首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Thrombin catalyzes the proteolytic activation of factor VIII, cleaving two sites in the heavy chain and one site in the light chain of the procofactor. Evaluation of thrombin binding the reaction products from heavy chain cleavage by steady state fluorescence energy transfer using a fluorophore-labeled, active site-modified thrombin as well as by solid phase binding assays using a thrombin Ser(205) --> Ala mutant indicated a high affinity site in the A1 subunit (K(d) approximately 5 nm) that was dependent upon the Na(+)-bound form of thrombin, whereas a moderate affinity site in the A2 subunit (K(d) approximately 100 nm) was observed for both Na(+)-bound and -free forms. The solid phase assay also indicated that hirudin blocked thrombin interaction with the A1 subunit and had little, if any, effect on its interaction with the A2 subunit. Conversely, heparin blocked thrombin interaction with the A2 subunit and showed a marginal effect on A1 binding. Evaluation of the A2 sequence revealed two regions rich in acidic residues that are localized close to the N and C termini of this domain. Peptides encompassing these clustered acidic regions, residues 373-395 and 719-740, blocked thrombin cleavage of the isolated heavy chain at Arg(372) and Arg(740) and inhibited A2 binding to thrombin Ser(205) --> Ala, suggesting that both A2 domain regions potentially support interaction with thrombin. A B-domainless, factor VIII double mutant Asp(392) --> Ala/Asp(394) --> Ala was constructed, expressed, and purified and possessed specific activity equivalent to a severe hemophilia phenotype. This mutant was resistant to cleavage at Arg(740), whereas cleavage at Arg(372) was not affected. These data suggest the acidic region comprising residues 389-394 in factor VIII A2 domain interacts with thrombin via its heparin-binding exosite and facilitates cleavage at Arg(740) during procofactor activation.  相似文献   

2.
Thrombin activates factor VIII by proteolysis at three P1 residues: Arg372, Arg740, and Arg1689. Cleavage at Arg372 and Arg1689 are essential for procofactor activation; however cleavage at Arg740 has not been rigorously studied. To evaluate the role for cleavage at Arg740, we prepared and stably expressed two recombinant B-domainless factor VIII mutants, R740H and R740Q to slow and eliminate, respectively, cleavage at this site. Specific activity values for the variants were approximately 50 and 20%, respectively, that of wild-type factor VIII. Activation of factor VIII R740H by thrombin showed an approximately 40-fold reduction in the rate of A2 subunit generation, which reflected an approximately 20-fold reduction in cleavage rate at Arg372. Similarly, a approximately 40-fold rate reduction in cleavage at Arg1689 and consequent generation of the A3-C1-C2 subunit were observed. Rate values for A2 and A3-C1-C2 subunit generation were reduced by >700-fold and approximately 140-fold, respectively, in the R740Q variant. These results suggest that initial cleavage at Arg740 affects cleavage at both Arg372 and Arg1689 sites. Results obtained evaluating proteolysis of the factor VIII mutants by factor Xa revealed more modest rate reductions (<10-fold) in generating A2 and A3-C1-C2 subunits from either variant, suggesting that factor Xa-catalyzed activation of factor VIII was significantly less dependent upon prior cleavage at residue 740 than thrombin. Overall, these results support a model whereby cleavage of factor VIII by thrombin is an ordered pathway with cleavage at Arg740 facilitating cleavages at Arg372 and Arg1689, which result in procofactor activation.  相似文献   

3.
Factor VIII (FVIII) is activated by proteolytic cleavages with thrombin and factor Xa (FXa) in the intrinsic blood coagulation pathway. The anti-C2 monoclonal antibody ESH8, which recognizes residues 2248-2285 and does not inhibit FVIII binding to von Willebrand factor or phospholipid, inhibited FVIII activation by FXa in a clotting assay. Furthermore, analysis by SDS-polyacrylamide gel electrophoresis showed that ESH8 inhibited FXa cleavage in the presence or absence of phospholipid. The light chain (LCh) fragments (both 80 and 72 kDa) and the recombinant C2 domain dose-dependently bound to immobilized anhydro-FXa, a catalytically inactive derivative of FXa in which dehydroalanine replaces the active-site serine. The affinity (K(d)) values for the 80- and 72-kDa LCh fragments and the C2 domain were 55, 51, and 560 nM, respectively. The heavy chain of FVIII did not bind to anhydro-FXa. Similarly, competitive assays using overlapping synthetic peptides corresponding to ESH8 epitopes (residues 2248-2285) demonstrated that a peptide designated EP-2 (residues 2253-2270; TSMYVKEFLISSSQDGHQ) inhibited the binding of the C2 domain or the 72-kDa LCh to anhydro-FXa by more than 95 and 84%, respectively. Our results provide the first evidence for a direct role of the C2 domain in the association between FVIII and FXa.  相似文献   

4.
Plasmin not only functions as a key enzyme in the fibrinolytic system but also directly inactivates factor VIII and other clotting factors such as factor V. However, the mechanisms of plasmin-catalyzed factor VIII inactivation are poorly understood. In this study, levels of factor VIII activity increased approximately 2-fold within 3 min in the presence of plasmin, and subsequently decreased to undetectable levels within 45 min. This time-dependent reaction was not affected by von Willebrand factor and phospholipid. The rate constant of plasmin-catalyzed factor VIIIa inactivation was approximately 12- and approximately 3.7-fold greater than those mediated by factor Xa and activated protein C, respectively. SDS-PAGE analysis showed that plasmin cleaved the heavy chain of factor VIII into two terminal products, A1(37-336) and A2 subunits, by limited proteolysis at Lys(36), Arg(336), Arg(372), and Arg(740). The 80-kDa light chain was converted into a 67-kDa subunit by cleavage at Arg(1689) and Arg(1721), identical to the pattern induced by factor Xa. Plasmin-catalyzed cleavage at Arg(336) proceeded faster than that at Arg(372), in contrast to proteolysis by factor Xa. Furthermore, breakdown was faster than that in the presence of activated protein C, consistent with rapid inactivation of factor VIII. The cleavages at Arg(336) and Lys(36) occurred rapidly in the presence of A2 and A3-C1-C2 subunits, respectively. These results strongly indicated that cleavage at Arg(336) was a central mechanism of plasmin-catalyzed factor VIII inactivation. Furthermore, the cleavages at Arg(336) and Lys(36) appeared to be selectively regulated by the A2 and A3-C1-C2 domains, respectively, interacting with plasmin.  相似文献   

5.
The procofactor, factor VIII, is activated by thrombin or factor Xa-catalyzed cleavage at three P1 residues: Arg-372, Arg-740, and Arg-1689. The catalytic efficiency for thrombin cleavage at Arg-740 is greater than at either Arg-1689 or Arg-372 and influences reaction rates at these sites. Because cleavage at Arg-372 appears rate-limiting and dependent upon initial cleavage at Arg-740, we investigated whether cleavage at Arg-1689 influences catalysis at this step. Recombinant B-domainless factor VIII mutants, R1689H and R1689Q were prepared and stably expressed to slow and eliminate cleavage, respectively. Specific activity values for the His and Gln mutations were ∼50 and ∼10%, respectively, that of wild type. Thrombin activation of the R1689H variant showed an ∼340-fold reduction in the rate of Arg-1689 cleavage, whereas the R1689Q variant was resistant to thrombin cleavage at this site. Examination of heavy chain cleavages showed ∼4- and 11-fold reductions in A2 subunit generation and ∼3- and 7-fold reductions in A1 subunit generation for the R1689H and R1689Q mutants, respectively. These results suggest a linkage between light chain cleavage and cleavages in heavy chain. Results obtained evaluating proteolysis of the factor VIII mutants by factor Xa revealed modest rate reductions (<5-fold) in generating A2 and A1 subunits and in cleaving light chain at Arg-1721 from either variant, suggesting little dependence upon prior cleavage at residue 1689 as compared with thrombin. Overall, these results are consistent with a competition between heavy and light chains for thrombin exosite binding and subsequent proteolysis with binding of the former chain preferred.Factor VIII, a plasma protein missing or defective in individuals with hemophilia A, is synthesized as an ∼300-kDa single chain polypeptide corresponding to 2332 amino acids. Within the protein are six domains based on internal homologies and ordered as NH2-A1-A2-B-A3-C1-C2-COOH (1, 2). Bordering the A domains are short segments containing high concentrations of acidic residues that follow the A1 and A2 domains and precede the A3 domain and are designated a1 (residues 337–372), a2 (residues 711–740), and a3 (1649–1689). Factor VIII is processed by cleavage at the B-A3 junction to generate a divalent metal ion-dependent heterodimeric protein composed of a heavy chain (A1-a1-A2-a2-B domains) and a light chain (a3-A3-C1-C2 domains) (3).The activated form of factor VIII, factor VIIIa, functions as a cofactor for factor IXa, increasing its catalytic efficiency by several orders of magnitude in the phospholipid- and Ca2+-dependent conversion of factor X to factor Xa (4). The factor VIII procofactor is converted to factor VIIIa through limited proteolysis catalyzed by thrombin or factor Xa (5, 6). Thrombin is believed to act as the physiological activator of factor VIII, as association of factor VIII with von Willebrand factor impairs the capacity for the membrane-dependent factor Xa to efficiently activate the procofactor (5, 7). Activation of factor VIII occurs through proteolysis by either protease via cleavage of three P1 residues at Arg-740 (A2-B domain junction), Arg-372 (A1-A2 domain junction), and Arg-1689 (a3-A3 junction) (5). After factor VIII activation, there is a weak electrostatic interaction between the A1 and A2 domains of factor VIIIa (8, 9) and spontaneous inactivation of the cofactor occurs through A2 subunit dissociation from the A1/A3-C1-C2 dimer, consequently dampening factor Xase (3).Thrombin cleavage of factor VIII appears to be an ordered pathway, with relative rates at Arg-740 > Arg-1689 > Arg-372 and the initial proteolysis at Arg-740 facilitating proteolysis at Arg-372 as well as Arg-1689 (10). This latter observation was based upon results showing that mutations at Arg-740, impairing this cleavage, significantly reduced cleavage rates at the two other P1 sites. Thrombin-catalyzed activation of factor VIII is dependent upon interactions involving the anion binding exosites of the proteinase (11, 12). Exosite binding is believed to determine substrate affinity, whereas subsequent active site docking primarily affects Vmax (13). Furthermore, the complex interactions involving multiple cleavages within a single substrate may utilize a ratcheting mechanism (14) where presentation of the scissile bond is facilitated by a prior cleavage event.Cleavage at Arg-372 is a critical step in thrombin activation of factor VIII as it exposes a cryptic functional factor IXa-interactive site in the A2 domain (15), whereas cleavage at Arg-1689 liberates factor VIII from von Willebrand factor (16) and contributes to factor VIIIa specific activity (17, 18). Although cleavage at Arg-740 represents a fast step relative to cleavages at other P1 residues in the activation of factor VIII (19), the influence of Arg-1689 cleavage on cleavages in the heavy chain remains unknown. In the present study cleavage at Arg-1689 is examined using recombinant factor VIII variants possessing single point mutations of R1689Q and R1689H. Results indicating reduced rates of A1 and A2 subunit generation, which are dependent upon the residue at position 1689, suggest that cleavage at Arg-1689 affects rates of proteolysis at Arg-740 and Arg-372. These observations are consistent with a mechanism whereby heavy chain and light chain compete for a binding thrombin exosite(s), with heavy chain preferred over light chain. In this competition mechanism, cleavage at Arg-740 is favored over Arg-1689. Subsequent cleavage at Arg-372 in heavy chain may involve a ratcheting mechanism after initial cleavage at Arg-740. On the other hand, the mechanism for factor Xa-catalyzed activation of factor VIII appears to be less dependent on cleavage at the Arg-1689 site as compared with thrombin.  相似文献   

6.
Factor VIII delta II is a genetically engineered deletion variant of factor VIII expressed by recombinant Chinese hamster ovary cells, in which a major portion of the central (B) domain and a part of the light chain (Pro771-Asp1666) are missing. After immunoaffinity purification, the kinetics of thrombin cleavage of the novel molecule was analysed by SDS/PAGE, Western blotting and N-terminal amino acid sequencing. Thrombin first cleaves factor VIII delta II at Arg740-Ser741 to generate the 90-kDa heavy chain and an 80-kDa fusion polypeptide consisting of the remaining portion of the B domain and the 73-kDa light chain. The 90-kDa fragment is further cleaved, giving rise to 50-kDa and 40-kDa fragments while the 80-kDa fragment generates a 71/73-kDa doublet. The 71/73-kDa doublet, 50-kDa and 40-kDa fragments were further analysed by N-terminal amino acid sequencing and found to correspond to the predicted amino acid sequences. Our study shows that, in spite of the 900 amino acid deletion present in factor VIII delta II, the essential structural elements required for thrombin activation are conserved.  相似文献   

7.
Activation of factor VIII by thrombin occurs via limited proteolysis at R372, R740, and R1689. The resultant active factor VIIIa molecule consists of three noncovalently associated subunits: A1-a1, A2-a2, and A3-C1-C2 (50, 45, and 73 kDa respectively). Further proteolysis of factor VIIIa at R336 and R562 by activated protein C subsequently inactivates this cofactor. We now find that the factor VIIa-tissue factor complex (VIIa-TF/PL), the trigger of blood coagulation with restricted substrate specificity, can also catalyze limited proteolysis of factor VIII. Proteolysis of factor VIII was observed at 10 sites, producing 2 major fragments (47 and 45 kDa) recognized by an anti-factor VIII A2 domain antibody. Time courses indicated the slow conversion of the large fragment to 45 kDa, followed by further degradation into at least two smaller fragments. N-Terminal sequencing along with time courses of proteolysis indicated that VIIa-TF/PL cleaved factor VIII first at R740, followed by concomitant cleavage at R336 and R372. Although cleavage of the light chain at R1689 was observed, the majority remained uncleaved after 17 h. Consistent with this, only a transient 2-fold increase in factor VIII clotting activity was observed. Thus, heavy chain cleavage of factor VIII by VIIa-TF/PL produces an inactive factor VIII cofactor no longer capable of activation by thrombin. In addition, VIIa-TF/PL was found to inactivate thrombin-activated factor VIII. We hypothesize that these proteolyses may constitute an alternative pathway to regulate coagulation under certain conditions. In addition, the ability of VIIa-TF/PL to cleave factor VIII at 10 sites greatly expands the known protein substrate sequences recognized by this enzyme-cofactor complex.  相似文献   

8.
Human factor VIII and factor VIIIa were proteolytically inactivated by activated protein C. Cleavages occurred within the heavy chain (contiguous A1-A2-B domains) of factor VIII and in the heavy chain-derived A1 and A2 subunits of factor VIIIa, whereas no proteolysis was observed in the light chain or light chain-derived A3-C1-C2 subunit. Reactivity to an anti-A2 domain monoclonal antibody and NH2-terminal sequence analysis of three terminal digest fragments from factor VIII allowed ordering of fragments and identification of cleavage sites. Fragment A1 was derived from the NH2 terminus and resulted from cleavage at Arg336-Met337. The A2 domain was bisected following cleavage at Arg562-Gly563 and yielded fragments designated A2N and A2C. A third cleavage site is proposed at the A2-B junction (Arg740-Ser741) since fragment A2C was of equivalent size when derived either from factor VIII or factor VIIIa. The site at Arg562 was preferentially cleaved first in factor VIII(alpha) compared with the site at Arg336, and it was this initial cleavage that most closely correlated with the loss of cofactor activity. Factor VIIIa was inactivated 5-fold faster than factor VIII, possibly as a result of increased protease utilization of the site at Arg562 when the A2 subunit is not contiguous with the A1 domain. When initial cleavage occurred at Arg336, it appeared to preclude subsequent cleavage at Arg562, possibly by promoting dissociation of the A2 domain (subunit) from the A1/light chain dimer. This conclusion was supported by the failure of protease treated A1/A3-C1-C2 dimer to bind A2 subunit and gel filtration analysis that showed dissociation of the A2 domain-derived fragments, A2N and A2C, from the A1 fragment/light chain dimer. These results suggest a mechanism for activated protein C-catalyzed inactivation of factor VIII(alpha) involving both covalent alteration and fragment dissociation.  相似文献   

9.
Alpha-thrombin has two separate electropositive binding exosites (anion binding exosite I, ABE-I and anion binding exosite II, ABE-II) that are involved in substrate tethering necessary for efficient catalysis. Alpha-thrombin catalyzes the activation of factor V and factor VIII following discrete proteolytic cleavages. Requirement for both anion binding exosites of the enzyme has been suggested for the activation of both procofactors by alpha-thrombin. We have used plasma-derived alpha-thrombin, beta-thrombin (a thrombin molecule that has only ABE-II available), and a recombinant prothrombin molecule rMZ-II (R155A/R284A/R271A) that can only be cleaved at Arg(320) (resulting in an enzymatically active molecule that has only ABE-I exposed, rMZ-IIa) to ascertain the role of each exosite for procofactor activation. We have also employed a synthetic sulfated pentapeptide (DY(SO(3)(-))DY(SO(3)(-))Q, designated D5Q1,2) as an exosite-directed inhibitor of thrombin. The clotting time obtained with beta-thrombin was increased by approximately 8-fold, whereas rMZ-IIa was 4-fold less efficient in promoting clotting than alpha-thrombin under similar experimental conditions. Alpha-thrombin readily activated factor V following cleavages at Arg(709), Arg(1018), and Arg(1545) and factor VIII following proteolysis at Arg(372), Arg(740), and Arg(1689). Cleavage of both procofactors by alpha-thrombin was significantly inhibited by D5Q1,2. In contrast, beta-thrombin was unable to cleave factor V at Arg(1545) and factor VIII at both Arg(372) and Arg(1689). The former is required for light chain formation and expression of optimum factor Va cofactor activity, whereas the latter two cleavages are a prerequisite for expression of factor VIIIa cofactor activity. Beta-thrombin was found to cleave factor V at Arg(709) and factor VIII at Arg(740), albeit less efficiently than alpha-thrombin. The sulfated pentapeptide inhibited moderately both cleavages by beta-thrombin. Under similar experimental conditions, membrane-bound rMZ-IIa cleaved and activated both procofactor molecules. Activation of the two procofactors by membrane-bound rMZ-IIa was severely impaired by D5Q1,2. Overall the data demonstrate that ABE-I alone of alpha-thrombin can account for the interaction of both procofactors with alpha-thrombin resulting in their timely and efficient activation. Because formation of meizothrombin precedes that of alpha-thrombin, our findings also imply that meizothrombin may be the physiological activator of both procofactors in vivo in the presence of a procoagulant membrane surface during the early stages of coagulation.  相似文献   

10.
Factor VIIIa is inactivated by a combination of two mechanisms. Activation of factor VIII by thrombin results in a heterotrimeric factor VIIIa that spontaneously inactivates due to dissociation of the A2 subunit. Additionally, factor VIIIa is cleaved by the anticoagulant serine protease, activated protein C, at two cleavage sites, Arg(336) in the A1 subunit and Arg(562) in the A2 subunit. We previously characterized an engineered variant of factor VIII which contains a disulfide bond between the A2 and the A3 subunits that prevents the spontaneous dissociation of the A2 subunit following thrombin activation. Thus, in the absence of activated protein C, this variant has stable activity following activation by thrombin. To isolate the effects of the individual activated protein C cleavage sites on factor VIIIa, we engineered mutations of the activated protein C cleavage sites into the disulfide bond-cross-linked factor VIII variant. Arg(336) cleavage is 6-fold faster than Arg(562) cleavage, and the Arg(336) cleavage does not fully inactivate factor VIIIa when A2 subunit dissociation is blocked. Protein S enhances both cleavage rates but enhances Arg(562) cleavage more than Arg(336) cleavage. Factor V also enhances both cleavage rates when protein S is present. Factor V enhances Arg(562) cleavage more than Arg(336) cleavage as well. As a result, in the presence of both activated protein C cofactors, Arg(336) cleavage is only twice as fast as Arg(562) cleavage. Therefore, both cleavages contribute significantly to factor VIIIa inactivation.  相似文献   

11.
Newell JL  Fay PJ 《Biochemistry》2008,47(33):8786-8795
Factor VIII is activated by thrombin through proteolysis at Arg740, Arg372, and Arg1689. One region implicated in this exosite-dependent interaction is the factor VIII a2 segment (residues 711-740) separating the A2 and B domains. Residues 717-725 (DYYEDSYED) within this region consist of five acidic residues and three sulfo-Tyr residues, thus representing a high density of negative charge potential. The contributions of these residues to thrombin-catalyzed activation of factor VIII were assessed following mutagenesis of acidic residues to Ala or Tyr residues to Phe and expression and purification of the B-domainless proteins from stable-expressing cell lines. All mutations showed reduced specific activity from approximately 30% to approximately 70% of the wild-type value. While replacement of the Tyr residues showed little, if any, effect on rates of thrombin-catalyzed proteolysis of factor VIII and consequent activation, the acidic to Ala mutations Glu720Ala, Asp721Ala, Glu724Ala, and Asp725Ala showed decreased rates of proteolysis at each of the three P1 residues. Mutations at residues Glu724 and Asp725 were most affected with double mutations at these sites showing approximately 10-fold and approximately 30-fold reduced rates of cleavage at Arg372 and Arg1689, respectively. Factor VIII activation profiles paralleled the results assessing rates of proteolysis. Kinetic analyses revealed these mutations minimally affected apparent V max for thrombin-catalyzed cleavage but variably increased the K m for procofactor up to 7-fold, suggesting the latter parameter was dominant in reducing catalytic efficiency. These results suggest that residues Glu720, Asp721, Glu724, and Asp725 likely constitute an exosite-interactive region in factor VIII facilitating cleavages for procofactor activation.  相似文献   

12.
Factor VIII is activated and inactivated by plasmin by limited proteolysis. In our one-stage clotting assay, these plasmin-catalyzed reactions were inhibited by the addition of isolated factor VIII A2 subunits and by Glu-Gly-Arg-active-site modified factor IXa. SDS-PAGE analysis showed that an anti-A2 monoclonal antibody, recognizing the factor IXa-interactive site (residues 484-509), blocked the plasmin-catalyzed cleavage at Arg(336) and Arg(372) but not at Arg(740). Surface plasmon resonance-based assays and ELISA demonstrated that the A2 subunit bound to active-site modified anhydro-plasmin with high affinity (K(d): 21 nM). Both an anti-A2 monoclonal antibody and a peptide comprising of A2 residues 479-504 blocked A2 binding by approximately 80% and approximately 55%, respectively. Mutant A2 molecules where the basic residues in A2 were converted to alanine were evaluated for binding of anhydro-plasmin. Among the tested mutants, the R484A A2 mutant possessed approximately 250-fold lower affinity than the wild-type A2. The affinities of K377A, K466A, and R471A mutants were decreased by 10-20-fold. The inhibitory effect of R484A mutant on plasmin-catalyzed inactivation of factor VIIIa was approximately 20% of that of wild-type A2. In addition, the inactivation rate by plasmin of factor VIIIa reconstituted with R484A mutant was approximately 3-fold lower than that with wild-type A2. These findings demonstrate that Arg(484) plays a key role within the A2 plasmin-binding site, responsible for plasmin-catalyzed factor VIII(a) inactivation.  相似文献   

13.
Activated protein C (APC) inactivates factor Va (fVa) by proteolytically cleaving fVa heavy chain at Arg(506), Arg(306), and Arg(679). Factor Xa (fXa) protects fVa from inactivation by APC. To test the hypothesis that fXa and APC share overlapping fVa binding sites, 15 amino acid-overlapping peptides representing the heavy chain (residues 1-709) of fVa were screened for inhibition of fVa inactivation by APC. As reported, VP311-325, a peptide comprising residues 311-325 in fVa, dose-dependently and potently inhibited fVa-dependent prothrombin activation by fXa in the absence of APC. This peptide also inhibited the inactivation of fVa by APC, suggesting that this region of fVa interacts with APC. The peptide inhibited the APC-dependent cleavage of both Arg(506) and Arg(306) because inhibition was observed with plasma-derived fVa and recombinant R506Q and RR306/679QQ fVa. VP311-325 altered the fluorescence emission of dansyl-active site-labeled APC(i) but not a dansyl-active site-labeled thrombin control, showing that the peptide binds to APC(i). This peptide also inhibited the resonance energy transfer between membrane-bound fluorescein-labeled fVa (donor) and rhodamine-active site-labeled S360C-APC (acceptor). These data suggest that peptide VP311-325 represents both an APC and fXa binding region in fVa.  相似文献   

14.
ADAMTS13 limits platelet-rich thrombosis by cleaving von Willebrand factor at the Tyr(1605)-Met(1606) bond. Previous studies showed that ADAMTS13 truncated after spacer domain remains proteolytically active or hyperactive. However, the relative contribution of each domain within the proximal carboxyl terminus of ADAMTS13 in substrate recognition and specificity is not known. We showed that a metalloprotease domain alone was unable to cleave the Tyr-Met bond of glutathione S-transferase (GST)-VWF73-H substrate in 3 h, but it did cleave the substrate at a site other than the Tyr-Met bond after 16-24 h of incubation. Remarkably, the addition of even one or several proximal carboxyl-terminal domains of ADAMTS13 restored substrate specificity. Full proteolytic activity, however, was not achieved until all of the proximal carboxyl-terminal domains were added. The addition of TSP1 2-8 repeats and two CUB domains did not further increase proteolytic activity. Furthermore, ADAMTS13 truncated after the spacer domain with or without metalloprotease domain bound GST-VWF73-H with a K(d) of approximately 7.0 or 13 nm, comparable with full-length ADAMTS13 (K(d) = 4.6 nm). Metalloprotease domain did not bind GST-VWF73-H detectably, but the disintegrin domain, first TSP1 repeat, Cys-rich domain, and spacer domain bound GST-VWF73-H with K(d) values of 489, 136, 121, and 108 nm, respectively. These proximal carboxyl-terminal domains dose-dependently inhibited cleavage of fluorescent resonance energy transfer (FRETS)-VWF73 by full-length ADAMTS13 and ADAMTS13 truncated after the spacer domain. These data demonstrated that the proximal carboxyl-terminal domains of ADAMTS13 determine substrate specificity and are all required for recognition and cleavage of von Willebrand factor between amino acid residues Asp(1595) and Arg(1668).  相似文献   

15.
Factor VIII is a cofactor in the tenase enzyme complex which assembles on the membrane of activated platelets. A critical step in tenase assembly is membrane binding of factor VIII. Platelet membrane factor VIII-binding sites were characterized by flow cytometry using either fluorescein maleimide-labeled recombinant factor VIII or a fluorescein-labeled monoclonal antibody against factor VIII. Following activation by thrombin, most platelets bound factor VIII within 90 s. In addition, over the course of several minutes, membranous vesicles (microparticles) were shed from the platelet plasma membrane and each microparticle bound as much factor VIII as a stimulated platelet. Over 30 min, stimulated platelets (but not microparticles) lost the capacity to bind factor VIII. Factor VIII bound saturably to microparticles from platelets stimulated with thrombin, thrombin plus collagen, or the complement proteins C5b-9. The binding of factor VIII was compared to factor V, a structurally homologous coagulation cofactor. Analysis of microparticle binding kinetics yielded similar on and off rates for factor VIII and factor Va and KD values of 2-10 nM. In the presence of 20 nM factor Va, the binding of factor VIII to microparticles was increased, and there was a comparable increase in platelet tenase activity. At higher factor Va concentrations, factor VIII binding and tenase activity were inhibited. Conversely, factor VIII had a similar dose-dependent effect on factor Va binding and platelet prothrombinase activity. Synthetic phospholipid vesicles containing phosphatidylserine competed with microparticles for binding of factor VIII and factor Va. These studies indicate that activated platelets express a transient increase in high affinity receptors for factor VIII, whereas platelet-derived microparticles express a sustained increase in receptors. The binding characteristics of platelet membrane receptors for factor VIII are similar to those for factor Va.  相似文献   

16.
Novel antithrombin molecules were identified from the ixodidae tick, Haemaphysalis longicornis. These molecules, named madanin 1 and 2, are 7-kDa proteins and show no significant similarities to any previously identified proteins. Assays using human plasma showed that madanin 1 and 2 dose-dependently prolonged both activated partial thromboplastin time and prothrombin time, indicating that they inhibit both the intrinsic and extrinsic pathways. Direct binding assay by surface plasmon resonance measurement demonstrated that madanin 1 and 2 specifically interacted with thrombin. Furthermore, it was clearly shown that madanin 1 and 2 inhibited conversion of fibrinogen into fibrin by thrombin, thrombin-catalyzed activation of factor V and factor VIII, and thrombin-induced aggregation of platelets without affecting thrombin amidolytic activity. These results suggest that madanin 1 and 2 bind to the anion-binding exosite 1 on the thrombin molecule, but not to the active cleft, and interfere with the association of fibrinogen, factor V, factor VIII and thrombin receptor on platelets with an anion-binding exosite 1. They appear to be exosite 1-directed competitive inhibitors.  相似文献   

17.
The blood coagulation proteinase, thrombin, converts factor V into factor Va through a multistep activation pathway that is regulated by interactions with thrombin exosites. Thrombin exosite interactions with human factor V and its activation products were quantitatively characterized in equilibrium binding studies based on fluorescence changes of thrombin covalently labeled with 2-anilinonaphthalene-6-sulfonic acid (ANS) linked to the catalytic site histidine residue by Nalpha-[(acetylthio)acetyl]-D-Phe-Pro-Arg-CH2Cl ([ANS]FPR-thrombin). Exosite I was shown to play a predominant role in the binding of factor V and factor Va from the effect of the exosite I-specific ligand, hirudin54-65, on the interactions. Factor V and factor Va bound to exosite I of [ANS]FPR-thrombin with similar dissociation constants of 3.4 +/- 1.3 and 1.1 +/- 0.4 microM and fluorescence enhancements of 182 +/- 41 and 127 +/- 17%, respectively. Native thrombin and labeled thrombin bound with similar affinity to factor Va. Among factor V activation products, the factor Va heavy chain was shown to contain the site of exosite I binding, whereas exosite I-independent, lower affinity interactions were observed for activation fragments E and C1, and no detectable binding was observed for the factor Va light chain. The results support the conclusion that the factor V activation pathway is initiated by exosite I-mediated binding of thrombin to a site in the heavy chain region of factor V that facilitates the initial cleavage at Arg709 to generate the heavy chain of factor Va. The results further suggest that binding of thrombin through exosite I to factor V activation intermediates may regulate their conversion to factor Va and that similar binding of thrombin to the factor Va produced may reflect a mode of interaction involved in the regulation of prothrombin activation.  相似文献   

18.
Association of the factor VIII light chain with von Willebrand factor   总被引:6,自引:0,他引:6  
Coagulation factor VIII (fVIII) is isolated from porcine blood as a set of three heterodimers because of proteolytic cleavages in the middle, or B region, of the parent single-chain molecule. A single 80-kDa COOH-terminal fragment, the light chain (fVIIILC), is associated with one of three forms of heavy chain (fVIIIHCs) by a calcium-dependent linkage. The purified heterodimers were dissociated using EDTA and fVIIILC, and fVIIIHCs were isolated by high pressure liquid chromatography under nondenaturing conditions. The association of fVIII, fVIIILC, and fVIIIHCs with multimeric human von Willebrand factor (vWF) was studied using analytical velocity sedimentation. A previous study using this method with an intact, single heterodimeric species of fVIII has shown that one molecule of fVIII can bind to each subunit of vWF (Lollar, P., and Parker, C.G. (1987) J. Biol. Chem. 262, 17572-17576). fVIIILC bound vWF as judged by the increase in the plateau height and sedimentation coefficient of the fVIIILC.vWF complex compared to vWF at 42,000 x g and by the decrease in the plateau height of the 4.8 S fVIIILC boundary sedimenting at 240,000 x g. Titration of a fixed concentration of fVIIILC with vWF yielded a stoichiometry of one fVIIILC molecule per subunit of vWF. Proteolytic cleavage by thrombin to remove an acidic 41-residue NH2-terminal peptide from fVIIILC completely abolished its binding to vWF. In contrast, no binding of fVIIIHCs to vWF was observed. Additionally, intact fVIII bound to vWF was completely dissociated after proteolysis by thrombin. These data are consistent with the hypothesis that a critical step in blood coagulation is the release of all regions of fVIII from vWF following a single proteolytic cleavage of fVIIILC.  相似文献   

19.
Inactivation of factor VIII by activated protein C and protein S   总被引:4,自引:0,他引:4  
Factor VIII was inactivated by activated protein C in the presence of calcium and phospholipids. Analysis of the activated protein C-catalyzed cleavage products of factor VIII indicated that inactivation resulted from the cleavage of the heavy chains. The heavy chains appeared to be converted into 93- and 53-kDa peptides. Inactivation of factor VIII that was only composed of the 93-kDa heavy chain and 83-kDa light chain indicated that the 93-kDa polypeptide could be degraded into a 68-kDa peptide that could be subsequently cleaved into 48- and 23-kDa polypeptides. Thus, activated protein C catalyzed a minimum of four cleavages in the heavy chain. Activated protein C did not appear to alter the factor VIII light chain. The addition of protein S accelerated the rate of inactivation and the rate of all of the cleavages. The effect of protein S could be observed on the cleavage of the heavy chains and on secondary cleavages of the smaller products, including the 93-, 68-, and 53-kDa polypeptides. The addition of factor IX to the factor VIII-activated protein C reaction mixture resulted in the inhibition of factor VIII inactivation. The effect of factor IX was dose dependent. Factor VIII was observed to compete with factor Va for activated protein C. The concentration dependence of factor VIII inhibition of factor Va inactivation suggested that factor VIII and factor Va were equivalent substrates for activated protein C.  相似文献   

20.
Metal ions, such as Ca2+ and Mn2+, are necessary for the generation of cofactor activity following reconstitution of factor VIII from its isolated light chain (LC) and heavy chain (HC). Titration of EDTA-treated factor VIII with Mn2+ showed saturable binding with high affinity (K(d) = 5.7 +/- 2.1 microM) as detected using a factor Xa generation assay. No significant competition between Ca2+ and Mn2+ for factor VIII binding (K(i) = 4.6 mM) was observed as measured by equilibrium dialysis using 20 microM Ca2+ and 8 microM factor VIII in the presence of 0-1 mM Mn2+. The intersubunit affinity measured by fluorescence energy transfer of an acrylodan-labeled LC (fluorescence donor) and fluorescein-labeled HC (fluorescence acceptor) in the presence of 20 mM Mn2+ (K(d) = 53.0 +/- 17.1 nM) was not significantly different from the affinity value previously obtained in the absence of metal ion (K(d) = 53.8 +/- 14.2 nM). The sensitization of phosphorescence of Tb3+ bound to factor VIII subunits was utilized to detect Mn2+ binding to the subunits. Mn2+ inhibited the phosphorescence of Tb3+ bound to HC and LC, as well as the HC-derived A1 and A2 subunits with a relatively wide range of estimated inhibition constant values (K(i) values = 169-1147 microM), whereas Ca2+ showed no effect on Tb3+ phosphorescence. These results suggest that factor VIII cofactor activity can be generated by Mn2+ binding to site(s) on factor VIII that are different from the high-affinity Ca2+ binding site. However, like Ca2+, Mn2+ did not alter the affinity for HC and LC association. Thus, Mn2+appears to generate factor VIII cofactor activity by a similar mechanism as observed for Ca2+following its association at nonidentical sites on the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号