetic backgrounds. A QTL affecting body mass on chromosome 6 was identified in an F2 cross between two lines of mice that have been divergently selected for this trait. The effect of the QTL on mass increased between 6 and 10 weeks of age and was not sex-specific. Body composition analysis showed effects on fat-free dry body mass and fat mass. To examine the effect of this QTL in different genetic backgrounds, the high body mass sixth chromosome was introgressed into the low body mass genetic background and vice versa by repeated marker-assisted backcrossing. After three generations of backcrossing, new F2 populations were established within each of the introgression lines by crossing individuals that were heterozygous across the sixth chromosome. The estimated additive effect of the QTL on 10-week body mass was similar in both genetic backgrounds and in the original F2 population (i.e., ~0.4 phenotypic standard deviations); no evidence of epistatic interaction with the genetic background was found. The 95% confidence interval for the location of the QTL was refined to a region of approximately 7 cM between D6Mit268 and D6Mit123.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号