首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eph kinases and their ephrin ligands are widely expressed in epithelial cells in vitro and in vivo. Our results show that activation of endogenous EphA kinases in Madin-Darby canine kidney (MDCK) cells negatively regulates hepatocyte growth factor/scatter factor (HGF)-induced branching morphogenesis in collagen gel. Cotreatment with HGF and ephrin-A1 reduced sprouting of cell protrusions, an early step in branching morphogenesis. Moreover, addition of ephrin-A1 after HGF stimulation resulted in collapse and retraction of preexisting cell protrusions. In a newly developed assay that simulates the localized interactions between Ephs and ephrins in vivo, immobilized ephrin-A1 suppressed HGF-induced MDCK cell scattering. Ephrin-A1 inhibited basal ERK1/2 mitogen-activated protein kinase activity; however, the ephrin-A1 effect on cell protrusion was independent of the mitogen-activated protein kinase pathway. Ephrin-A1 suppressed HGF-induced activation of Rac1 and p21-activated kinase, whereas RhoA activation was retained, leading to the preservation of stress fibers. Moreover, dominant-negative RhoA or inhibitor of Rho-associated kinase (Y27632) substantially negated the inhibitory effects of ephrin-A1. These data suggest that interfering with c-Met signaling to Rho GTPases represents a major mechanism by which EphA kinase activation inhibits HGF-induced MDCK branching morphogenesis.  相似文献   

2.
Annexin A2 (AnxA2) is a calcium and lipid binding protein involved in neuroendocrine secretion. We have previously demonstrated that AnxA2 participates in the formation and/or stabilization of lipid microdomains required for structural and spatial organization of the exocytotic machinery in chromaffin cells. However, the regulation of AnxA2 is not fully understood. Numerous phosphorylation sites have been identified in the amino-terminal domain of AnxA2. Phosphorylation of Ser25 and Tyr23 are well established and confirmed to be functionally significant. In particular, phosphorylation of Tyr23 by the tyrosine kinase pp60Src reduces the binding of AnxA2 to both actin filaments and the plasma membrane, two major actors of exocytosis, thus, we examined whether AnxA2 was phosphorylated on Tyr23 during exocytosis. Using immunolabelling and a biochemical approach, we found that nicotine stimulation triggered the phosphorylation of Anx A2 on Tyr23. The expression of two AnxA2 mutants carrying phosphorylation deficient (Y23A) or phosphomimetic (Y23E) mutations reduced the number exocytotic sites. Furthermore, expression of AnxA2-Y23A inhibited the formation of lipid microdomains, whereas the expression of AnxA2-Y23E altered actin filaments associated with docked granules. These results suggest that phosphorylation/dephosphorylation switch at Tyr23 in AnxA2 is critical for calcium-regulated exocytosis in neuroendocrine cells. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.  相似文献   

3.
Testicular protein kinase 1 (TESK1) is a serine/threonine kinase with a structure composed of a kinase domain related to those of LIM-kinases and a unique C-terminal proline-rich domain. Like LIM-kinases, TESK1 phosphorylated cofilin specifically at Ser-3, both in vitro and in vivo. When expressed in HeLa cells, TESK1 stimulated the formation of actin stress fibers and focal adhesions. In contrast to LIM-kinases, the kinase activity of TESK1 was not enhanced by Rho-associated kinase (ROCK) or p21-activated kinase, indicating that TESK1 is not their downstream effector. Both the kinase activity of TESK1 and the level of cofilin phosphorylation increased by plating cells on fibronectin. Y-27632, a specific inhibitor of ROCK, inhibited LIM-kinase-induced cofilin phosphorylation but did not affect fibronectin-induced or TESK1-induced cofilin phosphorylation in HeLa cells. Expression of a kinase-negative TESK1 suppressed cofilin phosphorylation and formation of stress fibers and focal adhesions induced in cells plated on fibronectin. These results suggest that TESK1 functions downstream of integrins and plays a key role in integrin-mediated actin reorganization, presumably through phosphorylating and inactivating cofilin. We propose that TESK1 and LIM-kinases commonly phosphorylate cofilin but are regulated in different ways and play distinct roles in actin reorganization in living cells.  相似文献   

4.
Activation of the c-Met receptor tyrosine kinase through its ligand, hepatocyte growth factor (HGF), promotes mitogenic, motogenic, and morphogenic cellular responses. Aberrant HGF/c-Met signaling has been strongly implicated in tumor cell invasion and metastasis. Both HGF and its receptor c-Met have been shown to be overexpressed in human synovial sarcoma, which often metastasizes to the lung; however, little is known about HGF-mediated biological effects in this sarcoma. Here, we provide evidence that Crk adaptor protein is required for the sustained phosphorylation of c-Met-docking protein Grb2-associated binder 1 (Gab1) in response to HGF, leading to the enhanced cell motility of human synovial sarcoma cell lines SYO-1, HS-SY-II, and Fuji. HGF stimulation induced the sustained phosphorylation on Y307 of Gab1 where Crk was recruited. Crk knockdown by RNA interference disturbed this HGF-induced tyrosine phosphorylation of Gab1. By mutational analysis, we identified that Src homology 2 domain of Crk is indispensable for the induction of the phosphorylation on multiple Tyr-X-X-Pro motifs containing Y307 in Gab1. HGF remarkably stimulated cell motility and scattering of synovial sarcoma cell lines, consistent with the prominent activation of Rac1, extreme filopodia formation, and membrane ruffling. Importantly, the elimination of Crk in these cells induced the disorganization of actin cytoskeleton and complete abolishment of HGF-mediated Rac1 activation and cell motility. Time-lapse microscopic analysis revealed the significant attenuation in scattering of Crk knockdown cells following HGF treatment. Furthermore, the depletion of Crk remarkably inhibited the tumor formation and its invasive growth in vivo. These results suggest that the sustained phosphorylation of Gab1 through Crk in response to HGF contributes to the prominent activation of Rac1 leading to enhanced cell motility, scattering, and cell invasion, which may support the crucial role of Crk in the aggressiveness of human synovial sarcoma.  相似文献   

5.
Cells derived from the inner medullary collecting duct undergo in vitro branching tubulogenesis to both the c-met receptor ligand hepatocyte growth factor (HGF) as well as epidermal growth factor (EGF) receptor ligands. In contrast, many other cultured renal epithelial cells respond in this manner only to HGF, suggesting that these two receptors may use independent signaling pathways during morphogenesis. We have therefore compared the signaling pathways for mIMCD-3 cell morphogenesis in response to EGF and HGF. Inhibition of the p42/44 mitogen-activated protein kinase (MAPK) pathway with the mitogen-activated protein kinase kinase (MKK1) inhibitor PD98059 (50 microm) markedly inhibits HGF-induced cell migration with only partial inhibition of EGF-induced cell motility. Similarly, HGF-dependent, but not EGF-dependent, branching morphogenesis was more greatly inhibited by the MKK1 inhibitor. Examination of EGF-stimulated cells demonstrated that extracellular-regulated kinase 5 (ERK5) was activated in response to EGF but not HGF, and that activation of ERK5 was only 60% inhibited by 50 microm PD98059. In contrast, the MKK inhibitor U0126 markedly inhibited both ERK1/2 and ERK5 activation and completely prevented HGF- and EGF-dependent migration and branching process formation. Expression of dominant negative ERK5 (dnBMK1) likewise inhibited EGF-dependent branching process formation, but did not affect HGF-dependent branching process formation. Our results indicate that activation of the ERK1/ERK2 signaling pathway is critical for HGF-induced cell motility/morphogenesis in mIMCD-3 cells, whereas ERK5 appears to be required for EGF-dependent morphogenesis.  相似文献   

6.
LIM-kinases (LIMKs) play crucial roles in various cell activities, including migration, division, and morphogenesis, by phosphorylating and inactivating cofilin. Using a bimolecular fluorescence complementation assay to detect the actin–cofilin interaction, we screened LIMK1 inhibitors and identified two effective inhibitors, damnacanthal (Dam) and MO-26 (a pyrazolopyrimidine derivative). These compounds have already been shown to inhibit Lck, a Src family tyrosine kinase. However, in vitro kinase assays revealed that Dam inhibited LIMK1 more effectively than Lck. Dam suppressed LIMK1-induced cofilin phosphorylation and deceleration of actin retrograde flow in lamellipodia in N1E-115 cells. Dam impaired CXCL12-induced chemotactic migration of Jurkat T lymphocytes and Jurkat-derived, Lck-deficient JCaM1.6 cells and also inhibited serum-induced migration and invasion of MDA-MB-231 breast carcinoma cells. These results suggest that Dam has the potential to suppress cell migration and invasion primarily through the inhibition of LIMK kinase activity. Topical application of Dam also suppressed hapten-induced migration of epidermal Langerhans cells in mouse ears. Dam provides a useful tool for investigating cellular and physiological functions of LIMKs and holds promise for the development of agents against LIMK-related diseases. The bimolecular fluorescence complementation assay system used in this study will provide a useful method to screen for inhibitors of various protein kinases.  相似文献   

7.
LIM kinases (LIMK1 and LIMK2) regulate actin cytoskeletal reorganization through cofilin phosphorylation downstream of distinct Rho family GTPases. Pak1 and ROCK, respectively, activate LIMK1 and LIMK2 downstream of Rac and Rho; however, an effector protein kinase for LIMKs downstream of Cdc42 remains to be defined. We now report evidence that LIMK1 and LIMK2 activities toward cofilin phosphorylation are stimulated in cells by the co-expression of myotonic dystrophy kinase-related Cdc42-binding kinase alpha (MRCKalpha), an effector protein kinase of Cdc42. In vitro, MRCKalpha phosphorylated the protein kinase domain of LIM kinases, and the site in LIMK2 phosphorylated by MRCKalpha proved to be threonine 505 within the activation segment. Expression of MRCKalpha induced phosphorylation of actin depolymerizing factor (ADF)/cofilin in cells, whereas MRCKalpha-induced ADF/cofilin phosphorylation was inhibited by the co-expression with the protein kinase-deficient form of LIM kinases. These results indicate that MRCKalpha phosphorylates and activates LIM kinases downstream of Cdc42, which in turn regulates the actin cytoskeletal reorganization through the phosphorylation and inactivation of ADF/cofilin.  相似文献   

8.
The phospholipid-binding annexin A2 (AnxA2) is known to play a role in the regulation of membrane and actin dynamics, in particular in the endocytic pathway. The protein is present on early endosomes, where it regulates membrane traffic, including the biogenesis of multivesicular transport intermediates destined for late endosomes. AnxA2 membrane association depends on the protein N terminus and membrane cholesterol but does not involve the AnxA2 ligand p11/S100A10. However, the precise mechanisms that control AnxA2 membrane association and function are not clear. In the present study, we have investigated the role of AnxA2 N-terminal phosphorylation in controlling association to endosomal membranes and functions. We found that endosomal AnxA2 was partially tyrosine-phosphorylated and that mutation of Tyr-23 to Ala (AnxA2Y23A), but not of Ser-25 to Ala, impaired AnxA2 endosome association. We then found that the AnxA2Y23A mutant was unable to bind endosomes in vivo, whereas a phospho-mimicking AnxA2 mutant (Y23D) showed efficient endosome binding capacity. Similarly, we found that AnxA2Y23D interacted more efficiently with liposomes in vitro when compared with AnxA2Y23A. To investigate the role of Tyr-23 in vivo, AnxA2 was knocked down with small interfering RNAs, and then cells were recomplemented with RNA interference-resistant forms of the protein. Using this strategy, we could show that AnxA2Y23D, but not AnxA2Y23A, could restore early-to-late endosome transport after AnxA2 depletion. We conclude that phosphorylation of Tyr-23 is essential for proper endosomal association and function of AnxA2, perhaps because it stabilizes membrane-associated protein via a conformational change.  相似文献   

9.
Inhibition of Rho-associated protein kinase (ROCK) activity in glioma C6 cells induces changes in actin cytoskeleton organization and cell morphology similar to those observed in other types of cells with inhibited RhoA/ROCK signaling pathway. We show that phosphorylation of myosin light chains (MLC) induced by P2Y? receptor stimulation in cells with blocked ROCK correlates in time with actin cytoskeleton reorganization, F-actin redistribution and stress fibers assembly followed by recovery of normal cell morphology. Presented results indicate that myosin light-chain kinase (MLCK) is responsible for the observed phosphorylation of MLC. We also found that the changes induced by P2Y? stimulation in actin cytoskeleton dynamics and morphology of cells with inhibited ROCK, but not in the level of phosphorylated MLC, depend on the presence of calcium in the cell environment.  相似文献   

10.
Stromal cell-derived factor 1 alpha (SDF-1alpha), the ligand for G-protein-coupled receptor CXCR4, is a chemotactic factor for T lymphocytes. LIM kinase 1 (LIMK1) phosphorylates cofilin, an actin-depolymerizing and -severing protein, at Ser-3 and regulates actin reorganization. We investigated the role of cofilin phosphorylation by LIMK1 in SDF-1alpha-induced chemotaxis of T lymphocytes. SDF-1alpha significantly induced the activation of LIMK1 in Jurkat human leukemic T cells and peripheral blood lymphocytes. SDF-1alpha also induced cofilin phosphorylation, actin reorganization, and activation of small GTPases, Rho, Rac, and Cdc42, in Jurkat cells. Pretreatment with pertussis toxin inhibited SDF-1alpha-induced LIMK1 activation, thus indicating that Gi protein is involved in LIMK1 activation. Expression of dominant negative Rac (DN-Rac), but not DN-Rho or DN-Cdc42, blocked SDF-1alpha-induced activation of LIMK1, which means that SDF-1alpha-induced LIMK1 activation is mediated by Rac but not by Rho or Cdc42. We used a cell-permeable peptide (S3 peptide) that contains the phosphorylation site (Ser-3) of cofilin to inhibit the cellular function of LIMK1. S3 peptide inhibited the kinase activity of LIMK1 in vitro. Treatment of Jurkat cells with S3 peptide inhibited the SDF-1alpha-induced cofilin phosphorylation, actin reorganization, and chemotactic response of Jurkat cells. These results suggest that the phosphorylation of cofilin by LIMK1 plays a critical role in the SDF-1alpha-induced chemotactic response of T lymphocytes.  相似文献   

11.
Focal adhesion kinase (FAK) is a nonreceptor protein tyrosine kinase critical for both cardiomyocyte survival and sarcomeric assembly during endothelin (ET)-induced cardiomyocyte hypertrophy. ET-induced FAK activation requires upstream activation of one or more isoenzymes of protein kinase C (PKC). Therefore, with the use of replication-defective adenoviruses (Adv) to overexpress constitutively active (ca) and dominant negative (dn) mutants of PKCs, we examined which PKC isoenzymes are necessary for FAK activation and which downstream signaling components are involved. FAK activation was assessed by Western blot analysis with an antibody specific for FAK autophosphorylated at Y397 (Y397pFAK). ET (10 nmol/l; 2-30 min) resulted in the time-dependent activation of FAK which was inhibited by chelerythrine (5 micromol/l; 1 h pretreatment). Adv-caPKC epsilon, but not Adv-caPKC delta, activated FAK compared with a control Adv encoding beta-galactosidase. Conversely, Adv-dnPKC epsilon inhibited ET-induced FAK activation. Y-27632 (10 micromol/l; 1 h pretreatment), an inhibitor of Rho-associated coiled-coil-containing protein kinases (ROCK), prevented ET- and caPKC epsilon-induced FAK activation as well as cofilin phosphorylation. Pretreatment with cytochalasin D (1 micromol/l, 1 h pretreatment) also inhibited ET-induced Y397pFAK and cofilin phosphorylation and caPKC epsilon-induced Y397pFAK. Neither inhibitor, however, interfered with ET-induced ERK1/2 activation. Finally, PP2 (50 micromol/l; 1 h pretreatment), a highly selective Src inhibitor, did not alter basal or ET-induced Y397pFAK. PP2 did, however, reduce basal and ET-induced phosphorylation of other sites on FAK, namely, Y576, Y577, Y861, and Y925. We conclude that the ET-induced signal transduction pathway resulting in downstream Y397pFAK is partially dependent on PKC epsilon, ROCK, cofilin, and assembled actin filaments, but not ERK1/2 or Src.  相似文献   

12.
Reorganization of the actin cytoskeleton in response to growth factor signaling, such as transforming growth factor beta (TGF-beta), controls cell adhesion, motility, and growth of diverse cell types. In Swiss3T3 fibroblasts, a widely used model for studies of actin reorganization, TGF-beta1 induced rapid actin polymerization into stress fibers and concomitantly activated RhoA and RhoB small GTPases. Consequently, dominant-negative RhoA and RhoB mutants blocked TGF-beta1-induced actin reorganization. Because Rho GTPases are known to regulate the activity of LIM-kinases (LIMK), we found that TGF-beta1 induced LIMK2 phosphorylation with similar kinetics to Rho activation. Cofilin and LIMK2 co-precipitated and cofilin became phosphorylated in response to TGF-beta1, whereas RNA interference against LIMK2 blocked formation of new stress fibers by TGF-beta1. Because the kinase ROCK1 links Rho GTPases to LIMK2, we found that inhibiting ROCK1 activity blocked completely TGF-beta1-induced LIMK2/cofilin phosphorylation and downstream stress fiber formation. We then tested whether the canonical TGF-beta receptor/Smad pathway mediates regulation of the above effectors and actin reorganization. Adenoviruses expressing constitutively activated TGF-beta type I receptor led to robust actin reorganization and Rho activation, whereas the constitutively activated TGF-beta type I receptor with mutated Smad docking sites (L45 loop) did not affect either actin organization or Rho activity. In line with this, ectopic expression of the inhibitory Smad7 inhibited TGF-beta1-induced Rho activation and cytoskeletal reorganization. Our data define a novel pathway emanating from the TGF-beta type I receptor and leading to regulation of actin assembly, via the kinase LIMK2.  相似文献   

13.
Nck-interacting kinase (NIK)-related kinase (NRK)/NIK-like embryo-specific kinase (NESK) is a protein kinase that belongs to the germinal center kinase family, and activates the c-Jun N-terminal kinase (JNK) signaling pathway. In this study, we examined the effect of NRK/NESK on actin cytoskeletal organization. Overexpression of NRK/NESK in COS7 cells induced accumulation of polymerized actin at the perinuclear. Phosphorylation of cofilin, an actin-depolymerizing factor, was increased in NRK/NESK-expressing HEK 293T cells. In addition, in vitro phosphorylation of cofilin was observed on NRK/NESK immunoprecipitates from HEK 293T cells expressing the kinase domain of NRK/NESK. The cofilin phosphorylation occurred at the serine residue of position 3 (Ser-3). Since the phosphorylation at Ser-3 inactivates the actin-depolymerizing activity of cofilin, these results suggest that NRK/NESK induces actin polymerization through cofilin phosphorylation. The cofilin phosphorylation did not appear to be mediated through activation of LIM-kinasel, a cofilin-phosphorylating kinase, or through the activation of JNK. Thus, cofilin is likely to be a direct substrate of NRK/NESK. NRK/NESK is predominantly expressed in skeletal muscle during the late stages of mouse embryogenesis. Thus, NRK/NESK may be involved in the regulation of actin cytoskeletal organization in skeletal muscle cells through cofilin phosphorylation.  相似文献   

14.
MAP kinase cascade-dependent responses were investigated during scattering of HepG2 human hepatoma cells stimulated by HGF or phorbol ester. Inhibition of phosphatidylinositol 3-kinase with LY294002 prevented completely the dissociation of cells. Inhibition of MAP kinase kinase (MEK) with PD98059 prevented the development of characteristic morphological changes associated with cell migration. EGF, which failed to induce cell scattering, caused a short-term increase in the phosphorylation of Erk1/Erk2 MAP kinases. On the contrary, HGF or phorbol ester stimulated the phosphorylation of MAP kinases for a long time. Experiments performed with LY294002 indicated that phosphatidylinositol 3-kinase contributed to the HGF-stimulated phosphorylation of Erk1/Erk2. This finding was confirmed by the demonstration that the MAP kinase cascade-dependent expression of a high-Mr (>300 kDa) protein pair appearing in the course of cell scattering was inhibited by LY294002 in HGF-induced cells but was not inhibited in phorbol ester-treated cells.  相似文献   

15.
Vascular endothelial growth factor-A (VEGF-A) induces actin reorganization and migration of endothelial cells through a p38 mitogen-activated protein kinase (MAPK) pathway. LIM-kinase 1 (LIMK1) induces actin remodeling by phosphorylating and inactivating cofilin, an actin-depolymerizing factor. In this study, we demonstrate that activation of LIMK1 by MAPKAPK-2 (MK2; a downstream kinase of p38 MAPK) represents a novel signaling pathway in VEGF-A-induced cell migration. VEGF-A induced LIMK1 activation and cofilin phosphorylation, and this was inhibited by the p38 MAPK inhibitor SB203580. Although p38 phosphorylated LIMK1 at Ser-310, it failed to activate LIMK1 directly; however, MK2 activated LIMK1 by phosphorylation at Ser-323. Expression of a Ser-323-non-phosphorylatable mutant of LIMK1 suppressed VEGF-A-induced stress fiber formation and cell migration; however, expression of a Ser-323-phosphorylation-mimic mutant enhanced these processes. Knockdown of MK2 by siRNA suppressed VEGF-A-induced LIMK1 activation, stress fiber formation, and cell migration. Expression of kinase-dead LIMK1 suppressed VEGF-A-induced tubule formation. These findings suggest that MK2-mediated LIMK1 phosphorylation/activation plays an essential role in VEGF-A-induced actin reorganization, migration, and tubule formation of endothelial cells.  相似文献   

16.
GLUT4 vesicles are actively recruited to the muscle cell surface upon insulin stimulation. Key to this process is Rac-dependent reorganization of filamentous actin beneath the plasma membrane, but the underlying molecular mechanisms have yet to be elucidated. Using L6 rat skeletal myoblasts stably expressing myc-tagged GLUT4, we found that Arp2/3, acting downstream of Rac GTPase, is responsible for the cortical actin polymerization evoked by insulin. siRNA-mediated silencing of either Arp3 or p34 subunits of the Arp2/3 complex abrogated actin remodeling and impaired GLUT4 translocation. Insulin also led to dephosphorylation of the actin-severing protein cofilin on Ser-3, mediated by the phosphatase slingshot. Cofilin dephosphorylation was prevented by strategies depolymerizing remodeled actin (latrunculin B or p34 silencing), suggesting that accumulation of polymerized actin drives severing to enact a dynamic actin cycling. Cofilin knockdown via siRNA caused overwhelming actin polymerization that subsequently inhibited GLUT4 translocation. This inhibition was relieved by reexpressing Xenopus wild-type cofilin-GFP but not the S3E-cofilin-GFP mutant that emulates permanent phosphorylation. Transferrin recycling was not affected by depleting Arp2/3 or cofilin. These results suggest that cofilin dephosphorylation is required for GLUT4 translocation. We propose that Arp2/3 and cofilin coordinate a dynamic cycle of actin branching and severing at the cell cortex, essential for insulin-mediated GLUT4 translocation in muscle cells.  相似文献   

17.
Double-stranded RNA (dsRNA)-dependent protein kinase (PKR) is an interferon-induced protein kinase that plays a central role in the anti-viral process. Due to its pro-apoptotic and anti-proliferative action, there is an increased interest in PKR modulation as an anti-tumor strategy. PKR is overexpressed in breast cancer cells; however, the role of PKR in breast cancer cells is unclear. The expression/activity of PKR appears inversely related to the aggressiveness of breast cancer cells. The current study investigated the role of PKR in the motility/migration of breast cancer cells. The activation of PKR by a synthesized dsRNA (PIC) significantly decreased the motility of several breast cancer cell lines (BT474, MDA-MB231 and SKBR3). PIC inhibited cell migration and blocked cell membrane ruffling without affecting cell viability. PIC also induced the reorganization of the actin cytoskeleton and impaired the formation of lamellipodia. These effects of PIC were reversed by the pretreatment of a selective PKR inhibitor. PIC also activated p38 mitogen-activated protein kinase (MAPK) and its downstream MAPK-activated protein kinase 2 (MK2). PIC-induced activation of p38 MAPK and MK2 was attenuated by the PKR inhibitor and the PKR siRNA, but a selective p38 MAPK inhibitor (SB203580) or other MAPK inhibitors did not affect PKR activity, indicating that PKR is upstream of p38 MAPK/MK2. Cofilin is an actin severing protein and regulates membrane ruffling, lamellipodia formation and cell migration. PIC inhibited cofilin activity by enhancing its phosphorylation at Ser3. PIC activated LIM kinase 1 (LIMK1), an upstream kinase of cofilin in a p38 MAPK-dependent manner. We concluded that the activation of PKR suppressed cell motility by regulating the p38 MAPK/MK2/LIMK/cofilin pathway.  相似文献   

18.
Actin filament dynamics play a critical role in mitosis and cytokinesis. LIM motif-containing protein kinase 1 (LIMK1) regulates actin reorganization by phosphorylating and inactivating cofilin, an actin-depolymerizing and -severing protein. To examine the role of LIMK1 and cofilin during the cell cycle, we measured cell cycle-associated changes in the kinase activity of LIMK1 and in the level of cofilin phosphorylation. Using synchronized HeLa cells, we found that LIMK1 became hyperphosphorylated and activated in prometaphase and metaphase, then gradually returned to the basal level as cells entered into telophase and cytokinesis. Although Rho-associated kinase and p21-activated protein kinase phosphorylate and activate LIMK1, they are not likely to be involved in mitosis-specific activation and phosphorylation of LIMK1. Immunoblot and immunofluorescence analyses using an anti-phosphocofilin-specific antibody revealed that the level of cofilin phosphorylation, similar to levels of LIMK1 activity, increased during prometaphase and metaphase then gradually declined in telophase and cytokinesis. Ectopic expression of LIMK1 increased the level of cofilin phosphorylation throughout the cell cycle and induced the formation of multinucleate cells. These results suggest that LIMK1 is involved principally in control of mitosis-specific cofilin phosphorylation and that dephosphorylation and reactivation of cofilin at later stages of mitosis play a critical role in cytokinesis of mammalian cells.  相似文献   

19.
The C-terminal 26-residue peptide of serpin A1 is an inhibitor of HIV-1   总被引:1,自引:0,他引:1  
The signal transduction pathway involved in hepatocyte growth factor (HGF)-induced capillary morphogenesis of endothelial cells was investigated. HGF-induced capillary morphogenesis of the murine spleen endothelial cell line MSS31 was inhibited by a Src family kinase inhibitor, PP2. Stable expression of kinase-inactive Src in MSS31 cells inhibited HGF-induced activation of Src as well as capillary morphogenesis. The HGF-induced capillary morphogenesis of human umbilical vein endothelial cells was also inhibited by PP2 and was reduced by the downregulation of Src by small interfering RNA. These results suggest that HGF induces capillary morphogenesis of endothelial cells through Src.  相似文献   

20.
We have previously shown that Compound 5 (Cpd 5), an inhibitor of protein phosphatase Cdc25A, inhibits Hep3B human hepatoma cell growth. We now show that hepatocyte growth factor (HGF), a hepatocyte growth stimulant, can strongly enhance Cpd 5-induced growth inhibition in Hep3B cells, and this enhancement in cell growth inhibition is correlated with a much stronger ERK phosphorylation when compared to cells treated with Cpd 5 or HGF separately. We found that HGF/Cpd 5-induced ERK phosphorylation and cell growth inhibition were mediated by Akt (protein kinase B) pathway, since combination HGF/Cpd 5 treatment of Hep3B cells inhibited Akt phosphorylation at Ser-473 and its kinase activity, which led to the suppression of Raf-1 phosphorylation at Ser-259. The suppression of Raf-1 Ser-259 phosphorylation caused the induction of Raf-1 kinase activity, as well as hyper-ERK phosphorylation. Transient transfection of Hep3B cells with dominant negative Akt c-DNA further enhanced both Cpd 5- and HGF/Cpd 5-induced ERK phosphorylation, while over-expression of wild-type Akt c-DNA diminished their effects. In contrast, HGF antagonized the growth inhibitory actions of Cpd 5 on normal rat hepatocytes, thus showing a selective effect on tumor cells compared to normal cells. Our data suggest that Akt kinase negatively regulates MAPK activity at the Akt-Raf level. Suppression of Akt activity by either combination HGF/Cpd 5 treatment or by dominant negative Akt c-DNA transfection antagonizes the Akt inhibitory effect on Raf-1, resulting in an enhancement of Cpd 5-induced MAPK activation and cell growth inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号