共查询到20条相似文献,搜索用时 0 毫秒
1.
To determine whether mitochondrial dysfunction is causally related to muscle atrophy with aging, we examined respiratory capacity, H(2) O(2) emission, and function of the mitochondrial permeability transition pore (mPTP) in permeabilized myofibers prepared from four rat muscles that span a range of fiber type and degree of age-related atrophy. Muscle atrophy with aging was greatest in fast-twitch gastrocnemius (Gas) muscle (-38%), intermediate in both the fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus (Sol) muscles (-21%), and non-existent in adductor longus (AL) muscle (+47%). In contrast, indices of mitochondrial dysfunction did not correspond to this differential degree of atrophy. Specifically, despite higher protein expression for oxidative phosphorylation (oxphos) system in fast Gas and EDL, state III respiratory capacity per myofiber wet weight was unchanged with aging, whereas the slow Sol showed proportional decreases in oxphos protein, citrate synthase activity, and state III respiration. Free radical leak (H(2) O(2) emission per O(2) flux) under state III respiration was higher with aging in the fast Gas, whereas state II free radical leak was higher in the slow AL. Only the fast muscles had impaired mPTP function with aging, with lower mitochondrial calcium retention capacity in EDL and shorter time to mPTP opening in Gas and EDL. Collectively, our results underscore that the age-related changes in muscle mitochondrial function depend largely upon fiber type and are unrelated to the severity of muscle atrophy, suggesting that intrinsic changes in mitochondrial function are unlikely to be causally involved in aging muscle atrophy. 相似文献
2.
Obesity is associated with biological dysfunction in skeletal muscle. As a condition of obesity accompanied by muscle mass loss and physical dysfunction, sarcopenic obesity (SO) has become a novel public health problem. Human fibroblast growth factor 19 (FGF19) plays a therapeutic role in metabolic diseases. However, the protective effects of FGF19 on skeletal muscle in obesity and SO are still not completely understood. Our results showed that FGF19 administration improved muscle loss and grip strength in young and aged mice fed a high-fat diet (HFD). Increases in muscle atrophy markers (FOXO-3, Atrogin-1, MuRF-1) were abrogated by FGF19 in palmitic acid (PA)-treated C2C12 myotubes and in the skeletal muscle of HFD-fed mice. FGF19 not only reduced HFD-induced body weight gain, excessive lipid accumulation and hyperlipidaemia but also promoted energy expenditure (PGC-1α, UCP-1, PPAR-γ) in brown adipose tissue (BAT). FGF19 treatment restored PA- and HFD-induced hyperglycaemia, impaired glucose tolerance and insulin resistance (IRS-1, GLUT-4) and mitigated the PA- and HFD-induced decrease in FNDC-5/irisin expression. However, these beneficial effects of FGF19 on skeletal muscle were abolished by inhibiting AMPK, SIRT-1 and PGC-1α expression. Taken together, this study suggests that FGF19 protects skeletal muscle against obesity-induced muscle atrophy, metabolic derangement and abnormal irisin secretion partially through the AMPK/SIRT-1/PGC-α signalling pathway, which might be a potential therapeutic target for obesity and SO. 相似文献
3.
Developing accurate methods to quantify age-related muscle loss (sarcopenia) could greatly accelerate development of therapies to treat muscle loss in the elderly, as current methods are inaccurate or expensive. The current gold standard method for quantifying sarcopenia is dual-energy X-ray absorptiometry (DXA) but does not measure muscle directly—it is a composite measure quantifying “lean mass” (muscle) excluding fat and bone. In humans, DXA overestimates muscle mass, which has led to erroneous conclusions about the importance of skeletal muscle in human health and disease. In animal models, DXA is a popular method for measuring lean mass. However, instrumentation is expensive and is potentially limited by anesthesia concerns. Recently, the D 3-creatine (D 3Cr) dilution method for quantifying muscle mass was developed in humans and rats. This method is faster, cheaper, and more accurate than DXA. Here, we demonstrate that the D 3Cr method is a specific assay for muscle mass in mice, and we test associations with DXA and body weight. We evaluated the D 3Cr method compared to DXA-determined lean body mass (LBM) in aged mice and reported that DXA consistently overestimates muscle mass with age. Overall, we provide evidence that the D 3Cr dilution method directly measures muscle mass in mice. Combined with its ease of use, accessibility, and non-invasive nature, the method may prove to more quickly advance development of preclinical therapies targeting sarcopenia. 相似文献
5.
Context: The associations between serum leptin, vitamin D status, sarcopenic obesity, muscle strength and physical performance in osteoarthritis (OA) remain uncertain. Objective: To analyse the relationships between serum leptin, vitamin D status, muscle strength and physical performance in OA patients. Methods: A total of 208 knee OA patients were enrolled. Serum leptin, vitamin D, muscle strength and physical performance were evaluated. Results: OA patients with sarcopenic obesity had significantly higher serum leptin levels than those with non-sarcopenic obesity. In addition, knee OA patients with sarcopenic obesity displayed low grip strength and poor physical performance. Furthermore, high serum leptin was negatively associated with vitamin D and physical performance. Conclusions: Serum leptin levels were correlated with low vitamin D, reduced muscle strength and functional impairment, suggesting that serum leptin might serve as a biomarker reflecting physical performance in OA patients. 相似文献
6.
A long-standing quest is to define the mechanisms responsible for the mitochondrial dysfunction and accumulation of damaged mitochondria that occur during aging. Indeed, those defects are considered major contributors to the aging process. We have analyzed the effect of aging on the muscle expression of Mfn2 and the impact of Mfn2 ablation on muscle function. Our findings reveal that Mfn2 is repressed in muscle during aging, and that is a determinant for the inhibition of autophagy, and mitochondrial quality control, which lead to the accumulation of damaged mitochondria. 相似文献
7.
Synopsis Eight hundred and one yellowfin tuna larvae ranging from 2.57–7.48 mm SL were collected near the Mississippi River discharge plume in the Gulf of Mexico during July and September, 1987. Larvae were most abundant at intermediate salinities (i.e. frontal waters) where chlorophyll a and macrozooplankton displacement values were also highest. Using sagittal otolith microstructure, we estimated larval ages ranging from 3–14 d. These ages were used to back calculate spawning dates from 13–24 July and 22–31 August. Mean absolute individual growth rate (length age –1) was 0.47 mm d –1, with the least squares linear regression SL = 1.67 + 0.47 AGE (r 2 = 0.60, Pr> F = 0.0001) representing the best growth curve. Highest growth occurred at intermediate salinities near 31%, and temperatures near 29° C. There was significant temporal variation in growth, with larvae collected in July growing slower than those from September (0.37 and 0.48 mm d –1, respectively). The pooled instantaneous daily mortality rate (Z) of the larvae was estimated to be 0.33 d –1 (0.16 d –1 in July and 0.41 d –1 in September). These results show that significant spawning of yellowfin tuna may occur in the northern Gulf of Mexico in the vicinity of the Mississippi River discharge plume, and suggest that larval growth and survival may be enhanced in the plume frontal waters. 相似文献
8.
With age, somatically derived mitochondrial DNA (mtDNA) deletion mutations arise in many tissues and species. In skeletal muscle, deletion mutations clonally accumulate along the length of individual fibers. At high intrafiber abundances, these mutations disrupt individual cell respiration and are linked to the activation of apoptosis, intrafiber atrophy, breakage, and necrosis, contributing to fiber loss. This sequence of molecular and cellular events suggests a putative mechanism for the permanent loss of muscle fibers with age. To test whether mtDNA deletion mutation accumulation is a significant contributor to the fiber loss observed in aging muscle, we pharmacologically induced deletion mutation accumulation. We observed a 1200% increase in mtDNA deletion mutation‐containing electron transport chain‐deficient muscle fibers, an 18% decrease in muscle fiber number and 22% worsening of muscle mass loss. These data affirm the hypothesized role for mtDNA deletion mutation in the etiology of muscle fiber loss at old age. 相似文献
10.
Age‐related muscle atrophy and weakness, or sarcopenia, are significant contributors to compromised health and quality of life in the elderly. While the mechanisms driving this pathology are not fully defined, reactive oxygen species, neuromuscular junction (NMJ) disruption, and loss of innervation are important risk factors. The goal of this study is to determine the impact of mitochondrial hydrogen peroxide on neurogenic atrophy and contractile dysfunction. Mice with muscle‐specific overexpression of the mitochondrial H 2O 2 scavenger peroxiredoxin3 (mPRDX3) were crossed to Sod1KO mice, an established mouse model of sarcopenia, to determine whether reduced mitochondrial H 2O 2 can prevent or delay the redox‐dependent sarcopenia. Basal rates of H 2O 2 generation were elevated in isolated muscle mitochondria from Sod1KO, but normalized by mPRDX3 overexpression. The mPRDX3 overexpression prevented the declines in maximum mitochondrial oxygen consumption rate and calcium retention capacity in Sod1KO. Muscle atrophy in Sod1KO was mitigated by ~20% by mPRDX3 overexpression, which was associated with an increase in myofiber cross‐sectional area. With direct muscle stimulation, maximum isometric specific force was reduced by ~20% in Sod1KO mice, and mPRDX3 overexpression preserved specific force at wild‐type levels. The force deficit with nerve stimulation was exacerbated in Sod1KO compared to direct muscle stimulation, suggesting NMJ disruption in Sod1KO. Notably, this defect was not resolved by overexpression of mPRDX3. Our findings demonstrate that muscle‐specific PRDX3 overexpression reduces mitochondrial H 2O 2 generation, improves mitochondrial function, and mitigates loss of muscle quantity and quality, despite persisting NMJ impairment in a murine model of redox‐dependent sarcopenia. 相似文献
11.
Mitochondrial dysfunction plays a key pathogenic role in aging skeletal muscle resulting in significant healthcare costs in the developed world. However, there is no pharmacologic treatment to rapidly reverse mitochondrial deficits in the elderly. Here, we demonstrate that a single treatment with the mitochondrial‐targeted peptide SS‐31 restores in vivo mitochondrial energetics to young levels in aged mice after only one hour. Young (5 month old) and old (27 month old) mice were injected intraperitoneally with either saline or 3 mg kg ?1 of SS‐31. Skeletal muscle mitochondrial energetics were measured in vivo one hour after injection using a unique combination of optical and 31P magnetic resonance spectroscopy. Age‐related declines in resting and maximal mitochondrial ATP production, coupling of oxidative phosphorylation (P/O), and cell energy state (PCr/ATP) were rapidly reversed after SS‐31 treatment, while SS‐31 had no observable effect on young muscle. These effects of SS‐31 on mitochondrial energetics in aged muscle were also associated with a more reduced glutathione redox status and lower mitochondrial H 2O 2 emission. Skeletal muscle of aged mice was more fatigue resistant in situ one hour after SS‐31 treatment, and eight days of SS‐31 treatment led to increased whole‐animal endurance capacity. These data demonstrate that SS‐31 represents a new strategy for reversing age‐related deficits in skeletal muscle with potential for translation into human use. 相似文献
12.
Inhibitors of myostatin, a negative regulator of skeletal muscle mass, are being developed to mitigate aging-related muscle loss. Knock-out (KO) mouse studies suggest myostatin also affects adiposity, glucose handling and cardiac growth. However, the cardiac consequences of inhibiting myostatin remain unclear. Myostatin inhibition can potentiate cardiac growth in specific settings ( Morissette et al., 2006) , a concern because of cardiac hypertrophy is associated with adverse clinical outcomes. Therefore, we examined the systemic and cardiac effects of myostatin deletion in aged mice (27–30 months old). Heart mass increased comparably in both wild-type (WT) and KO mice. Aged KO mice maintained twice as much quadriceps mass as aged WT; however, both groups lost the same percentage (36%) of adult muscle mass. Dual-energy X-ray absorptiometry revealed increased bone density, mineral content, and area in aged KO vs. aged WT mice. Serum insulin and glucose levels were lower in KO mice. Echocardiography showed preserved cardiac function with better fractional shortening (58.1% vs. 49.4%, P = 0.002) and smaller left ventricular diastolic diameters (3.41 vs. 2.71, P = 0.012) in KO vs. WT mice. Phospholamban phosphorylation was increased 3.3-fold in KO hearts ( P < 0.05), without changes in total phospholamban, sarco(endo)plasmic reticulum calcium ATPase 2a or calsequestrin. Aged KO hearts showed less fibrosis by Masson's Trichrome staining. Thus, myostatin deletion does not affect aging-related increases in cardiac mass and appears beneficial for bone density, insulin sensitivity and heart function in senescent mice. These results suggest that clinical interventions designed to inhibit skeletal muscle mass loss with aging could have beneficial effects on other organ systems as well. 相似文献
13.
Sarcopenia, the age‐related loss of muscle mass, is a highly‐debilitating consequence of aging. In this investigation, we show sarcopenia is greatly reduced by muscle‐specific overexpression of calpastatin, the endogenous inhibitor of calcium‐dependent proteases (calpains). Further, we show that calpain cleavage of specific structural and regulatory proteins in myofibrils is prevented by covalent modification of calpain by nitric oxide (NO) through S‐nitrosylation. We find that calpain in adult, non‐sarcopenic muscles is S‐nitrosylated but that aging leads to loss of S‐nitrosylation, suggesting that reduced S‐nitrosylation during aging leads to increased calpain‐mediated proteolysis of myofibrils. Further, our data show that muscle aging is accompanied by loss of neuronal nitric oxide synthase (nNOS), the primary source of muscle NO, and that expression of a muscle‐specific nNOS transgene restores calpain S‐nitrosylation in aging muscle and prevents sarcopenia. Together, the findings show that in vivo reduction of calpain S‐nitrosylation in muscle may be an important component of sarcopenia, indicating that modulation of NO can provide a therapeutic strategy to slow muscle loss during old age. 相似文献
14.
The causes of the decline in skeletal muscle mass and function with age, known as sarcopenia, are poorly understood. Nutrition (calorie restriction) interventions impact many cellular processes and increase lifespan and preserve muscle mass and function with age. As we previously observed an increase in life span and muscle function in aging mice on a ketogenic diet (KD), we aimed to investigate the effect of a KD on the maintenance of skeletal muscle mass with age and the potential molecular mechanisms of this action. Twelve‐month‐old mice were assigned to an isocaloric control or KD until 16 or 26 months of age, at which time skeletal muscle was collected for evaluating mass, morphology, and biochemical properties. Skeletal muscle mass was significantly greater at 26 months in the gastrocnemius of mice on the KD. This result in KD mice was associated with a shift in fiber type from type IIb to IIa fibers and a range of molecular parameters including increased markers of NMJ remodeling, mitochondrial biogenesis, oxidative metabolism, and antioxidant capacity, while decreasing endoplasmic reticulum (ER) stress, protein synthesis, and proteasome activity. Overall, this study shows the effectiveness of a long‐term KD in mitigating sarcopenia. The diet preferentially preserved oxidative muscle fibers and improved mitochondrial and antioxidant capacity. These adaptations may result in a healthier cellular environment, decreasing oxidative and ER stress resulting in less protein turnover. These shifts allow mice to better maintain muscle mass and function with age. 相似文献
15.
A common characteristic of aging is defective regeneration of skeletal muscle. The molecular pathways underlying age‐related decline in muscle regenerative potential remain elusive. microRNAs are novel gene regulators controlling development and homeostasis and the regeneration of most tissues, including skeletal muscle. Here, we use satellite cells and primary myoblasts from mice and humans and an in vitro regeneration model, to show that disrupted expression of microRNA‐143‐3p and its target gene, Igfbp5, plays an important role in muscle regeneration in vitro. We identified miR‐143 as a regulator of the insulin growth factor‐binding protein 5 (Igfbp5) in primary myoblasts and show that the expression of miR‐143 and its target gene is disrupted in satellite cells from old mice. Moreover, we show that downregulation of miR‐143 during aging may act as a compensatory mechanism aiming at improving myogenesis efficiency; however, concomitant upregulation of miR‐143 target gene, Igfbp5, is associated with increased cell senescence, thus affecting myogenesis. Our data demonstrate that dysregulation of miR‐143‐3p:Igfbp5 interactions in satellite cells with age may be responsible for age‐related changes in satellite cell function. 相似文献
16.
We describe a methodology for detecting differentially methylated regions (DMRs) and variably methylated regions (VMRs), in data from Infinium 450K arrays that are very widely used in epigenetic studies. Region detection is more specific than single CpG analysis as it increases the extent of common findings between studies, and is more powerful as it reduces the multiple testing problem inherent in epigenetic whole‐genome association studies (EWAS). In addition, results driven by single erroneous probes are removed. We have used multiple publicly available Infinium 450K data sets to generate a consensus list of DMRs for age, supporting the hypothesis that aging is associated with specific epigenetic modifications. The consensus aging DMRs are significantly enriched for muscle biogenesis pathways. We find a massive increase in VMRs with age and in regions of the genome associated with open chromatin and neurotransmission. Old age VMRs are significantly enriched for neurotransmission pathways. EWAS studies should investigate the role of this interindividual variation in DNA methylation, in the age‐associated diseases of sarcopenia and dementia. 相似文献
17.
Mitochondria regulate cellular bioenergetics and apoptosis and have been implicated in aging. However, it remains unclear whether age‐related loss of muscle mass, known as sarcopenia, is associated with abnormal mitochondrial function. Two technically different approaches have mainly been used to measure mitochondrial function: isolated mitochondria and permeabilized myofiber bundles, but the reliability of these measures in the context of sarcopenia has not been systematically assessed before. A key difference between these approaches is that contrary to isolated mitochondria, permeabilized bundles contain the totality of fiber mitochondria where normal mitochondrial morphology and intracellular interactions are preserved. Using the gastrocnemius muscle from young adult and senescent rats, we show marked effects of aging on three primary indices of mitochondrial function (respiration, H 2O 2 emission, sensitivity of permeability transition pore to Ca 2+) when measured in isolated mitochondria, but to a much lesser degree when measured in permeabilized bundles. Our results clearly demonstrate that mitochondrial isolation procedures typically employed to study aged muscles expose functional impairments not seen in situ. We conclude that aging is associated with more modest changes in mitochondrial function in sarcopenic muscle than suggested previously from isolated organelle studies. 相似文献
18.
The hypothesis that mitochondrial DNA damage accumulates and contributes to aging was proposed decades ago. Only recently have technological advancements, which facilitate microanalysis of single cells or portions of cells, revealed that mtDNA deletion mutations and, perhaps, single nucleotide mutations accumulate to physiologically relevant levels in the tissues of various species with age. Although a link between single nucleotide mutations and physiological consequences in aging tissue has not been established, the accumulation of deletion mutations in skeletal muscle fibres has been associated with sarcopenia. Different, and apparently random, deletion mutations are specific to individual fibres. However, the mtDNA deletion mutation within a phenotypically abnormal region of a fibre is the same, suggesting a selection, amplification and clonal expansion of the initial deletion mutation. mtDNA deletion mutations within a muscle fibre are associated with specific electron transport system abnormalities, muscle fibre atrophy and fibre breakage. These data point to a causal relationship between mitochondrial DNA mutations and the age-related loss of muscle mass. 相似文献
19.
Age‐related loss of muscle mass and strength is widely attributed to limitation in the capacity of muscle resident satellite cells to perform their myogenic function. This idea contains two notions that have not been comprehensively evaluated by experiment. First, it entails the idea that we damage and lose substantial amounts of muscle in the course of our normal daily activities. Second, it suggests that mechanisms of muscle repair are in some way exhausted, thus limiting muscle regeneration. A third potential option is that the aged environment becomes inimical to the conduct of muscle regeneration. In the present study, we used our established model of human muscle xenografting to test whether muscle samples taken from cadavers, of a range of ages, maintained their myogenic potential after being transplanted into immunodeficient mice. We find no measurable difference in regeneration across the range of ages investigated up to 78 years of age. Moreover, we report that satellite cells maintained their myogenic capacity even when muscles were grafted 11 days postmortem in our model. We conclude that the loss of muscle mass with increasing age is not attributable to any intrinsic loss of myogenicity and is most likely a reflection of progressive and detrimental changes in the muscle microenvironment such as to disfavor the myogenic function of these cells. 相似文献
20.
Aging‐related sarcopenia is currently the most common sarcopenia. The main manifestations are skeletal muscle atrophy, replacement of muscle fibers with fat and fibrous tissue. Excessive fibrosis can impair muscle regeneration and function. Lysyl oxidase‐like 2 (LOXL2) has previously been reported to be involved in the development of various tissue fibrosis. Here, we investigated the effects of LOXL2 inhibitor on D‐galactose (D‐gal)‐induced skeletal muscle fibroblast cells and mice. Our molecular and physiological studies show that treatment with LOXL2 inhibitor can alleviate senescence, fibrosis, and increased production of reactive oxygen species in fibroblasts caused by D‐gal. These effects are related to the inhibition of the TGF‐β1/p38 MAPK pathway. Furthermore, in vivo, mice treatment with LOXL2 inhibitor reduced D‐gal‐induced skeletal muscle fibrosis, partially enhanced skeletal muscle mass and strength and reduced redox balance disorder. Taken together, these data indicate the possibility of using LOXL2 inhibitors to prevent aging‐related sarcopenia, especially with significant fibrosis. 相似文献
|