首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
We hypothesized that sleep restriction (4 consecutive nights, 4 h sleep/night) attenuates orthostatic tolerance. The effect of sleep restriction on cardiovascular responses to simulated orthostasis, arterial baroreflex gain, and heart rate variability was evaluated in 10 healthy volunteers. Arterial baroreflex gain was determined from heart rate responses to nitroprusside-phenylephrine injections, and orthostatic tolerance was tested via lower body negative pressure (LBNP). A Finapres device measured finger arterial pressure. No difference in baroreflex function, heart rate variability, or LBNP tolerance was observed with sleep restriction (P > 0.3). Systolic pressure was greater at -60 mmHg LBNP after sleep restriction than before sleep restriction (110 +/- 6 and 124 +/- 3 mmHg before and after sleep restriction, respectively, P = 0.038), whereas heart rate decreased (108 +/- 8 and 99 +/- 8 beats/min before and after sleep restriction, respectively, P = 0.028). These data demonstrate that sleep restriction produces subtle changes in cardiovascular responses to simulated orthostasis, but these changes do not compromise orthostatic tolerance.  相似文献   

2.
The hypothesis was tested that acute water immersion to the neck (WI) compared with 6 degrees head-down tilt (HDT) induces a more pronounced distension of the heart and lower plasma levels of vasoconstrictor hormones. Ten healthy males underwent 30 min of HDT, WI, and a seated control (randomized). During WI, left atrial diameter and stroke volume increased to the same extent as during HDT. Cardiac output increased by 1 l/min more during WI than during HDT. (P < 0.05). Plasma atrial natriuretic peptide increased during WI (P < 0.05) but not during HDT, whereas plasma norepinephrine, vasopressin, and renin activity were suppressed similarly. Mean arterial pressure decreased by 9 mmHg (P < 0.05) during HDT and was unchanged during WI, and heart rate decreased more during HDT (P < 0.05). Arterial pulse pressure increased considerably more during HDT than during WI. In conclusion, the hypothesis was not confirmed because the cardiac atria were similarly distended by acute HDT and WI and the release of vasoconstrictor hormones were suppressed to the same extent.  相似文献   

3.
The purpose of this review was to integrate recent evidence supporting the reliability of noninvasive measures of parasympathetic and sympathetic activity. Literature concerning spectral analysis of heart period (HP) variability is reviewed with special emphasis on works revealing neural mediation of high-frequency and mid-frequency components of HP power spectrum and suggesting their use as a tool to assess autonomic balance. Problems of derivations of autonomic indices based on impedance cardiography and HP variance analysis are discussed. Advantages of parametric time series (autoregressive-AR) models are described with the objective of providing an informed basis for choosing among methodological alternatives. Two original approaches developed in our laboratory are outlined, namely the algorithms for systolic time interval assessment based on impedance cardiogram as well as the AR method developed for heart period power spectral density estimation.  相似文献   

4.
To examine whether changes in autonomic activity have an effect on the latency of the vagally mediated cardiac baroreflex response in humans, we investigated the effects of neck suction fluctuating sinusoidally at 0.2 Hz on R-R intervals (known to be mediated mainly by vagal activity) in the supine position, during 15 degrees head-down tilt and 60 degrees head-up tilt, and during vagotonic (2 microg/kg) and vagolytic (10 microg/kg) doses of atropine while the subjects breathed at 0.25 Hz. The phase shift between fluctuations in neck chamber pressure and in R-R interval was calculated by complex transfer function analysis and was used as a measure of the time delay between carotid baroreceptor stimulation and cardiac effector response. Cardiac baroreflex responsiveness increased significantly during low-dose atropine and decreased during head-up tilt or 10 microg/kg atropine. With increasing tilt angle, the time delay between cyclic baroreceptor stimulation and oscillations in R-R interval increased from 0.32 +/- 0.27 s (head down), to 0.59 +/- 0.25 s (supine position, P < 0.05 vs. head down), and to 0.86 +/- 0.27 s (head up, P < 0.01 vs. supine). Low-dose atropine had a similar effect to head-down tilt on baroreflex latency, whereas 10 microg/kg atropine increased the time delay markedly to 1.24 +/- 0.30 s. Our results demonstrate that changes in autonomic activity, generated either by gravitational stimulus or by atropine, not only affect baroreflex responsiveness but also have a major influence on the latency of the vagally mediated carotid baroreceptor-heart rate reflex. The prolonged baroreflex latency during decreased parasympathetic function may contribute to an unstable regulation of heart rate in patients with cardiac disease.  相似文献   

5.
Cardiovascular autonomic modulation during 36 h of total sleep deprivation (SD) was assessed in 18 normal subjects (16 men, 2 women, 26.0 +/- 4.6 yr old). ECG and continuous blood pressure (BP) from radial artery tonometry were obtained at 2100 on the first study night (baseline) and every subsequent 12 h of SD. Each measurement period included resting supine, seated, and seated performing computerized tasks and measured vigilance and executive function. Subjects were not supine in the periods between measurements. Spectral analysis of heart rate variability (HRV) and BP variability (BPV) was computed for cardiac parasympathetic modulation [high-frequency power (HF)], sympathetic modulation [low-frequency power (LF)], sympathovagal balance (LF/HF power of R-R variability), and BPV sympathetic modulation (at LF). All spectral data were expressed in normalized units [(total power of the components/total power-very LF) x 100]. Spontaneous baroreflex sensitivity (BRS), based on systolic BP and pulse interval powers, was also measured. Supine and sitting, BPV LF was significantly increased from baseline at 12, 24, and 36 h of SD. Sitting, HRV LF was increased at 12 and 24 h of SD, HRV HF was decreased at 12 h SD, and HRV LF/HF power of R-R variability was increased at 12 h of SD. BRS was decreased at 24 h of SD supine and seated. During the simple reaction time task (vigilance testing), the significantly increased sympathetic and decreased parasympathetic cardiac modulation and BRS extended through 36 h of SD. In summary, acute SD was associated with increased sympathetic and decreased parasympathetic cardiovascular modulation and decreased BRS, most consistently in the seated position and during simple reaction-time testing.  相似文献   

6.
DOCA-salt treatment increases mean arterial pressure (MAP), while central infusion of benzamil attenuates this effect. The present study used c-Fos immunoreactivity to assess the role of benzamil-sensitive proteins in the brain on neural activity following chronic DOCA-salt treatment. Uninephrectomized rats were instrumented with telemetry transmitters for measurement of MAP and with an intracerebroventricular (ICV) cannula for benzamil administration. Groups included rats receiving DOCA-salt treatment alone, rats receiving DOCA-salt treatment with ICV benzamil, and appropriate controls. At study completion, MAP in vehicle-treated DOCA-salt rats reached 142 ± 4 mmHg. In contrast DOCA-salt rats receiving ICV benzamil had lower MAP (124 ± 3 mmHg). MAP in normotensive controls was 102 ± 3 mmHg. c-Fos immunoreactivity was quantified in the supraoptic nucleus (SON) and across subnuclei of the hypothalamic paraventricular nucleus (PVN), as well as other cardiovascular regulatory sites. Compared with vehicle-treated normotensive controls, c-Fos expression was increased in the SON and all subnuclei of the PVN, but not in other key autonomic nuclei, such as the rostroventrolateral medulla. Moreover, benzamil treatment decreased c-Fos immunoreactivity in the SON and in medial parvocellular and posterior magnocellular neurons of the PVN in DOCA-salt rats but not areas associated with regulation of sympathetic activity. Our results do not support the hypothesis that DOCA-salt increases neuronal activity (as indicated by c-Fos immunoreactivity) of other key regions that regulate sympathetic activity. These results suggest that ICV benzamil attenuates DOCA-salt hypertension by modulation of neuroendocrine-related PVN nuclei rather than inhibition of PVN sympathetic premotor neurons in the PVN and rostroventrolateral medulla.  相似文献   

7.
8.
To evaluate the influence of good metabolic equilibrium on Diabetic Autonomic Neuropathy (DAN), cardiovascular autonomic reflexes were monitored in 9 male insulin-dependent diabetic patients with DAN, treated with Continuous Subcutaneous Insulin Infusion (CSII) by pump: 9 for 10 days, 4 for 1 year and 2 for 20 months. Autonomic neuropathy was assessed evaluating 5 cardiovascular autonomic tests: Valsalva Manoeuvre (VR), Deep Breathing (DB), Lying-to-Standing (L-S), Sustained Handgrip (SHG), and Postural Hypotension (PH). Metabolic control was assessed evaluating the mean daily plasma glucose, glucosuria and glycosylated hemoglobin. Ten days of CSII treatment induced a normalization of glucose balance and a slight but significant improvement in some parasympathetic cardiovascular tests (VR: from 1.09 +/- 0.01 to 1.13 +/- 0.02; P less than 0.05). After 4-8 months of CSII treatment a significant improvement in VR (P less than 0.05); DB (P less than 0.01) and L-S (P less than 0.05) was recorded. The long-term treatment with CSII did not seem to induce a further amelioration in cardiovascular autonomic reflexes. These results show that the slight improvement induced by good metabolic balance in the cardiovascular autonomic response could be related to functional-metabolic rather than structural changes in the nerves.  相似文献   

9.
Exercise training changes autonomic cardiovascular balance in mice.   总被引:1,自引:0,他引:1  
Experiments were performed to investigate the influence of exercise training on cardiovascular function in mice. Heart rate, arterial pressure, baroreflex sensitivity, and autonomic control of heart rate were measured in conscious, unrestrained male C57/6J sedentary (n = 8) and trained mice (n = 8). The exercise training protocol used a treadmill (1 h/day; 5 days/wk for 4 wk). Baroreflex sensitivity was evaluated by the tachycardic and bradycardic responses induced by sodium nitroprusside and phenylephrine, respectively. Autonomic control of heart rate and intrinsic heart rate were determined by use of methylatropine and propranolol. Resting bradycardia was observed in trained mice compared with sedentary animals [485 +/- 9 vs. 612 +/- 5 beats/min (bpm)], whereas mean arterial pressure was not different between the groups (106 +/- 2 vs. 108 +/- 3 mmHg). Baroreflex-mediated tachycardia was significantly enhanced in the trained group (6.97 +/- 0.97 vs. 1.6 +/- 0.21 bpm/mmHg, trained vs. sedentary), whereas baroreflex-mediated bradycardia was not altered by training. The tachycardia induced by methylatropine was significantly increased in trained animals (139 +/- 12 vs. 40 +/- 9 bpm, trained vs. sedentary), whereas the propranolol effect was significantly reduced in the trained group (49 +/- 11 vs. 97 +/- 11 bpm, trained vs. sedentary). Intrinsic heart rate was similar between groups. In conclusion, dynamic exercise training in mice induced a resting bradycardia and an improvement in baroreflex-mediated tachycardia. These changes are likely related to an increased vagal and decreased sympathetic tone, similar to the exercise response observed in humans.  相似文献   

10.
Exaggerated cardiovascular reactivity to mental stress (MS) and cold pressor test (CPT) has been linked to increased risk of cardiovascular disease. Recent epidemiological studies identify sleep deprivation as an important risk factor for hypertension, yet the relations between sleep deprivation and cardiovascular reactivity remain equivocal. We hypothesized that 24-h total sleep deprivation (TSD) would augment cardiovascular reactivity to MS and CPT and blunt the MS-induced forearm vasodilation. Because the associations between TSD and hypertension appear to be stronger in women, a secondary aim was to probe for sex differences. Mean arterial pressure (MAP), heart rate (HR), and muscle sympathetic nerve activity (MSNA) were recorded during MS and CPT in 28 young, healthy subjects (14 men and 14 women) after normal sleep (NS) and 24-h TSD (randomized, crossover design). Forearm vascular conductance (FVC) was recorded during MS. MAP, FVC, and MSNA (n = 10) responses to MS were not different between NS and TSD (condition × time, P > 0.05). Likewise, MAP and MSNA (n = 6) responses to CPT were not different between NS and TSD (condition × time, P > 0.05). In contrast, increases in HR during both MS and CPT were augmented after TSD (condition × time, P ≤ 0.05), and these augmented HR responses persisted during both recoveries. When analyzed for sex differences, cardiovascular reactivity to MS and CPT was not different between sexes (condition × time × sex, P > 0.05). We conclude that TSD does not significantly alter MAP, MSNA, or forearm vascular responses to MS and CPT. The augmented tachycardia responses during and after both acute stressors provide new insight regarding the emerging links among sleep deprivation, stress, and cardiovascular risk.  相似文献   

11.
A comparative study of the state of the cardiovascular systems of adolescents not engaged in sports and young athletes of the same age has been performed. According to the indices recorded in the resting state, a relative lag of the functional development of the systems of autonomic control of the cardiovascular system was shown for adolescent nonathletes at an age of 13–14 years as compared with young athletes. This lag is compensated by the age of 15–16 years, but the adequate level of autonomic activity is reached through the activation of central regulatory mechanisms (sympathetic and humoral), with a relatively low contribution of the peripheral vagal and baroreflex mechanisms. This conclusion is confirmed by the results of assessment of the reactivity of the cardiovascular system of adolescents with different levels of motor activity in a functional test with limited pulmonary ventilation.  相似文献   

12.
Our previous studies demonstrated that premenopausal women have dominant vagal and subordinate sympathetic activity compared with age-matched men. This study was designed to investigate the role of estrogen in gender-related autonomic differences. We evaluated the heart rate variability of four healthy groups: age-matched postmenopausal women without hormone replacement therapy (PM), postmenopausal women on conjugated estrogen replacement therapy (PME), men, and non-age-matched premenopausal women (PreM). Frequency-domain analysis of short-term and stationary R-R intervals was performed to evaluate low-frequency power (LF; 0.04-0.15 Hz), high-frequency power (HF; 0.15-0.40 Hz), the ratio of LF to HF (LF/HF), and LF in normalized units (LF%). No gender-related autonomic differences existed between the PM and men groups, but they did exist between the PME and men group. Compared with the PreM group, the PM group had a lower HF and higher LF% and LF/HF. Compared with the PM group, the PME group had a higher HF but lower LF% and LF/HF. These results suggest that conjugated estrogen replacement therapy may facilitate vagal and attenuate sympathetic regulation of heart rate in postmenopausal women. In addition, estrogen may play an important role in gender-related autonomic differences.  相似文献   

13.
14.
ObjectiveTo test whether rhythmic formulas such as the rosary and yoga mantras can synchronise and reinforce inherent cardiovascular rhythms and modify baroreflex sensitivity.DesignComparison of effects of recitation of the Ave Maria (in Latin) or of a mantra, during spontaneous and metronome controlled breathing, on breathing rate and on spontaneous oscillations in RR interval, and on blood pressure and cerebral circulation.SettingFlorence and Pavia, Italy.Participants23 healthy adults.ResultsBoth prayer and mantra caused striking, powerful, and synchronous increases in existing cardiovascular rhythms when recited six times a minute. Baroreflex sensitivity also increased significantly, from 9.5 (SD 4.6) to 11.5 (4.9) ms/mm Hg, P<0.05.ConclusionRhythm formulas that involve breathing at six breaths per minute induce favourable psychological and possibly physiological effects.

What is already known on this topic

Reduced heart rate variability and baroreflex sensitivity are powerful and independent predictors of poor prognosis in heart diseaseSlow breathing enhances heart rate variability and baroreflex sensitivity by synchronising inherent cardiovascular rhythms

What this study adds

Recitation of the rosary, and also of yoga mantras, slowed respiration to almost exactly 6/min, and enhanced heart rate variability and baroreflex sensitivityThe rosary might be viewed as a health practice as well as a religious practice  相似文献   

15.
Effect of acute hypercapnia on limb muscle contractility in humans   总被引:1,自引:0,他引:1  
The effect of acute hypercapnia on skeletal muscle contractility and relaxation rate was investigated. The contractile force of fresh and fatigued quadriceps femoris (QF) and adductor pollicis (AP) was studied in normal humans by use of electrical stimulation. Maximum relaxation rate from stimulated contractions was measured for both muscles. Acute hypercapnia led to a rapid substantial reduction of contraction force. The respiratory acidosis after 9% CO2 was breathed for 20 min [mean venous blood pH 7.26 and end-tidal PCO2 (PETCO2) 65.1 Torr] reduced 20- and 100-Hz stimulated contractions of QF to 72.8 +/- 4.4 and 80.0 +/- 5.1% of control values, respectively. After 8 and 9% CO2 were breathed for 12 min, AP forces at 20- and 50-Hz stimulation were also reduced. Twitch tension of AP was reduced by a mean of 25.5% when subjects breathed 9% CO2 for 12 min [mean arterialized venous blood pH (pHav) 7.25 and PETCO2 66 Torr]. Over the range of 5% (pHav 7.38 and PETCO2 47 Torr) to 9% CO2, there was a linear relationship between twitch tension loss and pHav, arterialized venous blood PCO2, and PETCO2. Acute respiratory acidosis (mean PETCO2 61 Torr) increased the severity of low-frequency fatigue after intermittent voluntary contractions of AP. At 20 min of recovery, twitch tension was 63.2 +/- 13.4 and 46.8 +/- 16.4% of control value after exercise breathing air and 8% CO2, respectively. Acute hypercapnia (mean PETCO2 65.1 and 60.5 Torr) did not alter the maximum relaxation rate from tetanic contractions of fresh QF and from twitch tensions of AP.  相似文献   

16.
We studied three Russian cosmonauts to better understand how long-term exposure to microgravity affects autonomic cardiovascular control. We recorded the electrocardiogram, finger photoplethysmographic pressure, and respiratory flow before, during, and after two 9-mo missions to the Russian space station Mir. Measurements were made during four modes of breathing: 1) uncontrolled spontaneous breathing; 2) stepwise breathing at six different frequencies; 3) fixed-frequency breathing; and 4) random-frequency breathing. R wave-to-R wave (R-R) interval standard deviations decreased in all and respiratory frequency R-R interval spectral power decreased in two cosmonauts in space. Two weeks after the cosmonauts returned to Earth, R-R interval spectral power was decreased, and systolic pressure spectral power was increased in all. The transfer function between systolic pressures and R-R intervals was reduced in-flight, was reduced further the day after landing, and had not returned to preflight levels by 14 days after landing. Our results suggest that long-duration spaceflight reduces vagal-cardiac nerve traffic and decreases vagal baroreflex gain and that these changes may persist as long as 2 wk after return to Earth.  相似文献   

17.
The vascular endothelium is a site of pathological changes in patients with diabetes mellitus that may be related to severe chronic hyperglycemia. However, it is unclear whether transient hyperglycemia alters vascular function in an otherwise healthy human forearm. To test the hypothesis that acute, moderate hyperglycemia impairs endothelium-dependent forearm vasodilation, we measured vasodilator responses in 25 healthy volunteers (11 F, 14 M) assigned to one of three protocols. In protocol 1, glucose was varied to mimic a postprandial pattern (i.e., peak glucose approximately 11.1 mmol/l) commonly observed in individuals with impaired glucose tolerance. Protocol 2 involved 6 h of mild hyperglycemia (approximately 7 mmol/l). Protocol 3 involved 6 h of euglycemia. Glucose concentration was maintained with a variable systemic glucose infusion. Insulin concentrations were maintained at approximately 65 pmol/l by means of a somatostatin and "basal" insulin infusion. Glucagon and growth hormone were replaced at basal concentrations. Forearm blood flow (FBF) was calculated from Doppler ultrasound measurements at the brachial artery. In each protocol, FBF dose responses to intrabrachial acetylcholine (ACh) and sodium nitroprusside (NTP) were assessed at baseline and at 60, 180, and 360 min of glucose infusion. Peak endothelium-dependent vasodilator responses to ACh were not diminished by hyperglycemia in any trial. For example, peak responses to ACh during protocol 2 were 307 +/- 47 ml/min at euglycemic baseline and 325 +/- 52, 353 +/- 65, and 370 +/- 70 ml/min during three subsequent hyperglycemic trials (P = 0.46). Peak endothelium-independent responses to NTP infusion were also unaffected. We conclude that acute, moderate hyperglycemia does not cause short-term impairment of endothelial function in the healthy human forearm.  相似文献   

18.
Blood pressure, pulse rate (PR), serum osmolality and electrolytes, as well as plasma vasopressin (PVP) and plasma renin activity (PRA), were measured in five men and two women [mean age 38.6 +/- 3.9 (SE) yr] before, during, and after inflation of an antigravity suit that covered the legs and abdomen. After 24 h of fluid deprivation the subjects stood quietly for 3 h: the 1st h without inflation, the 2nd with inflation to 60 Torr, and the 3rd without inflation. A similar control noninflation experiment was conducted 10 mo after the inflation experiment using five of the seven subjects except that the suit was not inflated during the 3-h period. Mean arterial pressure increased by 14 +/- 4 (SE) Torr (P less than 0.05) with inflation and decreased by 15 +/- 5 Torr (P less than 0.05) after deflation. Pulse pressure (PP) increased by 7 +/- 2 Torr (P less than 0.05) with inflation and PR decreased by 11 +/- 5 beats/min (P less than 0.05); PP and PR returned to preinflation levels after deflation. Plasma volume decreased by 6.1 +/- 1.5% and 5.3 +/- 1.6% (P less than 0.05) during hours 1 and 3, respectively, and returned to base line during inflation. Inflation decreased PVP from 6.8 +/- 1.1 to 5.6 +/- 1.4 pg/ml (P less than 0.05) and abolished the significant rise in PRA during hour 1. Both PVP and PRA increased significantly after deflation: delta = 18.0 +/- 5.1 pg/ml and 4.34 +/- 1.71 ng angiotensin I X ml-1 X h-1, respectively. Serum osmolality and Na+ and K+ concentrations were unchanged during the 3 h of standing.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.

Background

Greater diaphragm fatigue has been reported after hypoxic versus normoxic exercise, but whether this is due to increased ventilation and therefore work of breathing or reduced blood oxygenation per se remains unclear. Hence, we assessed the effect of different blood oxygenation level on isolated hyperpnoea-induced inspiratory and expiratory muscle fatigue.

Methods

Twelve healthy males performed three 15-min isocapnic hyperpnoea tests (85% of maximum voluntary ventilation with controlled breathing pattern) in normoxic, hypoxic (SpO2 = 80%) and hyperoxic (FiO2 = 0.60) conditions, in a random order. Before, immediately after and 30 min after hyperpnoea, transdiaphragmatic pressure (Pdi,tw ) was measured during cervical magnetic stimulation to assess diaphragm contractility, and gastric pressure (Pga,tw ) was measured during thoracic magnetic stimulation to assess abdominal muscle contractility. Two-way analysis of variance (time x condition) was used to compare hyperpnoea-induced respiratory muscle fatigue between conditions.

Results

Hypoxia enhanced hyperpnoea-induced Pdi,tw and Pga,tw reductions both immediately after hyperpnoea (Pdi,tw : normoxia -22 ± 7% vs hypoxia -34 ± 8% vs hyperoxia -21 ± 8%; Pga,tw : normoxia -17 ± 7% vs hypoxia -26 ± 10% vs hyperoxia -16 ± 11%; all P < 0.05) and after 30 min of recovery (Pdi,tw : normoxia -10 ± 7% vs hypoxia -16 ± 8% vs hyperoxia -8 ± 7%; Pga,tw : normoxia -13 ± 6% vs hypoxia -21 ± 9% vs hyperoxia -12 ± 12%; all P < 0.05). No significant difference in Pdi,tw or Pga,tw reductions was observed between normoxic and hyperoxic conditions. Also, heart rate and blood lactate concentration during hyperpnoea were higher in hypoxia compared to normoxia and hyperoxia.

Conclusions

These results demonstrate that hypoxia exacerbates both diaphragm and abdominal muscle fatigability. These results emphasize the potential role of respiratory muscle fatigue in exercise performance limitation under conditions coupling increased work of breathing and reduced O2 transport as during exercise in altitude or in hypoxemic patients.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号