首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The calcium-induced conformational changes of the 108-amino acid residue proteins, cod III parvalbumin and oncomodulin, were compared using tryptophan as a sensitive spectroscopic probe. As native oncomodulin is devoid of tryptophan, site-specific mutagenesis was performed to create a mutant protein in which tryptophan was placed in the identical position (residue 102) as the single tryptophan residue in cod III parvalbumin. The results showed that in the region probed by tryptophan-102, cod III parvalbumin experienced significantly greater changes in conformation upon decalcification compared to the oncomodulin mutant, F102W. Addition of 1 eq of Ca2+ produced greater than 90% of the total fluorescence response in F102W, while in cod III parvalbumin, only 74% of the total was observed. Cod III parvalbumin displayed a negligible response upon Mg2+ addition. In contrast, F102W did respond to Mg2+, but the response was considerably less when compared to Ca2+ addition. Time-resolved fluorescence showed that the tryptophan in both proteins existed in at least two conformational states in the presence of Ca2+ and at least three conformational states in its absence. Comparison with quantum yield measurements indicated that the local electronic environment of the tryptophan was significantly different in the two proteins. Collectively, these results demonstrate that both cod III parvalbumin and oncomodulin undergo Ca2(+)-specific conformational changes. However, oncomodulin is distinct from cod III parvalbumin in terms of the electronic environment of the hydrophobic core, the magnitude of the Ca2(+)-induced conformational changes, and the number of calcium ions required to modulate the major conformational changes.  相似文献   

2.
The fluorescence and phosphorescence spectra of model indole compounds and of cod parvalbumin III, a protein containing a single tryptophan and no tyrosine, were examined in the time scale ranging from subnanoseconds to milliseconds at 25 degrees C in aqueous buffer. For both Ca- bound and Ca-free parvalbumin and for model indole compounds that contained a proton donor, a phosphorescent species emitting at 450 nm with a lifetime of approximately 20-40 ns could be identified. A longer-lived phosphorescence is also apparent; it has approximately the same absorption and emission spectrum as the short-lived triplet molecule. For Ca parvalbumin, the decay of the long-lived triplet tryptophan is roughly exponential with a lifetime of 4.7 ms at 25 degrees C whereas for N-acetyltryptophanamide in aqueous buffer the decay lifetime was 30 microseconds. In contrast, the lifetime of the long-lived tryptophan species is much shorter in the Ca-free protein compared with Ca parvalbumin, and the decay shows complex nonexponential kinetics over the entire time range from 100 ns to 1 ms. It is concluded that the photochemistry of tryptophan must take into account the existence of two excited triplet species and that there are quenching moieties within the protein matrix that decrease the phosphorescence yield in a dynamic manner for the Ca-depleted parvalbumin. In contrast, for Ca parvalbumin, the tryptophan site is rigid on the time scale of milliseconds.  相似文献   

3.
S T Ferreira 《Biochemistry》1989,28(26):10066-10072
The fluorescence properties of the single tryptophan residue in whiting parvalbumin were used to probe the dynamics of the protein matrix. Ca2+ binding caused a blue-shift in the emission (from lambda max = 339 to 315 nm) and a 2.5-fold increase in quantum yield. The fluorescence decay was nonexponential in both Ca2(+)-free and Ca2(+)-bound parvalbumin and was best described by Lorentzian lifetime distributions centered around two components: a major long-lived component at 2-5 ns and a small subnanosecond component. Raising the temperature from 8 to 45 degrees C resulted in a decrease in both the center (average) and width (dispersion) of the major lifetime distribution component, whereas the center, width, and fractional intensity of the fast component increased with temperature. Arrhenius activation energies of 1.3 and 0.3 kcal/mol were obtained in the absence and in the presence of Ca2+, respectively, from the temperature dependence of the center of the major lifetime distribution component. Direct anisotropy decay measurements of local tryptophan rotations yielded an activation energy of 2.3 kcal/mol in Ca2(+)-depleted parvalbumin and indicated a correlation between rotational rates and lifetime distribution parameters (center and width). Ca2+ binding produced a decrease in the width of the major lifetime distribution component and a decrease in tryptophan rotational mobility within the protein. There was a rough correlation between these two parameters with changes in Ca2+ and temperature, so that both measurements may be taken to indicate that the structure of Ca2(+)-bound parvalbumin was more rigid than in Ca2(+)-depleted parvalbumin.  相似文献   

4.
The fluorescence lifetime of the single tryptophan in whiting parvalbumin has been measured by time-correlated single-photon counting. In the presence of saturating calcium, greater than 2 mol/mol of protein, the decay of fluorescence is accurately single exponential with a lifetime of 4.6 ns (0.1 M KCl, 20 mM borate, 1 mM dithiothreitol, 20 degrees C, pH 9). Upon complete removal of calcium from parvalbumin with ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid the emission decay becomes biphasic, and a second more rapid decay process with a lifetime of 1.3 ns comprising approximately 18% of the fluorescence emission at 350 nm is observed. The fluorescence emission of the calcium-saturated form is not measurably quenched by iodide. In contrast, upon complete removal of calcium, the fluorescence is completely quenchable as shown by extrapolation of the data to infinite iodide concentration. These results indicate that there is a large increase in the accessibility of the tryptophan residue in the protein to solvent upon removal of calcium. Stern-Volmer plots of the quenching data are nonlinear and indicate that there is more than one quenchable conformation of the calcium-free protein. The lifetime and quenching results are consistent with the presence of significant concentrations of only two stoichiometric species, apoparvalbumin and parvalbumin--Ca2, at partial occupancy of the calcium binding sites.  相似文献   

5.
A procedure is described for using nanosecond time resolved fluorescence decay data to obtain decay-associated fluorescence spectra. It is demonstrated that the individual fluorescence spectra of two or more components in a mixture can be extracted without prior knowledge of their spectral shapes or degree of overlap. The procedure is also of value for eliminating scattered light artifacts in the fluorescence spectra of turbid samples. The method was used to separate the overlapping emission spectra of the two tryptophan residues in horse liver alcohol dehydrogenase. Formation of a ternary complex between the enzyme, NAD+, and pyrazole leads to a decrease in the total tryptophan fluorescence. It is shown that the emission of both tryptophan residues decreases. The buried tryptophan (residue 314) undergoes dynamic quenching with no change in the spectral distribution. Under the same conditions, the fluorescence intensity of tryptophan (residue 15) decreases without a change in decay time but with a red shift of the emission spectrum. There is also a decrease in tryptophan fluorescence intensity when the free enzyme is acid denatured (succinate buffer, pH 4.1). The denatured enzyme retains sufficient structure to provide different microenvironments for different tryptophan residues as reflected by biexponential decay and spectrally shifted emission spectra (revealed by decay association). The value of this technique for studies of microheterogeneity in biological macromolecules is discussed.  相似文献   

6.
The fluorescence decay properties of wild-type trp repressor (TR) have been characterized by carrying out a multi-emission wavelength study of the frequency response profiles. The decay is best analyzed in terms of a single exponential decay near 0.5 ns and a distribution of lifetimes centered near 3-4 ns. By comparing the recovered decay associated spectra and lifetime values with the structure of the repressor, tentative assignments of the two decay components recovered from the analysis to the two tryptophan residues, W19 and W99, of the protein have been made. These assignments consist of linking the short, red emitting component to emission from W99 and most of the longer bluer emitting lifetime distribution to emission from W19. Next, single tryptophan mutants of the repressor in which one of each of the tryptophan residues was substituted by phenylalanine were used to confirm the preliminary assignments, inasmuch as the 0.5-ns component is clearly due to emission from tryptophan 99, and much of the decay responsible for the recovered distribution emanates from tryptophan 19. The data demonstrate, however, that the decay of the wild-type protein is not completely resolvable due both to the large number of components in the wild-type emission (at least five) as well as to the fact that three of the five lifetime components are very close in value. The fluorescence decay of the wild-type decay is well described as a combination of the components found in each of the mutants. However, whereas the linear combination analysis of the 15 data sets (5 from the wild-type and each mutant) yields a good fit for the components recovered previously for the two mutants, the amplitudes of these components in the wild-type are not recovered in the expected ratios. Because of the dominance of the blue shifted emission in the wild-type protein, it is most likely that subtle structural differences in the wild-type as compared with the mutants, rather than energy transfer from tryptophan 19 to 99, are responsible for this failure of the linear combination hypothesis.  相似文献   

7.
Hydrodynamic properties as well as structural dynamics of proteins can be investigated by the well-established experimental method of fluorescence anisotropy decay. Successful use of this method depends on determination of the correct kinetic model, the extent of cross-correlation between parameters in the fitting function, and differences between the timescales of the depolarizing motions and the fluorophore's fluorescence lifetime. We have tested the utility of an independently measured steady-state anisotropy value as a constraint during data analysis to reduce parameter cross correlation and to increase the timescales over which anisotropy decay parameters can be recovered accurately for two calcium-binding proteins. Mutant rat F102W parvalbumin was used as a model system because its single tryptophan residue exhibits monoexponential fluorescence intensity and anisotropy decay kinetics. Cod parvalbumin, a protein with a single tryptophan residue that exhibits multiexponential fluorescence decay kinetics, was also examined as a more complex model. Anisotropy decays were measured for both proteins as a function of solution viscosity to vary hydrodynamic parameters. The use of the steady-state anisotropy as a constraint significantly improved the precision and accuracy of recovered parameters for both proteins, particularly for viscosities at which the protein's rotational correlation time was much longer than the fluorescence lifetime. Thus, basic hydrodynamic properties of larger biomolecules can now be determined with more precision and accuracy by fluorescence anisotropy decay.  相似文献   

8.
Cod parvalbumin (isotype III) is a single tryptophan-containing protein. The fluorescence characteristics of this tryptophan residue (lambda em approximately 315 nm) suggest that it is buried from solvent and that it is located in an apolar core of the protein. Solute quenching studies of the tryptophan fluorescence of parvalbumin reveal dynamic quenching rate constants, kq, of 1.1 X 10(8) and 2.3 X 10(9) M-1 s-1 (at 25 degrees C) with acrylamide and oxygen, respectively, as quenchers. From temperature dependence studies, activation energies of 6.5 +/- 1.5 and 6.0 +/- 0.5 kcal/mol are found for acrylamide and oxygen quenching. The kq for acrylamide quenching is found to be relatively unchanged (+/- 10%) by an 8-fold increase in the bulk viscosity (glycerol/water mixture). These temperature and viscosity studies argue that the acrylamide quenching process involves a dynamic penetration of the quencher, facilitated by fluctuations in the protein's structure.  相似文献   

9.
An engineered calmodulin (VU-9 calmodulin), which possesses a single tryptophan residue at position 99 in calcium binding domain III, was studied by time-resolved fluorescence. At least two exponential terms are needed to describe the tryptophan fluorescence decays, either in the presence or in the absence of calcium. The characteristics of the fluorescence decays are strongly dependent upon the number of calcium ions bound per molecule of VU-9 calmodulin until half of the calcium sites are occupied, i.e., three in the absence of magnesium and two in the presence of 5 mM magnesium. A clear time-dependent spectral shift is observed in the presence of calcium. The existence of an isosbestic point in the time-resolved spectra is in agreement with a two-state model. The biexponential analysis of the 340-nm fluorescence decay during calcium titration gives parameters consistent with a two-state model in which tryptophan 99 interconverts between two different conformations, characterized by a different lifetime value, with rates altered by calcium binding. This model explains the decrease in the protein quantum yield induced by calcium binding [Kilhoffer, M. C., Roberts, D. M. Adibi, A. O., Watterson, D. M., & Haiech, J. (1989) Biochemistry (preceding paper in this issue)].  相似文献   

10.
The structure of (Deibler) myelin basic protein in solution and in a lysolecithin lipid complex has been studied by using the emission properties of the single tryptophan residue of the protein (Trp-115). The studies have been carried out using both static and time-resolved fluorescence techniques. Relative to the free protein, the lipid bound myelin basic protein showed a, twofold increase in fluorescence intensity and a marked blue-shift in the emission maximum wavelength. The multiexponential fluorescence decays and the decay associated spectra indicated that the protein exists in at least three different conformations both in buffer and in lipids. Fluorescence polarization and acrylamide quenching experiments showed that the tryptophan containing region of the protein is embedded in the lipid matrix. The binding of the protein to the lipid appears to be comparable with that predicted for the interaction of amphipathic helices with nonpolar lipids.  相似文献   

11.
I D Johnson  B S Hudson 《Biochemistry》1989,28(15):6392-6400
The effects of detergent [deoxycholate (DOC) and phospholipid [dimyristoylphosphatidylcholine (DMPC)] environments on the rotational dynamics of the single tryptophan residue 26 of bacteriophage M13 coat protein have been investigated by using time-resolved single photon counting measurements of the fluorescence intensity and anisotropy decay. The total fluorescence decay of tryptophan-26 is complex but rather similar in DOC as compared to DMPC when analyzed in terms of a lifetime distribution (exponential series method). This similarity, in conjunction with the almost identical steady-state fluorescence spectra, indicates only minor differences between the tryptophan environments in DOC and DMPC. The reorientational dynamics of tryptophan-26 are dominated by slow rotation of the entire protein in both detergent and phospholipid environments. The resolved anisotropy decay in DOC can be approximated by a simple hydrodynamic model of protein/detergent micelle rotational diffusion, although the data indicative slightly greater complexity in the rotational motion. The tryptophan fluorescence anisotropy is not sensitive to protein conformational changes in DOC detected by nuclear magnetic resonance on the basis of pH independence in the range 7.5-9.1. In DMPC bilayers, restricted tryptophan motion with a correlation time of approximately 2 ns is observed together with a second very slow reorientational component. Resolution of the time constant for this slow rotation is obscured by the tryptophan fluorescence time window being too short to clearly locate its anisotropic limit. The possible contribution made by axial rotational diffusion of the protein to this slow rotational process is discussed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The structure of (Deibler) myelin basic protein in solution and in a lysolecithin++ lipid complex has been studied by using the emission properties of the single tryptophan residue of the protein (Trp-115). The studies have been carried out using both static and time-resolved fluorescence techniques. Relative to the free protein, the lipid bound myelin basic protein showed a twofold increase in fluorescence intensity and a marked blue-shift in the emission maximum wavelength. The multiexponential fluorescence decays and the decay associated spectra indicated that the protein exists in at least three different conformations both in buffer and in lipids. Fluorescence polarization and acrylamide quenching experiments showed that the tryptophan containing region of the protein is embedded in the lipid matrix. The binding of the protein to the lipid appears to be comparable with that predicted for the interaction of amphipathic helices with nonpolar lipids.  相似文献   

13.
Peptide-induced conformational changes in five isofunctional mutants of calmodulin (CaM), each bearing a single tryptophan residue either at the seventh position of each of the four calcium-binding loops (i.e., amino acids 26, 62, 99, and 135) or in the central helix (amino acid 81) were studied by using fluorescence spectroscopy. The peptides RS20F and RS20CK correspond to CaM-binding amino acid sequence segments of either nonmuscle myosin light chain kinase (nmMLCK) or calmodulin-dependent protein kinase II (CaMPK-II), respectively. Both steady-state and time-resolved fluorescence data were collected from the various peptide-CaM complexes. Steady-state fluorescence intensity measurements indicated that, in the presence of an excess of calcium, both peptides bind to the calmodulin mutants with a 1:1 stoichiometry. The tryptophans located in loops I and IV exhibited red-shifted emission maxima (356 nm), high quantum yields (0.3), and long average lifetimes (6 ns). They responded in a similar manner to peptide binding, by only slight changes in their fluorescence features. In contrast, the fluorescence intensity of the tryptophans in loops II and III decreased markedly, and their fluorescence spectrum was blue-shifted upon peptide binding. Analysis of the tryptophan fluorescence decay of the last mentioned calmodulins supports a model in which the equilibrium between two (Trp-99) or three (Trp-62) states of these tryptophan residues, each characterized by a different lifetime, was altered toward the blue-shifted short lifetime component upon peptide binding. Taken together, these data provide new evidence that both lobes of calmodulin are involved in peptide binding. Both peptides induced similar changes in the fluorescence properties of the tryptophan residues located in the calcium-binding loops, with the exception of calmodulin with Trp-135. For this last mentioned calmodulin, slight differences were observed. Tryptophan in the central helix responded differently to RS20F and RS20CK binding. RS20F binding induced a red-shift in the emission maximum of Trp-81 while RS20CK induced a blue-shift. The quenching rate of Trp-81 by iodide was slightly reduced upon RS20CK binding, while RS20F induced a 2-fold increase. These results provide evidence that the environment of Trp-81 is different in each case and are, therefore, consistent with the hypothesis that the central helix can play a differential role in the recognition of, or response to, CaM-binding structures.  相似文献   

14.
The correlation between dynamics and stability of icosahedral viruses was studied by steady-state and time-resolved fluorescence approaches. We compared the environment and dynamics of tryptophan side chains of empty capsids and ribonucleoprotein particles of two icosahedral viruses from the comovirus group: cowpea mosaic virus (CPMV) and bean pod mottle virus (BPMV). We found a great difference between tryptophan fluorescence emission spectra of the ribonucleoprotein particles and the empty capsids of BPMV. For CPMV, time-resolved fluorescence revealed differences in the tryptophan environments of the capsid protein. The excited-state lifetimes of tryptophan residues were significantly modified by the presence of RNA in the capsid. More than half of the emission of the tryptophans in the ribonucleoprotein particles of CPMV originates from a single exponential decay that can be explained by a similar, nonpolar environment in the local structure of most of the tryptophans, even though they are physically located in different regions of the x-ray structure. CPMV particles without RNA lost this discrete component of emission. Anisotropy decay measurements demonstrated that tryptophans rotate faster in empty particles when compared with the ribonucleoprotein particles. The increased structural breathing facilitates the denaturation of the empty particles. Our studies bring new insights into the intricate interactions between protein and RNA where part of the missing structural information on the nucleic acid molecule is compensated for by the dynamics.  相似文献   

15.
The oligomerization of melittin with increasing ionic strength and protein concentration was investigated using the methods of decomposition of its tryptophan fluorescence spectra into "elementary" log-normal components. At high ionic strength (up to 2 M KCl), the emission spectra of tetrameric melittin are well described as the sum of two log-normal components, suggesting the presence of tryptophan residues in two sorts of environment with greatly differing polarity. Measurements of fluorescence spectra by iodide showed that these two spectral components possess different Stern-Volmer constants, that is, the tryptophans emitting them have different solvent accessibility, which does not correlate with the crystallographic structure of tetrameric melittin. Moreover, in the oligomerization transition induced by ionic strength, the tetrameric intermediate is formed, which has log-normal spectral components with relative contributions differing from those in 2 M KCl.  相似文献   

16.
Lifetimes of phenylalanine, tyrosine and tryptophan self-fluorescence of three Ca2+-binding proteins (parvalbumins pI 4.47 and 3.95 and bovine alpha-lactalbumin) in the Ca2+-saturated state and without Ca2+ were measured on a device functioning in a channel of synchrotron radiation of the Lebedev Physical Institute electron accelerator C-60 with a single photon counting system. The decay curve of phenylalanine fluorescence of Ca2+-saturated parvalbumin pI 4.47 is two-exponential, which results from the presence of two subsystems of phenylalanine residues in this protein. Radiation of these subsystems is almost independent of one another. Detachment of Ca2+ from protein disturbs these subsystems. In case of tyrosine fluorescence of carp parvalbumin pI 3.95 a change in the quantum yield value of the stationary fluorescence induced by elimination of Ca2+ proceeds without a change of fluorescence lifetime. This seems to be related to the existence of static quenching of fluorescence in this case at the expense of complex formation between the chromophore and some adjacent quenching groups. Detachment of Ca2+ from alpha-lactalbumin induces conformational changes in its structure. The latter result in a transition of a number of tryptophane residues from its interior to the surface of the globule which is reflected in an increase of fluorescence quantum yield duration. It is concluded that in Ca2+-saturated alpha-lactalbumin some tryptophane residues are located near the quenching groups (dynamic quenching), most likely the disulfide bridges.  相似文献   

17.
Time-resolved, steady-state fluorescence and fluorescence-detected circular dichroism (FDCD) have been used to resolve the fluorescence contributions of the two tryptophan residues, Trp-13 and Trp-85, in the cyclic AMP receptor protein (CRP). The iodide and acrylamide quenching data show that in CRP one tryptophan residue, Trp-85, is buried within the protein matrix and the other, Trp-13, is moderately exposed on the surface of the protein. Fluorescence-quenching-resolved spectra show that Trp-13 has emission at about 350 nm and contributes 76–83% to the total fluorescence emission. The Trp-85, unquenchable by iodide and acrylamide, has the fluorescence emission at about 337 nm. The time-resolved fluorescence measurements show that Trp-13 has a longer fluorescence decay time. The Trp-85 exhibits a shorter fluorescence decay time. In the CRP-cAMP complex the Trp-85, previously buried in the apoprotein becomes totally exposed to the iodide and acrylamide quenchers. The FDCD spectra indicate that in the CRP-cAMP complex Trp-85 remains in the same environment as in the protein alone. It has been proposed that the binding of cAMP to CRP is accompanied by a hinge reorientation of two protein domains. This allows for penetration of the quencher molecules into the Trp-85 residue previously buried in the protein matrix.Abbreviations CRP cyclic AMP receptor protein - NATA N-acetyltryptophanamide - FQRS fluorescence-quenching-resolved spectra - FDCD fluorescence-detected circular dichroism - EDTA ethylenediaminetetraacetic acid - SDS sodium dodecyl sulfate - FPLC fast protein liquid chromatography  相似文献   

18.
The gene coding for the major capsid protein of feline immunodeficiency virus (FIV) has been cloned into the expression vector pQE60, which allows protein purification by affinity chromatography on a nitrilotriacetic acid/Ni/agarose column. The gene was expressed in Escherichia coli and the resultant soluble protein (FIV-rp24) purified to electrophoretic homogeneity. The amino-acid composition of the recombinant protein is almost identical to that predicted from the DNA sequence. This protein has two tryptophan residues at positions 40 and 126 that have been replaced by phenylalanine by site-directed mutagenesis to obtain two single mutants and a double mutant. Circular dichroism and fluorescence spectroscopy were employed to study the structural features of FIV-rp24 protein and its tryptophan mutants. The analysis of the CD spectra indicated that alpha-helix is the major secondary structural element (48-52%) and that the overall three-dimensional structure is not modified by the mutations. The fluorescence emission spectra showed that both tryptophan residues occupy a highly hydrophobic environment. Moreover, the different tyrosine fluorescence intensities of wild-type and mutant proteins are indicative of the existence of resonance energy transfer processes to nearby tryptophan. The individual contributions of each tryptophan residue to the spectroscopic properties of the wild-type protein were obtained from the spectra of all these proteins. Thermal denaturation studies indicate that the two tryptophan residues do not contribute equally to the stabilization of the three-dimensional structure.  相似文献   

19.
EcoRI endonuclease has two tryptophans at positions 104 and 246 on the protein surface. A single tryptophan mutant containing Trp246 and a single cysteine labeling site at the N-terminus was used to determine the position of the N-terminus in the protein structure. The N-termini of EcoRI endonuclease are essential for tight binding and catalysis yet are not resolved in any of the crystal structures. Resonance energy transfer was used to measure the distance from Trp246 donor to IAEDANS or MIANS acceptors at Cys3. The distance is 36 A in apoenzyme, decreasing to 26 A in the DNA complex. Molecular modeling suggests that the N-termini are located at the dimer interface formed by the loops comprising residues 221-232. Protein conformational changes upon binding of cognate DNA and cofactor Mg(2+) were monitored by tryptophan fluorescence of the single tryptophan mutant and wild-type endonuclease. The fluorescence decay of Trp246 is a triple exponential with lifetimes of 7, 3.5, and 0.7 ns. The decay-associated spectra of the 7- and 3.5-ns components have emission maxima at approximately 345 and approximately 338 nm in apoenzyme, which shift to approximately 340 and approximately 348 nm in the DNA complex. The fluorescence quantum yield of the single tryptophan mutant drops 30% in the DNA complex, as compared to 10% for wild-type endonuclease. Fluorescence changes of Trp104 upon binding of DNA were inferred by comparison of the decay-associated spectra of wild type and single tryptophan mutant. Fluorescence changes are related to changes in proximity and orientation of quenching functional groups in the tryptophan microenvironments, as seen in the crystal structures.  相似文献   

20.
Time-resolved fluorescence of apoferritin and its subunits   总被引:1,自引:0,他引:1  
The decay of the intrinsic fluorescence of the apoferritin polymer and its subunits has been studied by pulse and phase shift techniques. Both techniques show that the fluorescence decay of all the samples tested cannot be described by a single exponential function. The fluorescence decay data of the apoferritin subunits obtained with either technique can be fitted satisfactorily with a function resulting from the sum of two exponential components. However, the polymer data obtained with the high resolution phase shift technique operated either by synchrotron radiation or by a mode-locked argon ion laser can be fitted better using a bimodal gaussian continuous distribution of lifetime components. The molecular basis for this distribution of lifetime values may lie in the heterogeneity of the tryptophan environment generated by the assembly of the subunits into the polymer. The binding of the first 100 irons to apoferritin quenches the intrinsic fluorescence without affecting the lifetimes in a proportional way. This finding may be taken as an indication that the quenching of the tryptophan fluorescence induced by the binding of iron has both static and dynamic components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号