首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The reorientation of the microtubule organizing center during cell migration into a wound in the monolayer was directly observed in living wound-edge cells expressing gamma-tubulin tagged with green fluorescent protein. Our results demonstrate that in CHO cells, the centrosome reorients to a position in front of the nucleus, toward the wound edge, whereas in PtK cells, the centrosome lags behind the nucleus during migration into the wound. In CHO cells, the average rate of centrosome motion was faster than that of the nucleus; the converse was true in PtK cells. In both cell lines, centrosome motion was stochastic, with periods of rapid motion interspersed with periods of slower motion. Centrosome reorientation in CHO cells required dynamic microtubules and cytoplasmic dynein/dynactin activity and could be prevented by altering cell-to-cell or cell-to-substrate adhesion. Microtubule marking experiments using photoactivation of caged tubulin demonstrate that microtubules are transported in the direction of cell motility in both cell lines but that in PtK cells, microtubules move individually, whereas their movement is more coherent in CHO cells. Our data demonstrate that centrosome reorientation is not required for directed migration and that diverse cells use distinct mechanisms for remodeling the microtubule array during directed migration.  相似文献   

2.
The migration of tissue cells requires interplay between the microtubule and actin cytoskeletal systems. Recent reports suggest that interactions of microtubules with actin dynamics creates a polarization of microtubule assembly behavior in cells, such that microtubule growth occurs at the leading edge and microtubule shortening occurs at the cell body and rear. Microtubule growth and shortening may activate Rac1 and RhoA signaling, respectively, to control actin dynamics. Thus, an actin-dependent gradient in microtubule dynamic-instability parameters in cells may feed back through the activation of specific signalling pathways to perpetuate the polarized actin-assembly dynamics required for cell motility.  相似文献   

3.
Nuclear migration is a general term for the movement of the nucleus towards a specific site in the cell. These movements are involved in a number of fundamental biological processes, such as fertilization, cell division, and embryonic development. Despite of its importance, the mechanism of nuclear migration is still poorly understood in mammalian cells. In order to shed light on the mechanical processes underlying nuclear movements, we adapted a micro-patterning based assay. C6 rat and U87 human glioma cells seeded on fibronectin patterns - thereby forced into a bipolar morphology - displayed oscillatory movements of the nucleus or the whole cell, respectively. We found that both the actomyosin system and microtubules are involved in the nuclear/cellular movements of both cell lines, but their contributions are cell-/migration-type specific. Dynein activity was necessary for nuclear migration of C6 cells but active myosin-II was dispensable. On the other hand, coupled nuclear and cellular movements of U87 cells were driven by actomyosin contraction. We explain these cell-line dependent effects by the intrinsic differences in the overall mechanical tension due to the various cytoskeletal elements inside the cell. Our observations showed that the movements of the nucleus and the centrosome are strongly correlated and display large variation, indicating a tight but flexible coupling between them. The data also indicate that the forces responsible for nuclear movements are not acting directly via the centrosome. Based on our observations, we propose a new model for nuclear oscillations in C6 cells in which dynein and microtubule dynamics are the main drivers of nuclear movements. This mechanism is similar to the meiotic nuclear oscillations of Schizosaccharomyces pombe and may be evolutionary conserved.  相似文献   

4.
The asymmetric distribution of microtubule (MT) dynamics in migrating cells is important for cell polarization, yet the underlying regulatory mechanisms remain underexplored. Here, we addressed this question by studying the role of the MT depolymerase, MCAK (mitotic centromere-associated kinesin), in the highly persistent migration of RPE-1 cells. MCAK knockdown leads to slowed migration and poor directional movement. Fixed and live cell imaging revealed that MCAK knockdown results in excessive membrane ruffling as well as defects in cell polarization and the maintenance of a major protrusive front. Additionally, loss of MCAK increases the lifetime of focal adhesions by decreasing their disassembly rate. These functions correlate with a spatial distribution of MCAK activity, wherein activity is higher in the trailing edge of cells compared with the leading edge. Overexpression of Rac1 has a dominant effect over MCAK activity, placing it downstream of or in a parallel pathway to MCAK function in migration. Together, our data support a model in which the polarized distribution of MCAK activity and subsequent differential regulation of MT dynamics contribute to cell polarity, centrosome positioning, and focal adhesion dynamics, which all help facilitate robust directional migration.  相似文献   

5.
During cell migration, the movement of the nucleus must be coordinated with the cytoskeletal dynamics at the leading edge and trailing end, and, as a result, undergoes complex changes in position and shape, which in turn affects cell polarity, shape, and migration efficiency. We here describe the steps of nuclear positioning and deformation during cell polarization and migration, focusing on migration through three-dimensional matrices. We discuss molecular components that govern nuclear shape and stiffness, and review how nuclear dynamics are connected to and controlled by the actin, tubulin and intermediate cytoskeleton-based migration machinery and how this regulation is altered in pathological conditions. Understanding the regulation of nuclear biomechanics has important implications for cell migration during tissue regeneration, immune defence and cancer.  相似文献   

6.
Long distance migration of differentiating granule cells from the cerebellar upper rhombic lip has been reported in many vertebrates. However, the knowledge about the subcellular dynamics and molecular mechanisms regulating directional neuronal migration in vivo is just beginning to emerge. Here we show by time-lapse imaging in live zebrafish (Danio rerio) embryos that cerebellar granule cells migrate in chain-like structures in a homotypic glia-independent manner. Temporal rescue of zebrafish Cadherin-2 mutants reveals a direct role for this adhesion molecule in mediating chain formation and coherent migratory behavior of granule cells. In addition, Cadherin-2 maintains the orientation of cell polarization in direction of migration, whereas in Cadherin-2 mutant granule cells the site of leading edge formation and centrosome positioning is randomized. Thus, the lack of adhesion leads to impaired directional migration with a mispositioning of Cadherin-2 deficient granule cells as a consequence. Furthermore, these cells fail to differentiate properly into mature granule neurons. In vivo imaging of Cadherin-2 localization revealed the dynamics of this adhesion molecule during cell locomotion. Cadherin-2 concentrates transiently at the front of granule cells during the initiation of individual migratory steps by intramembraneous transport. The presence of Cadherin-2 in the leading edge corresponds to the observed centrosome orientation in direction of migration. Our results indicate that Cadherin-2 plays a key role during zebrafish granule cell migration by continuously coordinating cell-cell contacts and cell polarity through the remodeling of adherens junctions. As Cadherin-containing adherens junctions have been shown to be connected via microtubule fibers with the centrosome, our results offer an explanation for the mechanism of leading edge and centrosome positioning during nucleokinetic migration of many vertebrate neuronal populations.  相似文献   

7.
BACKGROUND INFORMATION: Directional cell migration is a fundamental feature of embryonic development, the inflammatory response and the metastatic spread of cancer. Migrating cells have a polarized morphology with an asymmetric distribution of signalling molecules and of the actin and microtubule cytoskeletons. The dynamic reorganization of the actin cytoskeleton provides the major driving force for migration in all mammalian cell types, but microtubules also play an important role in many cells, most notably neuronal precursors. RESULTS: We previously showed, using primary fibroblasts and astrocytes in in vitro scratch-induced migration assays, that the accumulation of APC (adenomatous polyposis coli; the APC tumour suppressor protein) at microtubule plus-ends promotes their association with the plasma membrane at the leading edge. This is required for polarization of the microtubule cytoskeleton during directional migration. Here, we have examined the organization of microtubules in the soma of migrating neurons and fibroblasts. CONCLUSIONS: We find that APC, through a direct interaction with the NPC (nuclear pore complex) protein Nup153 (nucleoporin 153), promotes the association of microtubules with the nuclear membrane.  相似文献   

8.
Dynamic properties of microtubules contribute to the establishment of spatial order within cells. In the fission yeast Schizosaccharomyces pombe, interphase cytoplasmic microtubules are organized into antiparallel bundles that attach to the nuclear envelope and are needed to position the nucleus at the geometric center of the cell. Here, we show that after the nucleus is displaced by cell centrifugation, these microtubule bundles efficiently push the nucleus back to the center. Asymmetry in microtubule number, length, and dynamics contributes to the generation of force responsible for this unidirectional movement. Notably, microtubules facing the distal cell tip are destabilized when the microtubules in the same bundle are pushing from the proximal cell tip. The CLIP-170-like protein tip1p and the microtubule-bundling protein ase1p are required for this asymmetric regulation of microtubule dynamics, indicating contributions of factors both at microtubule plus ends and within the microtubule bundle. Mutants in these factors are defective in nuclear movement. Thus, cells possess an efficient microtubule-based engine that produces and senses forces for centering the nucleus. These studies may provide insights into mechanisms of asymmetric microtubule behaviors and force sensing in other processes such as chromosome segregation and cell polarization.  相似文献   

9.
Shin K  Wang Q  Margolis B 《EMBO reports》2007,8(2):158-164
Directional migration is important in wound healing by epithelial cells. Recent studies have shown that polarity proteins such as mammalian Partitioning-defective 6 (Par6), atypical protein kinase C (aPKC) and mammalian Discs large 1 (Dlg1) are crucial not only for epithelial apico-basal polarity, but also for directional movement. Here, we show that the protein associated with Lin seven 1 (PALS1)-associated tight junction protein (PATJ), another evolutionarily conserved polarity protein, is also required for directional migration by using a wound-induced migration assay. In addition, we found that aPKC and Par3 localize to the leading edge during migration of epithelia and that PATJ regulates their localization. Furthermore, our results show that microtubule-organizing centre orientation is disrupted in PATJ RNA interference (RNAi) MDCKII (Madin-Darby canine kidney II) cells during migration. Together, our data indicate that PATJ controls directional migration by regulating the localization of aPKC and Par3 to the leading edge. The migration defect in PATJ RNAi cells seems to be due to the disorganization of the microtubule network induced by mislocalization of polarity proteins.  相似文献   

10.
Proper centrosome positioning is critical for many cellular functions, such as cell migration and maintenance of polarity. During wound healing, fibroblasts orient their centrosomes such that they face the wound edge. The centrosome orientation determines the direction of cells’ migration so that they can close the wound effectively. In this study, we investigated the regulation of centrosome polarization and have identified the phosphatase POPX2 as an important regulator of centrosome orientation. We found that POPX2 inhibits centrosome centration, but not rearward nuclear movement, by regulating multiple proteins that function in centrosome positioning. High POPX2 levels result in reduced motility of the kinesin-2 motor, which, in turn, inhibits the transport of N-cadherin to the cell periphery and cell junctions. Loss of N-cadherin localization to the cell membrane affects the localization of focal adhesions and perturbs CDC42-Par6/PKCζ signaling. In addition, overexpression of POPX2 also results in a loss of Par3 localization to the cell periphery and reduced levels of LIC2 (dynein light intermediate chain 2), leading to defects in microtubule tethering and dynamics at cell-cell contacts. Therefore, POPX2 functions as a regulator of signaling pathways to modulate the positioning of centrosome in fibroblast during wound healing.  相似文献   

11.
Lamin A/C is a major constituent of the nuclear lamina, a thin filamentous protein layer that lies beneath the nuclear envelope. Here we show that lamin A/C deficiency in mouse embryonic fibroblasts (Lmna(-/-) MEFs) diminishes the ability of these cells to polarize at the edge of a wound and significantly reduces cell migration speed into the wound. Moreover, lamin A/C deficiency induces significant separation of the microtubule organizing center (MTOC) from the nuclear envelope. Investigations using ballistic intracellular nanorheology reveal that lamin A/C deficiency also dramatically affects the micromechanical properties of the cytoplasm. Both the elasticity (stretchiness) and the viscosity (propensity of a material to flow) of the cytoplasm in Lmna(-/-) MEFs are significantly reduced. Disassembly of either the actin filament or microtubule networks in Lmna(+/+) MEFs results in decrease of cytoplasmic elasticity and viscosity down to levels found in Lmna(-/-) MEFs. Together these results show that both the mechanical properties of the cytoskeleton and cytoskeleton-based processes, including cell motility, coupled MTOC and nucleus dynamics, and cell polarization, depend critically on the integrity of the nuclear lamina, which suggest the existence of a functional mechanical connection between the nucleus and the cytoskeleton. These results also suggest that cell polarization during cell migration requires tight mechanical coupling between MTOC and nucleus, which is mediated by lamin A/C.  相似文献   

12.
Summary In several cell types, an intriguing correlation exists between the position of the centrosome and the direction of cell locomotion. The centrosome is positioned between the leading edge pseudopod and the nucleus. This suggests that the polarized distribution of organelles in the cytoplasm is coupled spatially with structural and functional polarity in the cell cortex. To study cellular polarization with special interest in the roles of microtubules, we have analyzed the effects of microtubule-disrupting reagents and local laser irradiation on behaviors of both the nucleus and the centrosome in living amoebae ofPhysarum polycephalum. Physarum cells often have 2–3 pseudopods. One of the pseudopods keeps extending to become a stable leading edge while the rest retracts, a crucial step that reorients cells during locomotion. The nucleus, together with the centrosome, moves specifically toward the pseudopod that will become the leading edge. Disruption of microtubules with nocodazole randomizes positions of the nucleus, indicating the involvement of microtubules in the directional migration of the nucleus toward a specific pseudopod. The migration direction of the nucleus is reversed immediately after the UV laser is irradiated at regions between the nucleus and the future leading pseudopod. In contrast, irradiation at regions between the future tail and the nucleus does not affect nuclear migration. By immunofluorescence, we confirmed fragmentation of microtubules specifically in the irradiated region. These results suggest that the nucleus is pulled together with the centrosome toward the future leading-edge pseudopod in a microtubule-dependent manner. Microtubules seem to exert the pulling force generated in the cell cortex on the centrosome. They may serve as a mediator of shape changes initiated in the cell cortex to the organelle geometry in the endoplasm.  相似文献   

13.
Background information. Directional cell migration is a fundamental feature of embryonic development, the inflammatory response and the metastatic spread of cancer. Migrating cells have a polarized morphology with an asymmetric distribution of signalling molecules and of the actin and microtubule cytoskeletons. The dynamic reorganization of the actin cytoskeleton provides the major driving force for migration in all mammalian cell types, but microtubules also play an important role in many cells, most notably neuronal precursors. Results. We previously showed, using primary fibroblasts and astrocytes in in vitro scratch‐induced migration assays, that the accumulation of APC (adenomatous polyposis coli; the APC tumour suppressor protein) at microtubule plus‐ends promotes their association with the plasma membrane at the leading edge. This is required for polarization of the microtubule cytoskeleton during directional migration. Here, we have examined the organization of microtubules in the soma of migrating neurons and fibroblasts. Conclusions. We find that APC, through a direct interaction with the NPC (nuclear pore complex) protein Nup153 (nucleoporin 153), promotes the association of microtubules with the nuclear membrane.  相似文献   

14.
In response to locomotory cues, many motile cells have been shown to reposition their centrosome to a location in front of the nucleus, towards the direction of cell migration. We examined centrosome position in PtK(2) epithelial cells treated with hepatocyte growth factor (HGF), which stimulates motility but, unlike chemotactic agents or wounding of a monolayer, provides no directional cues. To observe centrosome movement directly, a plasmid encoding human gamma tubulin fused to the green fluorescent protein was expressed in HGF-treated cells. In cells whose movements were unconstrained by neighboring cells, we found that the position of the centrosome was not correlated with the direction of cell locomotion. Further, in cells where the direction of locomotion changed during the observation period, the centrosome did not reorient toward the new direction of locomotion. Analysis of centrosome and nuclear movement showed that motion of the centrosome often lagged behind that of the nucleus. Analysis of 249 fixed cells stained with an antibody to gamma tubulin confirmed our observations in live cells: 69% of the cells had centrosomes behind the nucleus, away from the direction of locomotion. Of these, 41% had their centrosome in the retraction tail. Confocal microscopy showed that the microtubule array in HGF treated PtK(2) cells was predominantly non-centrosomal. Because microtubules are required for efficient cellular locomotion, we propose that non-centrosomal microtubules stabilize the direction of locomotion without a requirement for reorientation of the centrosome.  相似文献   

15.
Etienne-Manneville S  Hall A 《Cell》2001,106(4):489-498
We describe here a signal transduction pathway controlling the establishment of mammalian cell polarity. Scratching a confluent monolayer of primary rat astrocytes leads to polarization of cells at the leading edge. The microtubule organizing center, the microtubule cytoskeleton, and the Golgi reorganize to face the new free space, and directed cell protrusion and migration specifically occur perpendicularly to the scratch. We show here that the interaction of integrins with extracellular matrix at the newly formed cell front leads to the activation and polarized recruitment of Cdc42, which in turn recruits and activates a cytoplasmic mPar6/PKCzeta complex. Localized PKCzeta activity, acting through the microtubule motor protein dynein, is required for all aspects of induced polarity in these cells.  相似文献   

16.
The cytoskeleton plays a central role in many cell processes including directed cell migration. Since most previous work has investigated cell migration in two dimensions (2D), new methods are required to study movement in three dimensions (3D) while preserving 3D structure of the cytoskeleton. Most previous studies have labeled two cytoskeletal networks simultaneously, impeding an appreciation of their complex and dynamic interconnections. Here we report the development of a 4 color method to simultaneously image vimentin, actin, tubulin and the nucleus for high-resolution confocal microscopy of bone-marrow stromal cells (BMSCs) migrating through a porous membrane. Several methods were tested for structural preservation and labeling intensity resulting in identification of an optimized simultaneous fixation and permeabilization method using glutaraldehyde, paraformaldehyde and Triton X-100 followed by a quadruple fluorescent labeling method. This procedure was then applied at a sequence of time points to migrating cells, allowing temporal progression of migration to be assessed by visualizing all three networks plus the nucleus, providing new insights into 3D directed cell migration including processes such as leading edge structure, cytoskeletal distribution and nucleokinesis. Colocalization of actin and microtubules with distinct spatial arrangements at the cellular leading edge during migration, together with microtubule axial polarization supports recent reports indicating the pivotal role of microtubules in directed cell migration. This study also provides a foundation for 3D migration studies versus 2D studies, providing precise and robust methods to attain new insights into the cellular mechanisms of motility.  相似文献   

17.
Mesenchymal cell migration through a three-dimensional (3D) matrix typically involves major matrix remodeling. The direction of matrix deformation occurs locally in all three dimensions, which cannot be measured by current techniques. To probe the local, 3D, real-time deformation of a collagen matrix during tumor cell migration, we developed an assay whereby matrix-embedded beads are tracked simultaneously in all three directions with high resolution. To establish a proof of principle, we investigated patterns of collagen I matrix deformation near fibrosarcoma cells in the absence and presence of inhibitors of matrix metalloproteinases and acto-myosin contractility. Our results indicate that migrating cells show patterns of local matrix deformation toward the cell that are symmetric in magnitude with respect to the axis of cell movement. In contrast, patterns of matrix release from the cell are asymmetric: the matrix is typically relaxed first at the back of the cell, allowing forward motion, and then at the cell's leading edge. Matrix deformation in regions of the matrix near the cell's leading edge is elastic and mostly reversible, but induces irreversible matrix rupture events near the trailing edge. Our results also indicate that matrix remodeling spatially correlates with protrusive activity. This correlation is mediated by myosin II and Rac1, and eliminated after inhibition of pericellular proteolysis or ROCK. We have developed an assay based on high-resolution 3D multiple-particle tracking that allows us to probe local matrix remodeling during mesenchymal cell migration through a 3D matrix and simultaneously monitor protrusion dynamics.  相似文献   

18.
A hallmark of neurogenesis in the vertebrate brain is the apical-basal nuclear oscillation in polarized neural progenitor cells. Known as interkinetic nuclear migration (INM), these movements are synchronized with the cell cycle such that nuclei move basally during G1-phase and apically during G2-phase. However, it is unknown how the direction of movement and the cell cycle are tightly coupled. Here, we show that INM proceeds through the cell cycle-dependent linkage of cell-autonomous and non-autonomous mechanisms. During S to G2 progression, the microtubule-associated protein Tpx2 redistributes from the nucleus to the apical process, and promotes nuclear migration during G2-phase by altering microtubule organization. Thus, Tpx2 links cell-cycle progression and autonomous apical nuclear migration. In contrast, in vivo observations of implanted microbeads, acute S-phase arrest of surrounding cells and computational modelling suggest that the basal migration of G1-phase nuclei depends on a displacement effect by G2-phase nuclei migrating apically. Our model for INM explains how the dynamics of neural progenitors harmonize their extensive proliferation with the epithelial architecture in the developing brain.  相似文献   

19.
In the budding yeast Saccharomyces cerevisiae, movement of the mitotic spindle to a predetermined cleavage plane at the bud neck is essential for partitioning chromosomes into the mother and daughter cells. Astral microtubule dynamics are critical to the mechanism that ensures nuclear migration to the bud neck. The nucleus moves in the opposite direction of astral microtubule growth in the mother cell, apparently being "pushed" by microtubule contacts at the cortex. In contrast, microtubules growing toward the neck and within the bud promote nuclear movement in the same direction of microtubule growth, thus "pulling" the nucleus toward the bud neck. Failure of "pulling" is evident in cells lacking Bud6p, Bni1p, Kar9p, or the kinesin homolog, Kip3p. As a consequence, there is a loss of asymmetry in spindle pole body segregation into the bud. The cytoplasmic motor protein, dynein, is not required for nuclear movement to the neck; rather, it has been postulated to contribute to spindle elongation through the neck. In the absence of KAR9, dynein-dependent spindle oscillations are evident before anaphase onset, as are postanaphase dynein-dependent pulling forces that exceed the velocity of wild-type spindle elongation threefold. In addition, dynein-mediated forces on astral microtubules are sufficient to segregate a 2N chromosome set through the neck in the absence of spindle elongation, but cytoplasmic kinesins are not. These observations support a model in which spindle polarity determinants (BUD6, BNI1, KAR9) and cytoplasmic kinesin (KIP3) provide directional cues for spindle orientation to the bud while restraining the spindle to the neck. Cytoplasmic dynein is attenuated by these spindle polarity determinants and kinesin until anaphase onset, when dynein directs spindle elongation to distal points in the mother and bud.  相似文献   

20.
Although microtubules have long been implicated in cell locomotion, the mechanism of their involvement remains controversial. Most studies have concluded that microtubules play a positive role by regulating actin polymerization, transporting membrane vesicles to the leading edge, and/or facilitating the turnover of adhesion plaques. Here we used wild-type and mutant CHO cell lines with alterations in tubulin to demonstrate that microtubules can also act to restrain cell motility. Tubulin mutations or low concentrations of drugs that suppress microtubule dynamics without affecting the amount of microtubule polymer inhibited the rate of migration by preventing microtubule reorganization in the trailing portion of the cells where the more dynamic microtubules are normally found. Under these conditions, cells along the edge of a wound still extended lamellipodia and elongated toward the wound but were inhibited in their ability to retract their tails, thus retarding forward progress. The idea that microtubules normally act to restrain cell locomotion was confirmed by treating cells with high concentrations of nocodazole to depolymerize the microtubule network. In the absence of microtubules, wild-type CHO and HeLa cells could still move at near normal speeds, but the movement became more random. We conclude that microtubules act both to restrain cell movement and to establish directionality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号