首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, a BHK21 clone producing a recombinant antibody/cytokine fusion protein was used to study the dependence of cell metabolism on the glucose and glutamine levels in the culture medium. Results obtained indicate that both glucose and glutamine consumptions show a Michaelis-Menten dependence on glucose and glutamine concentrations respectively. A similar dependence is also observed for lactate and ammonia productions. The estimated value of the Michaelis constant for the dependence of lactate production on glucose (K Glc Lac) was 1.4 ± 0.1 mM and for the dependence of ammonia production on glutamine (K Gln Amm) was 0.25 ± 0.11 mM and 0.10 ± 0.03 mM, at glucose concentrations of 0.28 mM and 5.6 mM respectively. At very low glucose concentrations, the glucose to lactate yield decreased markedly, showing a metabolic shift towards lower lactate production. This␣metabolic shift was also confirmed by the significant increase in the specific oxygen consumption rate also observed at low glucose concentrations. Although it was␣highly dependent on glucose concentration, the oxygen consumption also increased with the increase in␣glutamine concentration. At very low glutamine concentrations, the glutamine to ammonia yield increased, showing a more efficient glutamine metabolism. Received: 21 August 1998 / Received revision: 11 November 1998 / Accepted: 17 January 1999  相似文献   

2.
The filamentous fungus Stachybotrys sp has been shown to possess a rich β-glucosidase system composed of five β-glucosidases. One of them was already purified to homogeneity and characterized. In this work, a second β-glucosidase was purified and characterized. The filamentous fungal A19 strain was fed-batch cultivated on cellulose, and its extracellular cellulases (mainly β-glucosidases) were analyzed. The purified enzyme is a monomeric protein of 78 kDa molecular weight and exhibits optimal activity at pH 6.0 and at 50°C. The kinetic parameters, K m and V max, on para-nitro-phenyl-β-d-glucopyranosid (p-NPG) as a substrate were, respectively, 1.846 ± 0.11 mM and 211 ± 0.08 μmol min−1 ml−1. One interesting feature of this enzyme is its high stability in a wide range of pH from 4 to 10. Besides its aryl β-glucosidase activity towards salicin, methylumbellypheryl-β-d-glucoside (MU-Glc), and p-NPG, it showed a true β-glucosidase activity because it splits cellobiose into two glucose monomers. This enzyme has the capacity to synthesize short oligosaccharides from cellobiose as the substrate concentration reaches 30% with a recovery of 40%. We give evidences for the involvement of a transglucosylation to synthesize cellotetraose by a sequential addition of glucose to cellotriose.  相似文献   

3.
Twenty strains of Streptococcus bovis grew more slowly on lactose (1.21 ± 0.12 h−1) than on glucose (1.67 ± 0.12 h−1), and repeated transfers or prolonged growth in continuous culture (more than 200 generations each) did not enhance the growth rate on lactose. Lactose transport activity was poorly correlated with growth rate, and slow growth could not be explained by the ATP production rate (catabolic rate). Batch cultures growing on lactose always had less␣intracellular fructose 1,6-bisphosphate (Fru1,6P 2) than cells growing on glucose (6.6 mM compared to 16.7 mM), and this difference could be explained by the pathway of carbon metabolism. Glucose and the glucose moiety of lactose were metabolized by the Embden-Meyerhoff-Parnas (EMP) pathway, but the galactose moiety of lactose was catabolized by the tagatose pathway, a scheme that by-passed Fru1,6P 2. A mutant capable of co-metabolizing lactose and glucose grew more rapidly when glucose was added, even though the total rate of hexose fermentation did not change. Wild-type S. bovis grew rapidly with galactose and melibiose, but these galactose-containing sugars were activated by galactokinase and catabolized via EMP. On the basis of these results, rapid glycolytic flux through the EMP pathway is needed for the rapid growth (more than 1.2 h−1) of S.␣bovis. Received: 3 June 1997 / Received revision: 10 September 1997 / Accepted: 6 January 1998  相似文献   

4.
In order to clearly establish the properties of the enzymes responsible for hexose phosphorylation we have undertaken the separation and characterization of these enzymes present in tomato fruit (Martinez-Barajas and Randall 1996). This report describes the partial purification and characterization of glucokinase (EC. 2.7.1.1) from young green tomato fruit. The procedure yielded a 360-fold enrichment of glucokinase. Tomato fruit glucokinase is a monomer with a molecular mass of 53 kDa. Glucokinase activity was optimal between pH 7.5 and 8.5, preferred ATP as the phosphate donor (K m = 0.223 mM) and exhibited low activity with GTP or UTP. The tomato fruit glucokinase showed highest affinity for glucose (K m =65 μM). Activity observed with glucose was 4-fold greater than with mannose and 50-fold greater than with fructose. The tomato fruit glucokinase was sensitive to product inhibition by ADP (K i = 36 μM). Little inhibition was observed with glucose 6-phosphate (up to 15 mM) at pH 8.0; however, at pH 7.0 glucokinase activity was inhibited 30–50% by physiological concentrations of glucose 6-phosphate. Received: 4 October 1997 / Accepted: 10 January 1998  相似文献   

5.
When glucose or cellobiose was provided as an energy source for Fibrobacter succinogenes, there was a transient accumulation (as much as 0.4 mM hexose equivalent) of cellobiose or cellotriose, respectively, in the growth medium. Nongrowing cell suspensions converted cellobiose to cellotriose and longer-chain cellodextrins, and in this case the total cellodextrin concentration was as much as 20 mM (hexose equivalent). Because cell extracts of glucose- or cellobiose-grown cells cleaved cellobioise and cellotriose by phosphate-dependent reactions and glucose 1-phosphate was an end product, it appeared that cellodextrins were being produced by a reversible phosphorylase reaction. This conclusion was supported by the observation that the ratio of cellodextrins to cellodextrins with one greater hexose [n/(n + 1)] was approximately 4, a value similar to the equilibrium constant (Keq) of cellobiose phosphorylase (J. K. Alexander, J. Bacteriol. 81:903-910, 1961). When F. succinogenes was grown in a cellobiose-limited chemostat, cellobiose and cellotriose could both be detected, and the ratio of cellotriose to cellobiose was approximately 1 to 4. On the basis of these results, cellodextrin production is an equilibrium (mass action) function and not just an artifact of energy-rich cultural conditions. Cellodextrins could not be detected in low-dilution-rate, cellulose-limited continuous cultures, but these cultures had a large number of nonadherent cells. Because the nonadherent cells had a large reserve of polysaccharide and were observed at all stages of cell division, it appeared that they were utilizing cellodextrins as an energy source for growth.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Cell-free preparations of Tetrahymena thermophila catalyze the direct desaturation of cholesterol to Δ7-dehydrocholesterol (provitamin D3). The activity was isolated in the microsomal fraction from Tetrahymena homogenates. Δ7-Desaturase activity was stimulated fivefold by the addition of 6 mM ATP. Other cofactors assayed, including NAD, NADP, NADH or NADPH, had no significant effect. The activity was found in microsomes prepared from stationary-phase cultures of the ciliate, grown either with or without added cholesterol, thus indicating that it is constitutively expressed in T. thermophila cells. Received: 17 May 1999 / Accepted: 24 September 1999  相似文献   

7.
Summary The fermentation of cellobiose, glucose and cellulose MN 300 by Cellulomonas fermentans was studied. The molar growth yields (i.e. grams of cells per mole of hexose equivalent) were similar on cellobiose and cellulose at low sugar consumption levels (47.8 and 46.5 respectively), but was lower on glucose (38.0). The occurrence of cellobiose phosphorylase activity, detected in cellobiose- and cellulose-grown cells, might explain this result. The specific growth rates measured in cultures on cellobiose, glucose and cellulose were 0.055 h-1, 0.040 h-1 and 0.013 h-1 respectively. Growth inhibition was observed, and a drop in YH occurred after relatively low but different quantities of hexose were consumed (2.2 mM, 5 mM and 8 mM hexose equivalent with cellulose, glucose and cellobiose respectively), which coincided with a change in the fermentative metabolism from a typical mixed acid metabolism (1 ethanol, 1 acetate and 2 formate synthesized by consumed hexose) to a more ethanolic fermentation. When growth ceased in cellulose cultures, consumption of cellulose continued, as did production of ethanol.Molar growth yields of C. fermentans were similar in anaerobic and aerobic cellobiose cultures (47.8 g/mol and 42.2 g/mol respectively). Specific growth rates were also quite similar under both culture conditions (0.055±0.013 h-1 and 0.070±0.007 h-1 respectively). Aerobic metabolism was studied using 14C glucose. During the exponential growth phase, acetate, succinate and nonidentified compound(s) accumulated in the supernatant, but no 14CO2 was produced. During the stationary phase, acetate was oxidized and 14CO2 produced, but without any further biomass synthesis. It seems that a blocking of metabolite oxidation may have occurred in C. fermentans except in the case of acetate, but acetate oxidation was apparently not coupled with production of energy utilizable in biosynthesis.  相似文献   

8.
Streptococcus bovis HC5 inhibits a variety of S. bovis strains and other Gram-positive bacteria, but factors affecting this activity had not been defined. Batch culture studies indicated that S. bovis HC5 did not inhibit S. bovis JB1 (a non-bacteriocin-producing strain) until glucose was depleted and cells were entering stationary phase, but slow-dilution-rate, continuous cultures (0.2 h−1) had as much antibacterial activity as stationary-phase batch cultures. Because the activity of continuous cultures (0.2–1.2 h−1) was inversely related to the glucose consumption rate, it appeared that the antibacterial activity was being catabolite repressed by glucose. When the pH of continuous cultures (0.2 h−1) was decreased from 6.7 to 5.4, antibacterial activity doubled, but this activity declined at pH values less than 5.0. Continuous cultures (0.2 h−1) that had only ammonia as a nitrogen source had antibacterial activity, and large amounts of Trypticase (10 mg ml−1) caused only a 2.0-fold decline in the amount of HC5 cell-associated protein that was needed to prevent S. bovis JB1 growth. Because S. bovis HC5 was able to produce antibacterial activity over a wide range of culture conditions, there is an increased likelihood that this activity could have commercial application. Received: 6 February 2002 / Accepted: 27 March 2002  相似文献   

9.
The wet organic fraction of household wastes was digested anaerobically at 37 °C and 55 °C. At both temperatures the volatile solids loading was increased from 1 g l−1 day−1 to 9.65 g l−1 day−1, by reducing the nominal hydraulic retention time from 93 days to 19 days. The volatile solids removal in the reactors at both temperatures for the same loading rates was in a similar range and was still 65% at 19 days hydraulic retention time. Although more biogas was produced in the thermophilic reactor, the energy conservation in methane was slightly lower, because of a lower methane content, compared to the biogas of the mesophilic reactor. The slightly lower amount of energy conserved in the methane of the thermophilic digester was presumably balanced by the hydrogen that escaped into the gas phase and thus was no longer available for methanogenesis. In the thermophilic process, 1.4 g/l ammonia was released, whereas in the mesophilic process only 1 g/l ammonia was generated, presumably from protein degradation. Inhibition studies of methane production and glucose fermentation revealed a K i (50%) of 3 g/l and 3.7 g/l ammonia (equivalent to 0.22 g/l and 0.28 g/l free NH3) at 37 °C and a K i (50%) of 3.5 g/l and 3.4 g/l ammonia (equivalent to 0.69 g/l and 0.68 g/l free NH3) at 55 °C. This indicated that the thermophilic flora tolerated at least twice as much of free NH3 than the mesophilic flora and, furthermore, that the thermophilic flora was able to degrade more protein. The apparent ammonia concentrations in the mesophilic and in the thermophilic biowaste reactor were low enough not to inhibit glucose fermentation and methane production of either process significantly, but may have been high enough to inhibit protein degradation. The data indicated either that the mesophilic and thermophilic protein degraders revealed a different sensitivity towards free ammonia or that the mesophilic population contained less versatile protein degraders, leaving more protein undegraded. Received: 26 March 1997 / Received revision: 13 May 1997 / Accepted: 19 May 1997  相似文献   

10.
In Streptomyces peucetius var. caesius, the production of anthracyclines was suppressed either by 330 mM d-glucose or 25 mM phosphate. In addition, the anthracycline doxorubicin and the glucose analogue 2-deoxyglucose inhibited the growth of this microorganism at concentrations of 0.025 mM and 10 mM respectively. Spontaneous and induced mutants, resistant to the action of these compounds, were isolated, tested and chosen by their ability to overproduce anthracyclines. Genetic recombination between representative mutants was carried out by the protoplast fusion technique. Some recombinants carrying resistance to doxorubicin, phosphate and 2-deoxyglucose produced more than 40-fold greater levels of anthracyclines than those obtained with the parental strain. This improvement resulted in total antibiotic titres of more than 2 g/l culture medium at 6 days of fermentation. Received: 14 April 1997 / Received revision: 19 June 1997 / Accepted: 4 July 1997  相似文献   

11.
12.
An endoglucanase (1, 4-β-d glucan glucanohydrolase, EC 3.2.1.4) which was catalytically more active and exhibited higher affinity towards barley β-glucan, xyloglucan and lichenin as compared to carboxymethylcellulose (CMC) was purified from Aspergillus terreus strain AN1 following ion-exchange and hydrophobic interaction chromatography and gel filtration. The purified enzyme (40-fold) that apparently lacked a cellulose-binding domain showed a specific activity of 60 μmol mg−1 protein−1 against CMC. The purified enzyme had a molecular weight of 78 and 80 KDa as indicated by sodium dodecyl sulphate–polyacrylamide gel electrophoresis and gel filtration, respectively, and a pI of 3.5. The enzyme was optimally active at temperature 60°C and pH 4.0, and was stable over a broad range of pH (3.0–5.0) at 50°C. The endoglucanase activity was positively modulated in the presence of Cu2+, Mg2+, Ca2+, Na+, DTT and mercaptoethanol. Endoglucanase exhibited maximal turn over number (K cat) and catalytic efficiency (K cat/km) of 19.11 × 105 min−1 and 29.7 × 105 mM−1 min−1 against barley β-glucan as substrate, respectively. Hydrolysis of CMC and barley β-glucan liberated cellobiose, cellotriose, cellotetraose and detectable amount of glucose. The hydrolysis of xyloglucan, however, apparently yielded positional isomers of cellobiose, cellotriose and cellotetraose as well as larger oligosaccharides.  相似文献   

13.
We investigated extracellular carbohydrase production in the medium of an ectomycorrhizal fungus, Tricholoma matsutake, to reveal its ability to utilize carbohydrates such as starch as a growth substrate and to survey the saprotrophic aspects. We found β-glucosidase activity in the static culture filtrate of this fungus. The β-glucosidase was purified and characterized. The purified enzyme was obtained from about 2.1 l static culture filtrate, with 9.0% recovery, and showed a single protein band on SDS-PAGE. Molecular mass was about 160 kDa. The enzyme was most active around 60°C and pH 5.0, and stable over a pH of 4.0–8.0 for 30 min at 37°C. The purified enzyme was activated by the presence of Ca2+ and Mn2+ ions (about 2–3 times that of the control). The enzyme readily hydrolyzed oligosaccharides having a β-1,4-glucosidic linkage such as cellobiose and cellotriose. However, it did not hydrolyze polysaccharides such as avicel and CM-cellulose or oligosaccharides having an α-glucosidic linkage. Moreover, cellotriose was hydrolyzed by the enzyme for various durations, and the resultant products were analyzed by TLC. We concluded that the enzyme from T. matsutake seems to be a β-glucosidase because cellotriose with a β-1,4-glucosidic linkage decomposed to glucose during the enzyme reaction.  相似文献   

14.
The biodegradation of tributyl phosphate (Bu3-P, TBP), releasing phosphate at a high enough concentration locally to precipitate uranium from solution, was demonstrated by a mixed culture consisting primarily of pseudomonads. The effect of various parameters on Bu3-P biodegradation by growing cells is described. Growth at the expense of Bu3-P as the carbon and phosphorus source occurred over a pH range from 6.5 to 8, and optimally at pH 7. Bu3-P biodegradation was optimal at 30 °C, reduced at 20 °C and negligible at 4 °C and 37 °C. Incorporation of Cu or Cd inhibited, and Ni, Co and Mn reduced its degradation. Inorganic phosphate (above 10 mM) and kerosene (up to 1 g/l) reduced Bu3-P biodegradation significantly, but nitrate had no effect. Sulphate (10–100 mM) was inhibitory. When pregrown biomass was used the fastest rates of tributyl and dibutyl phosphate biodegradation were 25 μmol h−1 mg protein−1 and 37 μmol h−1 mg protein−1 respectively. Microcarrier-immobilised biomass decontaminated uranium-bearing acid mine waste water by uranium phosphate precipitation at the expense of Bu3-P hydrolysis in the presence of 35 mM SO4 2−. At pH 4.5, 79% of the UO2 2+ was removed at a flow rate of 1.4 ml/h on a 7-ml test column. Received: 2 June 1997 / Received revision: 15 September 1997 / Accepted: 19 September 1997  相似文献   

15.
The influence of ammonia on the anaerobic degradation of peptone by mesophilic and thermophilic populations of biowaste was investigated. For peptone concentrations from 5 g l−1 to 20 g l−1 the mesophilic population revealed a higher rate of deamination than the thermophilic population, e.g. 552 mg l−1 day−1 compared to 320 mg l−1 day−1 at 10 g l−1 peptone. The final degree of deamination of the thermophilic population was, however, higher: 102 compared to 87 mg NH3/g peptone in the mesophilic cultures. If 0.5–6.5 g l−1 ammonia was added to the mesophilic biowaste cultures, deamination of peptone, degradation of its chemical oxygen demand (COD) and formation of biogas were increasingly inhibited, but no hydrogen was formed. The thermophilic biowaste cultures were most active if around 1 g ammonia l−1 was present. Deamination, COD degradation and biogas production decreased at lower and higher ammonia concentrations and hydrogen was formed in addition to methane. Studies of the inhibition by ammonia of peptone deamination, COD degradation and methane formation revealed a K i (50%) for NH3 of 92, 95 and 88 mg l−1 at 37 °C and 251, 274 and 297 mg l−1 at 55 °C respectively. This indicated that the thermophilic flora tolerated significantly more NH3 than the mesophilic flora. In the mesophilic reactor effluent 4.6 × 108 peptone-degrading colony-forming units (cfu)/ml were culturable, whereas in the thermophilic reactor effluent growth of only 5.6 × 107 cfu/ml was observed. Received: 24 April 1998 / Received revision: 26 June 1998 / Accepted: 27 June 1998  相似文献   

16.
The effects of adding cellobiose on the transformation of vanillic acid to vanillin by two strains of Pycnoporus cinnabarinus MUCL39532 and MUCL38467 were studied. When maltose was used as the carbon source in the culture medium, very high levels of methoxyhydroquinone were formed from vanillic acid. When cellobiose was used as the carbon source and/or added to the culture medium of P. cinnabarinus strains on day 3 just before vanillic acid was added, it channelled the vanillic acid metabolism via the reductive route leading to vanillin. Adding 3.5 g l−1 cellobiose to 3-day-old maltose cultures of P. cinnabarinus MUCL39532 and 2.5 g l−1 cellobiose to 3-day-old cellobiose cultures of P. cinnabarinus MUCL38467, yielded 510 mg l−1 and 560 mg l−1 vanillin with a molar yield of 50.2 % and 51.7 % respectively. Cellobiose may either have acted as an easily metabolizable carbon source, required for the reductive pathway to occur, or as an inducer of cellobiose:quinone oxidoreductase, which is known to inhibit vanillic acid decarboxylation. Received: 24 July 1996 / Received revision: 29 November 1996 / Accepted: 29 November 1996  相似文献   

17.
A cellulose-producing acetic acid bacterium, Acetobacter xylinum KU-1, abundantly produces an extracellular endo-β-glucanase (EC 3.2.1.4) in the culture broth. The enzyme was purified to homogeneity by DEAE- and CM- Toyopearl 650M ion-exchange chromatography, Butyl-Toyopearl 650M hydrophobic chromatography, and Toyopearl HW-50 gel filtration. The purified enzyme showed the maximum activity at pH 5 and 50°C: it was stable up to 50°C at pH 5, activated by Co2+, and competitively inhibited by Hg2+; the apparent K i was 7 μM. The molecular weight of the enzyme was determined to be about 39,000 by sodium dodesyl sulfate/polyacrylamide gel electrophoresis, and about 41,000 by Toyopearl HW-50 gel filtration; the enzyme is monomeric. The enzyme hydrolyzed carboxymethylcellulose with an apparent K m of 30 mg/ml and V max of 1.2 μM/min. It hydrolyzed cellohexaose to cellobiose, cellotriose and cellotetraose, and also cellopentaose to cellobiose and cellotriose, but did not act on cellobiose, cellotriose, or cellotetraose. Received: 3 October 1996 / Accepted: 5 November 1996  相似文献   

18.
The fate of thiocyanate (SCN) and cyanate (OCN) under methanogenic conditions was investigated at 35 °C. Thiocyanate and cyanate were added to mixed methanogenic cultures along with an organic mixture. Thiocyanate was stable under these conditions, and had no adverse effect on methanogenesis at a concentration as high as 2.5 mM. In contrast, cyanate at a concentration as low as 0.3 mM initially inhibited methanogenesis but, after the complete removal of cyanate, methanogenesis gradually recovered. The inhibitory effect of cyanate on methanogenesis became more profound with repeated additions of cyanate. The transformation of cyanate followed the hydrolytic route to ammonia and bicarbonate under anaerobic conditions and its hydrolysis rate was enhanced by microbial activity. Cyanide was not detected as a cyanate transformation product under the methanogenic conditions of this study. Received: 13 June 1997 / Received revision: 29 August 1997 / Accepted: 15 September 1997  相似文献   

19.
The influence of (NH4)2SO4 concentration and dilution rate (D) on actual and potential H2 photoproduction has been studied in ammonium-limited chemostat cultures of Rhodobacter capsulatus B10. The actual H2 production in a photobioreactor was maximal (approx. 80 ml h−1 l−1) at D = 0.06 h−1 and 4 mM (NH4)2SO4. However, it was lower than the potential H2 evolution (calculated from hydrogen evolution rates in incubation vials), which amounted to 100–120 ml h−1 l−1 at D = 0.03–0.08 h−1. Taking into account the fact that H2 production in the photobioreactor under these conditions was not limited by light or lactate, another limiting (inhibiting) factor should be sought. One possibility is an inhibition of H2 production by the H2 accumulated in the gas phase. This is apparent from the non-linear kinetics of H2 evolution in the vials or from its inhibition by the addition of H2; initial rates were restored in both cases after the vials had been refilled with argon. The actual H2 production in the photobioreactor at D = 0.06 h−1 was shown to increase from approximately 80 ml h−1 l−1 to approximately 100 ml h−1 l−1 under an argon flow at 100 ml min−1. Under maximal H2 production rates in the photobioreactor, up to 30% of the lactate feedstock was utilised for H2 production and 50% for biomass synthesis. Received: 22 April 1997 / Received revision: 14 July 1997 / Accepted: 27 July 1997  相似文献   

20.
The mechanism of transbranchial excretion of total ammonia of brackish-water acclimated shore crabs, Carcinus maenas was examined using isolated, perfused gills. Applying physiological gradients of NH4Cl (100–200 μmol · l−1) directed from the haemolymph space to the bath showed that the efflux of total ammonia consisted of two components. The saturable component (excretion of NH4 +) greatly exceeded the linear component (diffusion of NH3). When an outwardly directed gradient (200 μmol · l−1) was applied, total ammonia in the perfusate was reduced by more than 50% during a single passage of saline through the gill. Effluxes of ammonia along the gradient were sensitive to basolateral dinitrophenol, ouabain, and Cs+ and to apical amiloride. Acetazolamide (1 mmol · l−1 basolateral) or Cl-free conditions had no substantial effects on ammonia flux, which was thus independent of both carbonic anhydrase mediated pH regulation and osmoregulatory NaCl uptake. When an inwardly directed gradient (200 μmol · l−1) was employed, influx rates were about 10-fold smaller and unaffected by basolateral ouabain (5 mmol · l−1) or dinitrophenol (0.5 mmol · l−1). Under symmetrical conditions (100 μmol · l−1 NH4Cl on both sides) ammonia was actively excreted against the gradient of total ammonia, which increased strongly during the experiment and against the gradient of the partial pressure of NH3. The active excretion rate was reduced to 7% of controls by basolateral dinitrophenol (0.5 mmol · l−1), to 44% by basolateral ouabain (5 mmol · l−1), to 46% by Na+-free conditions and to 42% by basolateral Cs+ (10 mmol · l−1), indicating basolateral membrane transport of NH4 + via the Na+/K+-ATPase and K+-channels and a second active, apically located, Na+ independent transport mechanism of NH4 +. Anterior gills, which are less capable of active ion uptake than posterior gills, exhibited even increased rates of active excretion of ammonia. We conclude that, under physiological conditions, branchial excretion of ammonia is a directed process with a high degree of effectiveness. It even allows active extrusion against an inwardly directed gradient, if necessary. Accepted: 11 March 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号