首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Functions of tubulin isoforms   总被引:4,自引:0,他引:4  
The biological significance of tubulin isotypes lies in their ability to function in different chemical and physical environments. Recent papers document the origin and distribution of several new tubulin isotypes and suggest new ways for studying their assembly and function in specialized cells.  相似文献   

2.
The distribution of different tubulin isoforms in the mouse sperm flagellum was studied using four site-directed antibodies to tubulin: DM1A and DM1B general anti α and β-tubulin, 6-11B-1 anti-acetylated α-tubulin, and GT335 anti-glutamylated α and β-tubulin. Quantitative immunogold analyses were performed on five regions of the flagellum: the middle piece, three successive regions of the principal piece, and the terminal piece. A uniform labeling was observed with DM1A and DM1B along the entire flagellum both for peripheral doublets and the central pair. Similar results were obtained with 6-11B-1 directed to acetylated α-tubulin, an N-terminal-modified tubulin isoform. In contrast, the labeling for glutamylated α and β-tubulin, C-terminal modified isoforms, was not uniform. The highest intensity was found in the middle piece and the terminal piece. The labeling which decreased significantly both for peripheral doublets and central pair along the principal piece was considered as a loss of glutamylated tubulin accessibility. From the middle piece to the end of the principal piece, this labeling was predominant in doublets 1-5-6, corresponding to the plane of the flagellar wave. However, the labeling for doublets 2-3-4-7-8-9 was heterogeneous, showing an increasing asymmetry. These results suggest that in the mammalian sperm cell model, the glutamylated tubulin might be involved in a functional heterogeneity among peripheral doublets of the flagellum. © 1996 Wiley-Liss, Inc.  相似文献   

3.
Glutamylation of alpha and beta tubulin isotypes is a major posttranslational modification giving rise to diversified isoforms occurring mainly in neurotubules, centrioles, and axonemes. Monoglutamylated tubulin isoforms can be differentially recognized by two mAbs, B3 and GT335, which both recognize either polyglutamylated isoforms. In the present study, immunoelectron microscopy and immunofluorescence analyses were performed with these two mAbs to determine the expression and distribution of glutamylated tubulin isoforms in selected biological models whose tubulin isotypes are characterized. In mouse spermatozoa, microtubules of the flagellum contain polyglutamylated isoforms except in the tip where only monoglutamylated isoforms are detected. In spermatids, only a subset of manchette microtubules contain monoglutamylated tubulin isoforms. Cytoplasmic microtubules of Sertoli cells are monoglutamylated. Mitotic and meiotic spindles of germ cells are monoglutamylated whereas the HeLa cell mitotic spindle is polyglutamylated. Three models of axonemes are demonstrated as a function of the degree and extent of tubulin glutamylation. In lung ciliated cells, axonemes are uniformly polyglutamylated. In sea urchin sperm and Chlamydomonas, flagellar microtubules are polyglutamylated in their proximal part and monoglutamylated in their distal part. In Paramecium, cilia are bi- or monoglutamylated only at their base. In all cells, centrioles or basal bodies are polyglutamylated. These new data emphasize the importance of glutamylation in all types of microtubules and strengthen the hypothesis of its role in the regulation of the intracellular traffic and flagellar motility.  相似文献   

4.
5.
J C Déiz  J Avila 《Biochimie》1985,67(9):1059-1062
The rat and rabbit lung isoform pattern before (fetal) and after (adult) lung maturation has been analyzed by isoelectric focusing. This pattern has been compared to that of brain tubulin at the same developmental stages. No changes in the pattern of fetal and adult lung tubulin were found. However an increase in brain tubulin heterogeneity was detected from fetal to adult stage.  相似文献   

6.
Androgens regulate the physiology of motor neurones both during development and in adult life. In particular, androgens increase the rate of axonal regeneration after axotomy, an effect correlated with the up-regulation of tubulin. In order to determine whether this was the result of a direct hormone action on neurones, we examined the effect of testosterone on microtubular proteins in human neuroblastoma SH-SY5Y cells. Treatment of proliferating SH-SY5Y cells with testosterone resulted in an up-regulation of alpha- and beta-tubulin. By contrast, no change in tubulin was observed either in cells differentiated into a neuronal phenotype by retinoic acid or in adrenal SW13 cells. We also show that an up-regulation of the ubiquitous beta(II)-tubulin and of the neurone-specific beta(III)-tubulin isoforms contributes to the overall increase in tubulin in response to androgen treatment. The increase in tubulin levels following testosterone treatment was abolished by co-incubation with antiandrogens, indicating that this effect is mediated through a classical mechanism of steroid action. The two microtubule-associated proteins, tau and MAP2b, remained unchanged following testosterone exposure. Thus, these results demonstrate that tubulin is a direct neuronal target of androgen regulation and suggest that dysregulation of tubulin expression may contribute to the pathogenesis of some motor neuronopathies.  相似文献   

7.
Immunocytochemistry and Western blotting techniques demonstrated that the nervous system and foot of the pond snail Lymnaea stagnalis are rich sources of tubulin, which can be extracted and assembled in vitro in the presence of taxol. Various broad-spectrum antibodies raised against -tubulin and -tubulin yielded qualitatively similar results. One monoclonal antibody to trypanosome -tubulin, however, labelled -tubulin more strongly on both probed sections and Western blots. Cytochemistry and immunoblotting revealed that tyrosinated tubulin constitutes a large proportion of total -tubulin in locomotor cilia of the foot and in axons of the nervous system. Detyrosinated tubulin also appeared to be abundant in the foot cilia but only a very faint band of detyrosinated tubulin was found on protein blots extracted from the central ganglia, and staining was barely detectable in central ganglia or peripheral nerves. Similarly, acetylated tubulin appeared to be abundant in foot cilia, but Western blotting indicated only low levels of acetylated tubulin in the nervous system. Immunocytochemistry indicated that, while most neurons possessed little or no acetylated tubulin, a small number of axons contained significant amounts of this isoform. Thus, while a large amount of tubulin was expected in the nervous system and locomotor cilia of L. stagnalis, the observed distribution of isoforms was unanticipated. Specifically, neurons of other organisms have generally been reported to contain substantial amounts of both detyrosinated -tubulin and acetylated -tubulin. Our results indicate that such findings cannot be generalized across all species. L. stagnalis, with its well studied nervous system and unusual distribution of tubulin isoforms, may prove to be particularly useful for studying the roles of tubulin isoforms in microtubule function and cell activity.  相似文献   

8.
Abstract Tubulins extracted from the sporophytic developmental stages of Allomyces arbuscula have been characterised by one- and two-dimensional SDS-PAGE gels immunoblotted with monoclonal antibodies as α-, acetylated α- ( M r 57 kDa both) and β- ( M r 55 kDa) isoforms. The zoosporangial isoforms could be characterised only when precautions were taken to inhibit the strong tubulin proteolytic activity at this stage. The zoospores and zoosporangia contained greater amounts of the acetylated α- and β-isoforms than the mycelium, while the non acetylated α-isoform was present in greater quantity in the mycelium than in the zoospores or zoosporangia.  相似文献   

9.
We have tested the functional capacity of different beta tubulin isoforms in vivo by expressing beta 3-tubulin either in place of or in addition to beta 2-tubulin in the male germ line of Drosophila melanogaster. The testes-specific isoform, beta 2, is conserved relative to major metazoan beta tubulins, while the developmentally regulated isoform, beta 3, is considerably divergent in sequence. beta 3-tubulin is normally expressed in discrete subsets of cells at specific times during development, but is not expressed in the male germ line. beta 2-Tubulin is normally expressed only in the postmitotic germ cells of the testis, and is required for all microtubule-based functions in these cells. The normal functions of beta 2-tubulin include assembly of meiotic spindles, axonemes, and at least two classes of cytoplasmic microtubules, including those associated with the differentiating mitochondrial derivatives. A hybrid gene was constructed in which 5' sequences from the beta 2 gene were joined to protein coding and 3' sequences of the beta 3 gene. Drosophila transformed with the hybrid gene express beta 3-tubulin in the postmitotic male germ cells. When expressed in the absence of the normal testis isoform, beta 3-tubulin supports assembly of one class of functional cytoplasmic microtubules. In such males the microtubules associated with the membranes of the mitochondrial derivatives are assembled and normal mitochondrial derivative elongation occurs, but axoneme assembly and other microtubule-mediated processes, including meiosis and nuclear shaping, do not occur. These data show that beta 3 tubulin can support only a subset of the multiple functions normally performed by beta 2, and also suggest that the microtubules associated with the mitochondrial derivatives mediate their elongation. When beta 3 is coexpressed in the male germ line with beta 2, at any level, spindles and all classes of cytoplasmic microtubules are assembled and function normally. However, when beta 3-tubulin exceeds 20% of the total testis beta tubulin pool, it acts in a dominant way to disrupt normal axoneme assembly. In the axonemes assembled in such males, the doublet tubules acquire some of the morphological characteristics of the singlet microtubules of the central pair and accessory tubules. These data therefore unambiguously demonstrate that the Drosophila beta tubulin isoforms beta 2 and beta 3 are not equivalent in intrinsic functional capacity, and furthermore show that assembly of the doublet tubules of the axoneme imposes different constraints on beta tubulin function than does assembly of singlet microtubules.  相似文献   

10.
Summary Tubulin was isolated from mung bean seedling by a combination of affinity (ethyl N-phenylcarbamate-Sepharose 4 B) and ion exchange (DEAE-Sephacel) chromatography. Using SDS-PAGE together with blotting with subunit-specific antitubulins, mung bean tubulin has been shown to consist of two -tubulin subunits, MBT2 and MBT3, of which MBT3 is a minor component, and one -tubulin, MBT1.Monoclonal antibodies were produced by fusing mouse myeloma cells and spleen cells from a Balb/c mouse immunized with mung bean tubulin. Antibody producing cell lines were identified by an ELISA assay and immunofluorescence microscopy and subsequently cloned by limiting dilution.The properties of monoclonal antibody (K4E7G3) were examined by Western blot analysis and indirect immunofluorescence studies. K4E7G3 reacts with MBT2 and MBT3 -tubulin subunits of mung bean tubulin, but not with MBT1 -tubulin nor with the - and -subunits of sheep brain tubulin. Peptide fragments transferred onto nitrocellulose papers were treated with K4E7G3 and with other monoclonal antibodies that are known to be specific to the -subunit of yeast tubulin and - or -subunit of mammalian brain tubulin. MBT2 and MBT3 are shown to be similar but not identical and are quite different from MBT1 and the -subunit of sheep brain tubulin. K4E7G3 reacts with peptide fragments in MBT2 and MBT3 that are not found in digests of brain tubulin, and that are either not reactive or only weakly reactive to the antibodies to yeast and brain -tubulin. It is concluded that K4E7G3 and another monoclonal antibody, K2D7B8, which has similar properties, are relatively specific for plant -tubulin.In indirect immunofluorescence studies on a wide range of plant cells, the epitopes recognised by these monoclonal antibodies are shown to be present in all types of microtubule array that were investigated. The spindle, preprophase band, phragmoplast and interphase microtubules were clearly observed in onion and mung bean root tip cells. Reactions with spindle microtubules ofFunaria spore mother cells and with the blepharoplast and flagella microtubules of fern spermatozoa are also seen. However, studies using several animal cell lines have shown that K4E7G3 and K2D7B8 do not give positive immunofluorescent localization of animal microtubules, correlating with the inability of K4E7G3 to react with brain tubulin subunits on Western blot analysis.  相似文献   

11.
Enolase is a glycolytic enzyme, expressed as cell-type specific isoforms in higher vertebrates. Herein we demonstrated for the first time that enolase isoforms interact with microtubules during muscle satellite cell differentiation. While in undifferentiated myoblasts the ubiquitous alphaalpha enolase isoform, expressed at high level, exhibited extensive co-localization with microtubules, the muscle-specific betabeta isoform, expressed at low level, did not. During differentiation, the level of beta subunit increased significantly; the alpha and beta enolase immunoreactivities were detected both in cytosol and along the microtubules. We identified tubulin from muscle extract as an interacting protein for immobilized betabeta enolase. ELISA and surface plasmon resonance measurements demonstrated the direct binding of enolase isoforms to tubulin with an apparent KD below the micromolar range, and indicated that the presence of 0.8 mM 2-phosphoglycerate abolished the interaction. Our data showed that, at various stages of myogenic differentiation, microtubules were decorated by different enolase isoforms, which was controlled by the abundance of both partners. We suggest that the binding of enolase to microtubules could contribute to the regulation of the dynamism of the cytoskeletal filaments known to occur during the transition from myoblast to myotubes.  相似文献   

12.
Tubulin belongs to a highly conserved multigenic family, in which several gene products usually coexist in the same tissue or the same cell. Moreover, seven classes of post-translational modifications of these gene products lead to an amazing diversity of tubulin polypeptide chains, within the same cell type, whose physiological function remains elusive. Such diversity has been found in a very stable microtubular organelle, the sea urchin sperm flagellum, where some tubulin isoforms have been directly implicated in motility, whereas others may play a more structural role. In particular, polyglutamylated tubulin has been shown to be crucial for motility (Gagnon et al., 1996: J Cell Sci 109:1545 p). Here, we show with the GT335 antibody that polyglutamylated tubulin is distributed according to a decreasing gradient along the sea urchin sperm axoneme, since a semi-quantitative measurement of immunofluorescence intensity reveals that in its proximal half, the axoneme is sixfold more labeled than in its distal half. This gradient along the length of the axoneme is confirmed by immunogold labeling procedures which, in addition, demonstrate a uniform distribution of polyglutamylated tubulin among peripheral doublets and a lesser content in the central pair within a same section. Moreover, our data obtained with B3, an antibody that recognizes both mono- and poly-glutamylated tubulin, suggest that the number of glutamate residues in the lateral poly-glutamyl chain of tubulin varies along the whole length of the axoneme. These novel results coupled with those published earlier may be important to understand the role of polyglutamylation in flagellar motility.  相似文献   

13.
J S Pachter  T J Yen  D W Cleveland 《Cell》1987,51(2):283-292
We have utilized protein synthesis inhibitors to investigate the autoregulatory mechanism that uses the concentration of unpolymerized tubulin subunits to specify tubulin mRNA content in animal cells. Puromycin and pactamycin, both of which remove RNAs from polysomes, completely unlink tubulin RNA content from the level of free subunits, whereas pretreatment of cells with cycloheximide, which traps mRNAs onto stalled polyribosomes, enhances the specific degradation of tubulin RNAs in response to increases in the subunit content. Moreover, in the absence of protein synthesis inhibitors, the tubulin RNAs that are lost from cells with elevated free tubulin subunit levels are those that are associated with polyribosomes. Further, beta-tubulin mRNAs encoding a truncated translation product of only 26 amino acids (and that cannot be polyribosomal) are not substrates for autoregulation. We conclude that autoregulation of tubulin synthesis is achieved by specifically altering the stability of tubulin RNAs that are bound to polyribosomes.  相似文献   

14.
MCAK is a Kinesin-13 that depolymerizes microtubules (MTs) and regulates MT dynamics. We used subtilisin-treated MTs (MTs lacking the C-termini of α- and β-tubulin) and alternative tubulin substrates to study which structural and geometrical features of the MT are critical for MCAK activity. We found that removal of the C-termini significantly decreased the efficiency of MCAK-induced depolymerization, which was not due to a reduction of end-specific binding. We also found that depolymerization of SMTs led to an increase in the stabilization of curved oligomeric tubulin products. Using alternative tubulin substrates with different geometries, we found that MCAK depolymerized parallel and anti-parallel tubulin sheets. However, MCAK did not depolymerize tubulin rings regardless of the presence or absence of the tubulin C-termini. We propose that localization of MCAK to the ends of MTs is independent of tubulin C-termini, that MCAK stabilizes a curved conformation at the end of the MT, and that efficient release of this complex is dependent on the presence of the C-termini of tubulin.αβ  相似文献   

15.
Activation induced deaminase: the importance of being specific   总被引:2,自引:0,他引:2  
Activation-induced deaminase (AID) is required for class switch recombination and somatic hypermutation in immunoglobulin genes. Although the preponderance of evidence suggests that AID functions by deaminating deoxycytidine in DNA, the question remains whether it can also deaminate cytidine in mRNA, as originally proposed based on its homology to RNA-editing enzymes. Recently, the biological relevance of assaying mammalian enzymes for DNA deaminase activity using Escherichia coli DNA as a reporter has been questioned, representing another round in the ongoing debate.  相似文献   

16.
The functional importance of multiple actin isoforms   总被引:15,自引:0,他引:15  
Actin is a protein that plays an important role in cell structure, cell motility, and the generation of contractile force in both muscle and nonmuscle cells. In many organisms, multiple forms of actin, or isoactins, are found. These are products of different genes and have different, although very similar, amino acid sequences. Furthermore, these isoactins are expressed in a tissue specific fashion that is conserved across species, suggesting that their presence is functionally important and their behavior can be distinguished quantitatively from one another in vitro. In muscle cells, they are differentially distributed within the cell and some are specifically associated with structures such as costameres, mitochondria, and neuromuscular junctions. There is also good evidence for specific isoactin function in microvascular pericytes and in the intestinal brush border. However, the necessity of specific isoactins for various functions has not yet been conclusively demonstrated.  相似文献   

17.
Absence of acid phosphatase activity in specific endothelial organelles   总被引:2,自引:0,他引:2  
Summary Endothelial specific organelles in the aorta and in the small pulmonary blood vessels were investigated by electron microscopy with respect to their acid phosphatase activity. As controls, acid phosphatase reactions performed on liver and lung tissue showed, as expected, positive results. Since the endothelial specific organelles were in each case free of reaction product, it was concluded that they do not have a lysosomal function.  相似文献   

18.
Hsp90 isoforms: functions, expression and clinical importance   总被引:1,自引:0,他引:1  
The 90 kDa heat shock protein, Hsp90, is a main functional component of an important cytoplasmic chaperone complex, and it is involved in various cellular processes, such as cell proliferation, differentiation and apoptosis. Identification of Hsp90 as a molecular target of various anticancer drugs highlighted its importance from the clinical point of view. Here we summarize the current knowledge of various Hsp90 isoforms regarding their genomic location, molecular evolution, functional differences, differential induction after various environmental stresses and in pathological conditions as well as the growing importance of discriminating between Hsp90 isoforms in clinical practice.  相似文献   

19.
《Gene》1996,171(2):185-191
Microtubule proteins isolated from pleopod tegumental gland (PTG) tissue of the American lobster, Homarus americanus, reveal a complex tubulin (Tub) profile. To determine whether Tub heterogeneity in PTG is due to expression of a large tub gene family or the result of post-translational modification, a PTG cDNA library was constructed. Clones coding for both α- and β-Tub were isolated, sequenced and found to contain open reading frames (ORFs) of 451 amino acids (aa). Alignments reveal phylogenetic clustering with other arthropods and identify unique changes in primary structure which may have functional significance. These clones, when used to probe restriction enzyme-digested lobster genomic DNA in transfer-hybridization experiments, revealed a simple banding pattern indicating a lobster tub gene family of limited complexity. Lobsters appear to make use of a small tub gene family and fulfill the varied functional requirements imposed upon cellular microtubules through post-translational modifications of relatively few gene products.  相似文献   

20.
In the flagellum of mammalian spermatozoa, glutamylated and glycylated tubulin isoforms are detected according to longitudinal gradients and preferentially in axonemal doublets 1-5-6 and 3-8, respectively. This suggested a role for these tubulin isoforms in the regulation of flagellar beating. In the present work, using antibodies directed against various tubulin isoforms and quantitative immunogold analysis, we aimed at investigating whether the particular accessibility of tubulin isoforms in the mammalian sperm flagellum is restricted to this model of axoneme surrounded with periaxonemal structures or is also displayed in naked axonemes. In rodent lung ciliated cells, all studied tubulin isoforms are uniformly distributed in all axonemal microtubules with a unique deficiency of glutamylated tubulin in the transitional region. A similar distribution of tubulin isoforms is observed in cilia of Paramecium, except for a decreasing gradient of glutamylated tubulin labeling in the proximal part of axonemal microtubules. In the sea urchin sperm flagellum, predominant labeling of tyrosinated and detyrosinated tubulin in 1-5-6 and 3-8 doublets, respectively, were observed together with decreasing proximo-distal gradients of glutamylated and polyglycylated tubulin labeling and an increasing gradient of monoglycylated tubulin labeling. In flagella of Chlamydomonas, the glutamylated and glycylated tubulin isoforms are detected at low levels. Our results show a specific composition and organization of tubulin isoforms in different models of cilia and flagella, suggesting various models of functional organization and beating regulation of the axoneme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号