首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanisms driving the coevolution of male and female genital morphologies are still debated. Female genitalia in Drosophila species bear membranous “pouches” or hardened “shields,” which the male genital armature contact during copulation. Although shield‐like structures likely serve to mitigate the effects of harmful mating, some authors have suggested that soft pouches, which do not prevent male genitalia from inflicting wounds, represent a congruent sensory organ. To elucidate the evolutionary forces responsible for the development of such organs, I examined the effects of artificial damage to various genital parts of female Drosophila erecta on reproductive success. Despite a high survival rate among females, damage to the ovipositor plate resulted in frequent failure of insemination and in the embedment of eggs into the substrate. Damage to the vaginal shield resulted in increased mortality and frequent failure of egg embedment, with an egg blocking the vagina under the damaged shield in some females. Wounding of the pouch had less of an effect on both mating and oviposition success, suggesting that the structure “lures” the male trauma‐causing organs to areas where the resultant wounds do not interfere with insemination or oviposition. These data show that the dual functions of female genitalia (mating and oviposition) mediate genital coevolution.  相似文献   

2.
Polyandry is ubiquitous in insects and provides the conditions necessary for male‐ and female‐driven forms of post‐copulatory sexual selection to arise. Populations of Amphiacusta sanctaecrucis exhibit significant divergence in portions of the male genitalia that are inserted directly into the female reproductive tract, suggesting that males may exercise some post‐copulatory control over fertilization success. We examine the potential for male–male and male–female post‐copulatory interactions to influence paternity in wild‐caught females of A. sanctaecrucis and contrast our findings with those obtained from females reared in a high‐density laboratory environment. We find that female A. sanctaecrucis exercise control by mating multiple times (females mount males), but that male–male post‐copulatory interactions may influence paternity success. Moreover, post‐copulatory interactions that affect reproductive success of males are not independent of mating environment: clutches of wild‐caught females exhibit higher sire diversity and lower paternity skew than clutches of laboratory‐reared females. There was no strong evidence for last male precedence in either case. Most attempts at disentangling the contributions of male–male and male–female interactions towards post‐copulatory sexual selection have been undertaken in a laboratory setting and may not capture the full context in which they take place – such as the relationship between premating and post‐mating interactions. Our results reinforce the importance of designing studies that can capture the multifaceted nature of sexual selection for elucidating the role of post‐copulatory sexual selection in driving the evolution of male and female reproductive traits, especially when different components (e.g. precopulatory and post‐copulatory interactions) do not exert independent effects on reproductive outcomes.  相似文献   

3.
In many insects, both sexes mate multiple times and females use stored sperm for fertilizations. While males frequently engage in two distinct behaviours, multiple mating (with different females) and repeated copulations (with the same female), the reproductive consequences of these behaviours for males have been quantified for only a few species. In this study, males of the red flour beetle, Tribolium castaneum, were found to be capable of mating with as many as seven different virgin females within 15 min. Across sequential copulations with virgin females, there was no decline in either male insemination success or average female progeny production over 48 h. However, when males copulated with previously mated females, there was a significant decline in male paternity success across sequential copulations, possibly due to male sperm depletion. In separate experiments, T. castaneum males were found to engage in two to six repeated copulations with the same, individually marked female. These repeated copulations did not increase male insemination success, short-term female fecundity, or male paternity success. Repeated copulations may possibly play a role in sperm defence. This study indicates that males may frequently engage in multiple matings, but these additional matings may lead to diminishing male reproductive returns.  相似文献   

4.
Understanding the mating system and reproductive success of a species provides evidence for sexual selection. We examined the mating system and the reproductive success of captive adult black sea bream (Acanthopagrus schlegelii), using parentage assignment based on two microsatellites multiplex PCR systems, with 91.5% accuracy in a mixed family (29 sires, 25 dams, and 200 offspring). Based on the parentage result, we found that 93.1% of males and 100% of females participated in reproduction. A total of 79% of males and 92% of females mated with multiple partners (only 1 sire and 1 dam were monogamous), indicating that polygynandry best described the genetic mating system of black sea bream. For males, maximizing the reproductive success by multiple mating was accorded with the sexual selection theory while the material benefits hypothesis may contribute to explain the multiple mating for females. For both sexes, there was a significant correlation between mating success and reproductive success and the variance in reproductive success of males was higher than females. Variation in mating success is the greatest determinant to variation in reproductive success when the relationship is strongly positive. The opportunity for sexual selection of males was twice that of females, as well as the higher slope of the Bateman curve in males suggested that the intensity of intrasexual selection of males was higher than females. Thus, male–male competition would lead to the greater variation of mating success for males, which caused greater variation in reproductive success in males. The effective population number of breeders (Nb) was 33, and the Nb/N ratio was 0.61, slightly higher than the general ratio in polygynandrous fish populations which possibly because most individuals mated and had offspring with a low variance. The relatively high Nb contributes to the maintenance of genetic diversity in farmed black sea bream populations.  相似文献   

5.
Parasites may exert negative effects on host survivorship and reproductive success. The effects of parasites on female host fitness have been well documented; however, the effects of parasites on the reproductive success of male hosts and particularly the underlying mechanisms that alter male fitness are not well understood. Previous studies demonstrated that infection by rat tapeworm (Hymenolepis diminuta) reduced the fitness of male red flour beetles (Tribolium castaneum) in an environment of female mate choice and strong male-male competition. The present study determined the role of female mate choice and male insemination capacity on observed fitness reduction of male beetles by the tapeworm parasites. We found that infected males showed reduced mating vigor and consequently inseminated fewer females than did uninfected males. Specifically, tapeworm infection reduced the number of offspring sired by a male by 14-22% even when male-male competition and female mate choice were absent. Further, the insemination capacity of males diminished by 30% because of infection. Female beetles did not discriminate against infected males in precopulatory mate choice experiments. Copulatory courtship, a determinant of postcopulatory female choice, was not significantly different between infected and uninfected males. Hence, we concluded that female beetles did not show either pre- or postcopulatory choice against tapeworm-infected males. Therefore, tapeworm-induced reduction in the reproductive success of male beetles possibly results from altered reproductive biology, such as lower mating vigor and decreased sperm quantity or quality.  相似文献   

6.
《Animal behaviour》1988,36(6):1796-1808
Mating behaviour of B. americanus was observed from 1985 to 1987. The population contained 38–45 males and 11–26 females, depending on the year. The breeding season of this ‘explosive breeder’ usually encompassed less than 48 h. Male reproductive success varied from zero to two matings per season and zero to an estimated 15 126 zygotes per season. All females mated once per season and variation in their zygote production was estimated to be 4017–11 624 zygotes per season. Body length explained 76% of the variation in zygote production of females. However, male body length was only weakly correlated with mating success in two of three seasons, and with zygote production in one of three seasons. Male arm length was predicted to correlate with male mating success because longer arms should facilitate remaining clasped to females when challenged by rival males. However, mating males did not differ from non-mating males in arm length, and the relationship between arm length and body length was the same for the sexes. Various male behaviours were measured using focal-animal sampling but only call rate correlated with male mating success. The pattern of size dimorphism (females larger than males) is consistent with the observed sex-specific relationships between reproductive success and body size.  相似文献   

7.
Reproductive success is attained by various mechanisms in insects. Prolonged post insemination association is one such mechanism to increase the reproductive success. The present study was conducted to assess the role of post insemination association of mating partners on reproductive performance in Chrysomelidae beetle, Zygogramma bicolorata Pallister. The matings were disrupted at different time intervals and fecundity and percent egg viability of the females were recorded. In addition, the mounting attempts, mating attempts, time to commencement of mating and latent period were also recorded. It was hypothesized that: (1) the mounting and mating attempts would not exist, (2) copulation duration, would not affect the reproductive performance, and (3) the beetle would not exhibit the mate guarding behaviour. Interestingly, results revealed that 6.00 ± 1.3 and 6.59 ± 0.93 mounting and mating attempts are needed to establish successful mating. The results revealed that males improved their percent egg viability with a mating duration ranging from nearly 30–50 min. While fecundity increased with a mating duration of above 30 min and up to a duration of 60 min. This result concluded that males of this beetle display post copulatory mate guarding behaviour after 60 min in which male rides on female’s back with his aedeagus inserted in the female genital tract.  相似文献   

8.
The outcome of male–male contest competition is known to affect male mating success and is believed to confer fitness benefits to females through preference for dominant males. However, by mating with contest winners, females can incur significant costs spanning from decreased fecundity to negative effects on offspring. Hence, identifying costs and benefits of male dominance on female fitness is crucial to unravel the potential for a conflict of interests between the sexes. Here, we investigated males' pre‐ and post‐copulatory reproductive investment and its effect on female fitness after a single contest a using the field cricket Gryllus bimaculatus. We allowed males to fight and immediately measured their mating behaviour, sperm quality and offspring viability. We found that males experiencing a fight, independently of the outcome, delayed matings, but their courtship effort was not affected. However, winners produced sperm of lower quality (viability) compared to losers and to males that did not experience fighting. Results suggest a trade‐off in resource allocation between pre‐ and post‐mating episodes of sexual selection. Despite lower ejaculate quality, we found no fitness costs (fecundity and viability of offspring) for females mated to winners. Overall, our findings highlight the importance of considering fighting ability when assessing male reproductive success, as winners may be impaired in their competitiveness at a post‐mating level.  相似文献   

9.
Genetic parentage analyses reveal considerable diversity in alternative reproductive behaviours (e.g. sneaking) in many taxa. However, little is known about whether these behaviours vary seasonally and between populations. Here, we investigate seasonal variation in male reproductive behaviours in a population of two‐spotted gobies (Gobiusculus flavescens) in Norway. Male two‐spotted gobies guard nests, attract females and care for fertilized eggs. We collected clutches and nest‐guarding males early and late in the breeding season in artificial nests and used microsatellite markers to reconstruct parentage from a subset of offspring from each nest. We hypothesized that mating, reproductive success and sneaking should be more prevalent early in the breeding season when competition for mates among males is predicted to be higher. However, parentage analyses revealed similar values of mating, reproductive success and high frequencies of successful sneaking early (30% of nests) and late (27% of nests) in the season. We also found that multiple females with eggs in the same nest were fertilized by one or more sneaker males, indicating that some males in this population engage in a satellite strategy. We contrast our results to previous work that demonstrates low levels of cuckoldry in a population in Sweden. Our results demonstrate marked stability in both the genetic mating system and male alternative reproductive tactics over the breeding season. However, sneaking rates may vary geographically within a species, likely due to local selection influencing ecological factors encountered at different locations.  相似文献   

10.
Old‐male mating advantage has been convincingly demonstrated in Bicyclus anynana butterflies. This intriguing pattern may be explained by two alternative hypotheses: (i) an increased aggressiveness and persistence of older males during courtship, being caused by the older males' low residual reproductive value; and (ii) an active preference of females towards older males what reflects a good genes hypothesis. Against this background, we here investigate postcopulatory sexual selection by double‐mating Bicyclus anynana females to older and younger males, thus allowing for sperm competition and cryptic mate choice, and by genotyping the resulting offspring. Virgin females were mated with a younger virgin (2–3 days old) and afterwards an older virgin male (12–13 days old) or vice versa. Older males had a higher paternity success than younger ones, but only when being the second (=last) mating partner, while paternity success was equal among older and younger males when older males were the first mating partner. Older males produced larger spermatophores with much higher numbers of fertile sperm than younger males. Thus, we found no evidence for cryptic female mate choice. Rather, the findings reported here seem to result from a combination of last‐male precedence and the number of sperm transferred upon mating, both increasing paternity success.  相似文献   

11.
The influence of female age on male mating preference and reproductive success has been studied using a promiscuous cabbage beetle, Colaphellus bowringi Baly (Coleoptera: Chrysomelidae). In a simultaneous choice test, middle-aged females had significantly greater mating success than young and old females. In single pair trials, when paired with middle-aged virgin males, middle-aged females mated faster, copulated longer, and had greater fecundity and fertility than young or old females, while the longevity of males was not significantly affected by female age. This study on C. bowringi suggests that middle-aged females are more receptive to mating, which can result in the highest male reproductive success.  相似文献   

12.
Female promiscuity is common in mammals and leads to sperm competition: the sperm of ≥2 males compete for ova. Scientists understand the possible role of optimal insemination periods for male reproductive success in many species as well as the impact of monopolization of receptive females. Information from experiments combined with detailed observations from the field that allow determining the relative impacts of the elements in the same species are rare. We studied sperm competition and the role of optimal insemination periods in gray mouse lemurs (Microcebus murinus), a small solitary nocturnal primate from Madagascar. We used controlled matings to identify the relative impact of both contest and scramble competition, which characterize their mating system, on paternity. Fifteen females mated with 3–6 males in quick succession. Our experiments revealed that the optimal insemination period is during early receptivity. Early but not first mating males are more likely to sire offspring. Comparison with our field data indicate that the timing of male monopolization efforts correspond with the optimal insemination period.  相似文献   

13.
Female‐biased sexual size dimorphism (SSD) is often considered an epiphenomenon of selection for the increased mating opportunities provided by early male maturation (i.e., protandry). Empirical evidence of the adaptive significance of protandry remains nonetheless fairly scarce. We use field data collected throughout the reproductive season of an SSD crab spider, Mecaphesa celer, to test two hypotheses: Protandry provides fitness benefits to males, leading to female‐biased SSD, or protandry is an indirect consequence of selection for small male size/large female size. Using field‐collected data, we modeled the probability of mating success for females and males according to their timing of maturation. We found that males matured earlier than females and the proportion of virgin females decreased abruptly early in the season, but unexpectedly increased afterward. Timing of female maturation was not related to clutch size, but large females tended to have more offspring than small females. Timing of female and male maturation was inversely related to size at adulthood, as early‐maturing individuals were larger than late‐maturing ones, suggesting that both sexes exhibit some plasticity in their developmental trajectories. Such plasticity indicates that protandry could co‐occur with any degree and direction of SSD. Our calculation of the probability of mating success along the season shows multiple male maturation time points with similar predicted mating success. This suggests that males follow multiple strategies with equal success, trading‐off access to virgin females with intensity of male–male competition. Our results challenge classic hypotheses linking protandry and female‐biased SSD, and emphasize the importance of directly testing the often‐assumed relationships between co‐occurring animal traits.  相似文献   

14.
In polygynandrous animals, post‐copulatory processes likely interfere with precopulatory sexual selection. In water striders, sexual conflict over mating rate and post‐copulatory processes are well documented, but their combined effect on reproductive success has seldom been investigated. We combine genetic parentage analyses and behavioural observations conducted in a competitive reproductive environment to investigate how pre‐ and post‐copulatory processes influence reproductive success in Gerris buenoi Kirkaldy. Precopulatory struggles had antagonistic effects on male and female reproductive success: efficiently gaining copulations was beneficial for males, whereas efficiently avoiding copulations was profitable for females. Also, high mating rates and an intermediate optimal resistance level of females supported the hypothesis of convenience polyandry. Contrary to formal predictions, high mating rates (i.e. the number of copulations) did not increase reproductive success in males or decrease reproductive success in females. Instead, the reproductive success of both sexes was higher when offspring were produced with several partners and when there were few unnecessary matings. Thus, male and female G. buenoi displayed different interests in reproduction, but post‐copulatory processes were masking the effects of copulatory mating success on reproductive success. Given the high mating rates observed, sperm competition could easily counter the effect of mating rates, perhaps in interaction with cryptic female choice and/or fecundity selection. Our study presents a complex but realistic overview of sexual selection forces at work in a model organism for the study of sexual conflict, confirming that insights are gained from investigating all episodes in the reproduction cycle of polygynandrous animals.  相似文献   

15.
In the olive colobus (Procolobus verus), many groups have multiple males and the males have large testes. This indicates that even though this species lives in small groups, single males do not monopolize the groups. We investigated the strategies employed by males to secure their mating success, and sought to determine whether the lack of male monopolization was a result of female mating strategies, as indicated by the exaggerated sexual swellings of the females. Four study groups were monitored for demographic changes, and group composition was determined in six additional groups in Taï National Park, Ivory Coast, between 1994 and 1999. Social behavior was recorded by scan and focal sampling in the study groups. The almost permanent association of olive colobus with Diana monkeys (Cercopithecus diana) in effect provided males a resource at which they could expect females to visit and sometimes even permanently join them, as well as protection from predators. As alternative strategies for obtaining females, one male took over the group of another male and one male immigrated into a bisexual group. Within bi‐male groups, dominant males mated most frequently and males defended their groups during intergroup interactions. Lone females that visited groups or solitary males had a swelling more often than expected, and generally mated with the males they visited. Females had long receptive periods, several consecutive receptive cycles, and some overlap in receptive periods within groups. Females mated with extragroup males, and during infertile periods. We concluded that the males used the Diana monkeys for safety reasons and to obtain mating partners, and that female reproductive biology and behavior prevented the monopolization of groups of females by single males. Our data were inconclusive as regards the benefits to females of avoiding monopolization by males. Am. J. Primatol. 62:261–273, 2004. © 2004 Wiley‐Liss, Inc.  相似文献   

16.
Females across many taxa may mate with several males or mate more than once with the same male within one reproductive event. Although many researchers have discussed the effects of multiple mating on reproductive success of females, few studies have attempted to disentangle whether the reproductive success of females differs with respect to whether females mate with multiple males or mate more than once with one male. In this study, we hypothesized that female leopard geckos (Eublepharis macularius) increase aspects of their reproductive success, such as fecundity, fertility and relative clutch mass, by mating more than once within one reproductive event, either by mating repeatedly with the same male or multiply mating with different males. We controlled for the potentially confounding variables of mating frequency and mate number by allowing females to mate once with one male, twice with the same male, or twice with two different males. We found that females that mated with more than one male laid more clutches, exhibited increased egg fertility and invested more in clutches relative to females that mated only once with one male, whereas females that mated twice to the same male were intermediate for these variables. Thus, reproductive success is higher among female leopard geckos that mated with more than one male compared to female leopard geckos that mated only once.  相似文献   

17.

Generally, males increase their reproductive success by mating with as many females as possible, whereas females increase their reproductive success by choosing males who provide more direct and indirect benefits. The difference in reproductive strategy between the sexes creates intense competition among males for access to females, therefore males spend much energy and time for competition with rival males for their reproduction. However, if they do not need to engage themselves into male competition and females are in no short supply, how many females can a male mate with and fertilize? We address this question in the two-spotted spider mite, Tetranychus urticae Koch. In this study, we investigated how many females a young, virgin male mated in 3 h, and checked whether the mated females were fertilized. We found that on average males mated with 12–13 females (range: 5–25). As latency to next mating did not change with the number of matings, the males are predicted to engage in even more matings if the mating trial were continued beyond 3 h. Copulation durations decreased with the number of matings and typically after 11 copulations with females any further copulations did not lead to fertilization, suggesting that males continued to mate with females even after sperm depletion. We discuss why spider mite males continue to display mating and copulation behaviour even after their sperm is depleted.

  相似文献   

18.
Sexually selected infanticide (SSI) is often presumed to be rare among seasonal breeders, because it would require a near immediate return to estrus after the loss of an entire litter during the mating season. We evaluated changes in reproductive strategies and the reproductive fate of females that experienced litter loss during the mating season in a seasonal breeder with strong evidence for SSI, the brown bear. First, we used a long‐term demographic dataset (1986–2011) to document that a large majority of females (>91%) that lose their entire litter during the mating season in fact do enter estrus, mate, and give birth during the subsequent birthing season. Second, we used high‐resolution movement data (2005–2011) to evaluate how females changed reproductive strategies after losing their entire litter during the mating season. We hypothesized that females would shift from the sedentary lifestyle typical for females with cubs‐of‐the‐year to a roam‐to‐mate behavior typical for receptive females in no more than a few (~3) days after litter loss. We found that females with cubs‐of‐the‐year moved at about 1/3 of the rate and in a less bimodal diurnal pattern than receptive females during the mating season. The probability of litter loss was positively related with movement rate, suggesting that being elusive and sedentary is a strategy to enhance cub survival rather than a relic of cub mobility itself. The movement patterns of receptive females and females after litter loss were indistinguishable within 1–2 days after the litter loss, and we illustrate that SSI can significantly reduce the female interbirth interval (50–85%). Our results suggest that SSI can also be advantageous for males in seasonally breeding mammals. We propose that infanticide as a male reproductive strategy is more prevalent among mammals with reproductive seasonality than observed or reported.  相似文献   

19.
Female mate choice can result in direct benefits to the female or indirect benefits through her offspring. Females can increase their fitness by mating with males whose genes encode increased survivorship and reproductive output. Alternatively, male investment in enhanced mating success may come at the cost of reduced investment in offspring fitness. Here, we measure male mating success in a mating arena that allows for male–male, male–female and female–female interactions in Drosophila melanogaster. We then use isofemale line population measurements to correlate male mating success with sperm competitive ability, the number of offspring produced and the indirect benefits of the number of offspring produced by daughters and sons. We find that males from populations that gain more copulations do not increase female fitness through increased offspring production, nor do these males fare better in sperm competition. Instead, we find that these populations have a reduced reproductive output of sons, indicating a potential reproductive trade‐off between male mating success and offspring quality.  相似文献   

20.
Many studies have shown that the plumage coloration of male birds can act as an honest signal of quality, indicating benefits that a female could gain from pairing with a specific male. In some species, females also display ornamental plumage, but less is known about the function and potential adaptive significance of female coloration because most research has focused on male coloration. Male Mountain Bluebirds (Sialia currucoides) display full body, ultraviolet (UV)‐blue plumage, whereas female plumage is more subdued, with blue color focused on the rump, wing, and tail. During the 2011 and 2012 breeding seasons (May–July) near Kamloops, BC, Canada, we examined coloration of the rump and tail of female Mountain Bluebirds to determine if their plumage could act as an indicator of direct reproductive benefits (e.g., enhanced parental care or reproductive success) to potential mates. We found no relationship between female plumage coloration and either provisioning rate or fledging success. However, female coloration varied with age, with after‐second‐year (ASY) females having brighter, more UV‐blue tail feathers than second‐year (SY) females. In addition, ASY females with brighter, more UV‐blue tails had larger clutches. We also observed positive assortative mating by tarsus length. Because previous work with other species suggests that female body size may be a good predictor of breeding success, males could potentially benefit from pairing with larger females. However, reproductive success did not vary with female size in our study. Although our evidence that structural plumage coloration of female Mountain Bluebirds is a signal of direct reproductive benefits for males (e.g., higher reproductive success) is limited, our results (i.e., ASY females with brighter tails than SY females, and ASY females with brighter tails having larger clutches) do suggest the potential for sexual selection to act on female coloration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号