首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Synexin was isolated from bovine liver and found to aggregate adrenal chromaffin granules in the same Ca2+-dependent manner as previously described for adrenal synexin. The chromaffin granule aggregating activity of liver synexin was blocked in vitro by the addition of an antibody prepared to the 47,000 molecular weight band extracted from an SDS gel of an adrenal medullary synexin preparation. Chromaffin granules aggregated by synexin fused when exposed to cis-unsaturated fatty acids at concentrations comparable to those released from phospholipids by stimulated secretory cells. The synexin-induced aggregation reaction was blocked by Erythrosin B, a common food coloring, and by the phenothiazine antipsychotic trifluoperazine and promethazine. The aggregation and fusion of chromaffin granules thus appears to be a useful model system for studying synexin from diverse tissues and for testing pharmacologically or toxicologically active substances for effects on secretory systems.  相似文献   

2.
Synexin, a soluble adrenal medullary and liver protein which causes calcium-dependent aggregation of isolated chromaffin granules, was isolated and purified according to published procedures. The effects of synexin on the kinetics of membrane fusion were examined. Membrane fusion was assayed by following the mixing of aqueous contents of phospholipid vesicles. Synexin lowers the threshold of CA2+ concentration required for fusion of large unilamellar vesicles of phosphatidylserine and a mixture of phosphatidylserine with phosphatidylethanolamine. synexin also increases drastically the initial rate of fusion. the initial rate of fusion increases with the quantity of synexin present in the reaction mixture. In the presence of 1-2 mM Ca2+ and 50 microM phospholipid, synexin at 20 to 40 micrograms/ml increases the rate of fusion by two orders of magnitude. Mg2+ does not support synexin-induced fusion. With vesicles containing a mixture of phosphatidylserine with phosphatidylcholine, synexin enhances aggregation in the presence of CA2+, without promoting fusion. Synexin may play a role in exocytosis by promoting fusion of membranes containing specific phospholipids in the presence of Ca2+.  相似文献   

3.
Chromaffin granule exocytosis differs in many physiological respects from neuronal synaptic vesicle exocytosis, which has led to the assumption that the two processes occur by distinct mechanisms. While different mechanisms are certainly in operation for the biogenesis of granules and synaptic vesicles, it is now becoming clear that similar mechanisms are used by both beyond this stage. The similarities extend to various aspects of regulated exocytosis, including regulation of the number of vesicles released in response to cell stimulation. Most strikingly, it now appears that the same proteins mediate the docking and fusion of both chromaffin granules and synaptic vesicles, and that homologues of these proteins act similarly in constitutive membrane traffic throughout evolution.  相似文献   

4.
The calcium dependence of the binding of synexin to isolated chromaffin granules has been investigated. The calcium dependence was found to be pH sensitive, binding occurring at higher Ca2+ concentrations at lower values of pH. At pH 7.2 half-maximal binding occurred at 4 microM Ca2+. This is a lower Ca2+ concentration than the 200 microM that is required to give half-maximal self-association of synexin or membrane aggregation by synexin. The data therefore suggest that in the chromaffin cell stimulated to release catecholamines and proteins by exocytosis synexin first binds to membranes and then associates with itself to draw membranes together in preparation for fusion.  相似文献   

5.
H B Pollard  J H Scott 《FEBS letters》1982,150(1):201-206
We report the isolation and purification of synhibin, a new Mr 68000 protein, which inhibits synexin. Synexin mediates Ca2+-dependent chromaffin granule aggregation and fusion, processes perhaps important during exocytosis. Our data indicate that synhibin action involves competition with synexin for a site on the chromaffin granule membrane involved in membrane contact. Synhibin may thus be an important intracellular regulator of synexin action during secretion.  相似文献   

6.
v-SNAREs control exocytosis of vesicles from priming to fusion   总被引:9,自引:0,他引:9       下载免费PDF全文
SNARE proteins (soluble NSF-attachment protein receptors) are thought to be central components of the exocytotic mechanism in neurosecretory cells, but their precise function remained unclear. Here, we show that each of the vesicle-associated SNARE proteins (v-SNARE) of a chromaffin granule, synaptobrevin II or cellubrevin, is sufficient to support Ca(2+)-dependent exocytosis and to establish a pool of primed, readily releasable vesicles. In the absence of both proteins, secretion is abolished, without affecting biogenesis or docking of granules indicating that v-SNAREs are absolutely required for granule exocytosis. We find that synaptobrevin II and cellubrevin differentially control the pool of readily releasable vesicles and show that the v-SNARE's amino terminus regulates the vesicle's primed state. We demonstrate that dynamics of fusion pore dilation are regulated by v-SNAREs, indicating their action throughout exocytosis from priming to fusion of vesicles.  相似文献   

7.
A Stutzin 《FEBS letters》1986,197(1-2):274-280
A new technique has been developed to study fusion of biological membrane vesicles. Bovine chromaffin granule ghosts (CGG) were loaded with fluorescein isothiocyanate-dextran (FITC-dextran) at self-quenching concentrations. Loaded ghosts were then made to fuse with empty CGG. Fusion was induced by synexin, a protein previously proposed to be involved in exocytosis. The fusion process was monitored by measuring the dequenching of the fluorescence. Dequenching occurred as FITC-dextran was diluted into the increased volume due to fusion with empty ghosts. Spurious signals from leakage or breakage of vesicles were removed by including a specific anti-fluorescein antibody in the reaction medium. This new technique may prove to be of more general use for studying membrane fusion processes in other systems.  相似文献   

8.
Synexin-mediated fusion of bovine chromaffin granule ghosts. Effect of pH   总被引:2,自引:0,他引:2  
Synexin induces chromaffin granule ghosts to fuse one to another, a process which is followed continuously and quantitatively by monitoring the mixing of the intragranular aqueous compartments. A freeze-thaw technique was used for preparing chromaffin granule ghosts loaded with a self-quenching concentration of the fluorescent, high molecular weight probe FITC-Dextran. When the loaded ghosts were mixed with empty ghosts in the presence of synexin, the two compartments fused, resulting in the dilution of the probe with the concomitant increase in fluorescence. So as to suppress possible leakage signals, anti-fluorescein antibodies which quench probe fluorescence were present in the reaction media. Synexin-mediated fusion of freeze-thaw (F/Th) ghosts and binding of 125I-synexin to these membranes were found to be dependent on Ca2+ concentration, but only in a partial manner. However, these two synexin-mediated properties were demonstrably sensitive to [H+] in the medium. A detailed pH profile of fusion revealed an apparent midpoint of activation at approx. pH 5.2, with asymptotic values at pH 4 (maximum) and pH 7.2 (minimum). In our attempt to determine whether the pH effect was on the synexin or on the membranes, we found that fusion was blocked only by treatment of the membranes with the membrane-impermeant carboxyl group modifier 1-ethyl-3-(4-azonia-4,4-dimethylpentyl)carbodiimide. These data suggest that membrane fusion evoked by synexin seems to be promoted by rendering the F/Th membranes relatively less negatively charged while the synexin becomes more positively charged. The fusion process was entirely dependent upon synexin concentration; the k1/2 under optimal conditions of pCa and pH was 85 nM. Similar to what has been previously found with intact granules, an anti-synexin polyclonal antibody partially (48%) blocked fusion, as did pretreatment of the chromaffin granules ghosts with trypsin (30%). We conclude that the coincident pCa and pH sensitivity of synexin-mediated binding to chromaffin granule membranes and their subsequent fusion might be associated with physiological changes in the concentration of both cations in the cytoplasm of secreting chromaffin cells.  相似文献   

9.
Catecholamine secretion from chromaffin cells has been used for a long time as a general model to study exocytosis of large dense core secretory granules. Permeabilization and microinjection techniques have brought the possibility to dissect at the molecular level the multi-protein machinery involved in this complex physiological process. Regulated exocytosis comprises distinct and sequential steps including the priming of secretory granules, the formation of a docking complex between granules and the plasma membrane and the subsequent fusion of the granule with the plasma membrane. Key proteins involved in the exocytotic machinery have been identified. For instance, SNAREs which participate in the docking events in most intracellular transport steps along the secretory pathway, play a role in exocytosis in both neuronal and endocrine cells. However, in contrast to intracellular transport processes for which the highest fusion efficiency is required after correct targeting of the vesicles, the number of exocytotic events in activated secretory cells needs to be tightly controlled. We describe here the multistep control exerted by heterotrimeric and monomeric G proteins on the progression of secretory granules from docking to fusion and the molecular nature of some of their downstream effectors in neuroendocrine chromaffin cells.  相似文献   

10.
Preparations of synexin (1) exhibit a self-interaction in the absence of chromaffin granules as evidenced by an increase in absorbance at the wave-length used for observing granule aggregation (2). We incorporated this observation into a new formula for calculating the synexin-induced chromaffin granule aggregation. According to this amended analysis, synexin-induced aggregation is specific for chromaffin granules or their membranes. Treatment of intact chromaffin granuleswith trypsin or pronase renders the granules unresponsive to synexin.  相似文献   

11.
Synexin, a protein from the cytosol of the adrenal medulla, selectively increases the ability of Ca2+ to aggregate chromaffin granules and other membrane-bound particles. The ability of synexin to self-aggregate in the presence of Ca2+ can be employed in the purification of the protein by monitoring purification with parallel assays that utilize the aggregation of both chromaffin granule membranes and phosphatidylserine liposomes. It is shown that the enhancement of the Ca2+-induced aggregation of both liposomes and chromaffin granule membranes is a property associated with a 47,000 Mr protein. Trypsin inactivated synexin. We found that if granule membranes were well washed after trypsin treatment, they were still excellent substrates for synexin aggregation. This finding cannot be explained by extinction changes owing to synexin self-aggregation. The 47,000 Mr protein enhancement Ca2+ aggregation of phosphatidylserine liposomes containing up to 40% phosphatidylcholine, liposomes made from lipids extracted from chromaffin granule membranes, and trypsin-treated chromaffin granule membranes, thus suggesting that synexin activity in vivo may be independent of specific membrane proteins but dependent on the presence of acidic phospholipids in the membrane.  相似文献   

12.
Lamellar bodies of lung epithelial type II cells undergo fusion with plasma membrane prior to exocytosis of surfactant into the alveolar lumen. Since synexin from adrenal glands promotes aggregation and fusion of chromaffin granules, we purified synexin-like proteins from bovine lung cytosolic fraction, and evaluated their effect on the fusion of isolated lamellar bodies and plasma membrane fractions. Synexin activity, which co-purified with an approx. 47 kDa protein (pI 6.8), was assessed by following calcium-dependent aggregation of liposomes prepared from a mixture of phosphatidylcholine:phosphatidylserine (PC:PS, 3:1, mol/mol). Lung synexin caused aggregation of liposomes approximating lung surfactant lipid-like composition, isolated lamellar bodies, or isolated plasma membrane fraction. Lung synexin promoted fusion only in the presence of calcium. It augmented fusion between lamellar bodies and plasma membranes, lamellar bodies and liposomes, or between two populations of liposomes. However, selectivity with regard to synexin-mediated fusion was observed as synexin did not promote fusion between plasma membrane and liposomes, or between liposomes of surfactant lipid-like composition and other liposomes. These observations support a role for lung synexin in membrane fusion between the plasma membrane and lamellar bodies during exocytosis of lung surfactant, and suggest that such fusion is dependent on composition of interacting membranes.  相似文献   

13.
Summary Synexin (annexin VII) is a Ca2+- and phospholid-binding protein which has been proposed to play a role in Ca2+-dependent membrane fusion processes. Using a monoclonal antibody against synexin, Mab 10E7, and immunogold, we carried out a semiquantitative localization study of synexin in bovine adrenal medullary chromaffin granules, and in resting and nicotine-stimulated adrenal chromaffin cells. Isolated chromaffin granules contained very little synexin, whereas chromaffin granules aggregated with synexin (24 g/mg) and Ca2+ (1 mM) clearly showed synexin-associated immunogold particles in the vicinity of the granule membrane (1.88 gold particles per granule profile). In isolated, cultured adrenal chromaffin cells, synexin was present in the nucleus (5.5 particles/m2) and in the cytosol (5.3 particles/m2), but mainly around the granule membrane in the granular cell area (11.7 particles/m2). During the active phase of cholinergically stimulated catecholamine secretion, the amount of synexin label was reduced by 33% in the nucleus, by 23% in the cytosol, and by 51% in the granule area. The plasma membrane contained a small amount of synexin, which did not significantly change upon stimulation of the cells. We conclude that synexin is involved in the secretory process in chromaffin cells.  相似文献   

14.
Modulation of membrane fusion by calcium-binding proteins.   总被引:4,自引:0,他引:4       下载免费PDF全文
The effects of several Ca2+-binding proteins (calmodulin, prothrombin, and synexin) on the kinetics of Ca2+-induced membrane fusion were examined. Membrane fusion was assayed by following the mixing of aqueous contents of phospholipid vesicles. Calmodulin inhibited slightly the fusion of phospholipid vesicles. Bovine prothrombin and its proteolytic fragment 1 had a strong inhibitory effect on fusion. Depending on the phospholipid composition, synexin could either facilitate or inhibit Ca2+-induced fusion of vesicles. The effects of synexin were Ca2+ specific. 10 microM Ca2+ was sufficient to induce fusion of vesicles composed of phosphatidic acid/phosphatidylethanolamine (1:3) in the presence of synexin and 1 mM Mg2+. We propose that synexin may be involved in intracellular membrane fusion events mediated by Ca2+, such as exocytosis, and discuss possible mechanisms facilitating fusion.  相似文献   

15.
Kesavan J  Borisovska M  Bruns D 《Cell》2007,131(2):351-363
Assembly of SNARE proteins between opposing membranes mediates fusion of synthetic liposomes, but it is unknown whether SNAREs act during exocytosis at the moment of Ca(2+) increase, providing the molecular force for fusion of secretory vesicles. Here, we show that execution of pre- and postfusional steps during chromaffin granule exocytosis depends crucially on a short molecular distance between the complex-forming SNARE motif and the transmembrane anchor of the vesicular SNARE protein synaptobrevin II. Extending the juxtamembrane region of synaptobrevin by insertion of flexible "linkers" reduces priming of granules, delays initiation of exocytosis upon stepwise elevation of intracellular calcium, attenuates fluctuations of early fusion pores, and slows rapid expansion of the pore in a linker-length dependent fashion. These observations provide evidence that v-SNARE proteins drive Ca(2+)-triggered membrane fusion at millisecond time scale and support a model wherein continuous molecular pulling by SNAREs guides the vesicle throughout the consecutive stages of exocytosis.  相似文献   

16.
A group of proteins that bind to the chromaffin granule membrane in the presence of Ca2+ has been isolated by affinity chromatography of bovine adrenal medullary cytosol on granule membranes coupled to Sepharose 4B. Twenty-two of these proteins were resolved into classes depending upon the Ca2+ concentration at which they were eluted from the affinity column (40 or 0.1 microM), upon their affinities for native granule membranes or for liposomes prepared from extracted granule lipids, and upon the requirement of seven of the proteins for ATP in the cytosol fraction and column buffers to promote binding. The molecular weights and isoelectric points of these proteins were determined by two-dimensional electrophoresis. Two of the granule-binding proteins were identified: synexin and calmodulin. Calmodulin was found to bind to seven specific granule membrane proteins after diffusion of 125I-labeled calmodulin into an acrylamide gel of membrane proteins separated by electrophoresis in the presence of sodium dodecyl sulfate. A phospholipid-activated protein kinase activity, possibly due to protein kinase C, was present in the granule-binding fraction. Two major granule-binding proteins were found to present a pattern in two-dimensional electrophoresis that was very similar to but shifted slightly toward the basic end of the gel from the pattern generated by light chains associated with clathrin in adrenal medullary coated vesicles. In the chromaffin cell, these proteins, by associating with the granule membrane in the presence of an increased cytosolic Ca2+ concentration, might play a variety of roles in the process of exocytosis.  相似文献   

17.
Fusion of chromaffin granule ghosts was induced by synexin at pH 6, 37 degrees C, in the presence of 10(-7) M Ca2+. To study the kinetics and extent of this fusion process we employed two assays that monitored continuously mixing of aqueous contents or membrane mixing by fluorescence intensity increases. In both assays chromaffin granule ghosts were either labeled on the membrane or in the included aqueous phase. The ratios of blank to labeled chromaffin granule ghosts were varied from 1 to 10. The results were analyzed in terms of a mass action kinetic model, which views the overall fusion reaction as a sequence of a second-order process of aggregation followed by a first-order fusion reaction. The model calculations gave fare simulations and predictions of the experimental results. The rate constants describing membrane mixing are more than 2-fold larger than those for volume mixing. The analysis also indicated that the initial aggregation and fusion processes, up to dimer formation, were extremely fast. The rate constant of aggregation was close to the limit in diffusion-controlled processes, whereas the fusion rate constant was about the same as found in fastest virus-liposome fusion events at pH 5. A small increase in volume was found to accompany the fusion between chromaffin granule ghosts. Using ratios of synexin to chromaffin granule ghost protein of 0.13, 0.41 and 1.15 indicated that the overall fusion rate was larger for the intermediate (0.41) case. The analysis showed that the main activity of synexin was an enhancement of the rate of aggregation. At intermediate or excessive synexin concentrations it, respectively, promoted moderately, or inhibited the actual fusion step.  相似文献   

18.
We have devised a new method that permits the investigation of exogenous secretory vesicle function using frog oocytes and bovine chromaffin granules, the secretory vesicles from adrenal chromaffin cells. Highly purified chromaffin granule membranes were injected into Xenopus laevis oocytes. Exocytosis was detected by the appearance of dopamine-beta-hydroxylase of the chromaffin granule membrane in the oocyte plasma membrane. The appearance of dopamine-beta-hydroxylase on the oocyte surface was strongly Ca(2+)-dependent and was stimulated by coinjection of the chromaffin granule membranes with InsP3 or Ca2+/EGTA buffer (18 microM free Ca2+) or by incubation of the injected oocytes in medium containing the Ca2+ ionophore ionomycin. Similar experiments were performed with a subcellular fraction from cultured chromaffin cells enriched with [3H]norepinephrine-containing chromaffin granules. Because the release of [3H]norepinephrine was strongly correlated with the appearance of dopamine-beta-hydroxylase on the oocyte surface, it is likely that intact chromaffin granules and chromaffin granule membranes undergo exocytosis in the oocyte. Thus, the secretory vesicle membrane without normal vesicle contents is competent to undergo the sequence of events leading to exocytosis. Furthermore, the interchangeability of mammalian and amphibian components suggests substantial biochemical conservation of the regulated exocytotic pathway during the evolutionary progression from amphibians to mammals.  相似文献   

19.
The subcellular localization in anterior pituitary secretory cells of annexin II, one of the Ca2+-dependent phospholipid-binding proteins, was examined by immunohistochemistry and immunoelectron microscopy. Annexin II was associated with the plasma membrane, the membranes of secretory granules and cytoplasmic organelles, such as rough endoplasmic reticulum, mitochondria and vesicles, and with the nuclear envelope. Annexin II was frequently detected at the contact sites of secretory granules with other granules and with the plasma membrane. The anterior pituitary and adrenal medulla were treated with Clostridium perfringens enterotoxin, which induces Ca2+ influx, and examined under an electron microscope. The anterior pituitary cells showed multigranular exocytosis, i.e. multiple fusions of secretory granules with each other and with the plasma membrane, but adrenal chromaffin cells, which lack annexin II on the granule membranes, never showed granule--granule fusion and only single granule exocytosis. From these results, we conclude that, in anterior pituitary secretory cells, annexin II is involved in granule--granule fusion in addition to granule--plasma membrane fusion. © 1998 Chapman & Hall  相似文献   

20.
When exocytosis of granule contents is induced by nicotine stimulation, glycoprotein III (a chromaffin granule membrane constituent) is exposed on the surface of cultured chromaffin cells, where it may be labeled with an immunocytochemical tracer. The subsequent fate of this glycoprotein after endocytosis was followed at the ultrastructural level using immunogold methods and was analyzed by morphometry. After stimulation exocytosis membranes newly inserted into the plasma membrane labeled with gold particles for glycoprotein III were found to be endocytosed via coated vesicles and finally found in organelles devoid of chromogranin A, the major secretory granule protein. At intervals between 30 min and 24 h after cell stimulation and immunolabeling, most labeled structures were identified by two different morphological approaches as prelysosomes and lysosomes. In contrast with results obtained on freshly isolated chromaffin cells, it is thus concluded that in cultured cells granule membrane recycling into new granules does not occur. It is suggested that the fate of granule membrane endocytosed after cell stimulation may be influenced by the external conditions to which cells are previously exposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号