首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 205 毫秒
1.
The wet densities of various types of dormant bacterial spores and reference particles were determined by centrifugal buoyant sedimentation in density gradient solutions of three commercial media of high chemical density. With Metrizamide or Renografin, the wet density values for the spores and permeable Sephadex beads were higher than those obtained by a reference direct mass method, and some spore populations were separated into several density bands. With Percoll, all of the wet density values were about the same as those obtained by the direct mass method, and only single density bands resulted. The differences were due to the partial permeation of Metrizamide and Renografin, but not Percoll, into the spores and the permeable Sephadex beads. Consequently, the wet density of the entire spore was accurately represented only by the values obtained with the Percoll gradient and the direct mass method. The dry densities of the spores and particles were determined by gravity buoyant sedimentation in a gradient of two organic solvents, one of high and the other of low chemical density. All of the dry density values obtained by this method were about the same as those obtained by the direct mass method.  相似文献   

2.
Protoplast wet densities (1.315 to 1.400 g/ml), determined by buoyant density sedimentation in Metrizamide gradients, were correlated inversely with the protoplast water contents (26.4 to 55.0 g of water/100 g of wet protoplast) of nine diverse types of pure lysozyme-sensitive dormant bacterial spores. The correlation equation provided a precise method for obtaining the protoplast water contents of other spore types with small impure samples and indicated that the average protoplast dry density was 1.460 g/ml.  相似文献   

3.
Aims: To determine the wet and dry density of spores of Bacillus anthracis and compare these values with the densities of other Bacillus species grown and sporulated under similar conditions. Methods and Results: We prepared and studied spores from several Bacillus species, including four virulent and three attenuated strains of B. anthracis, two Bacillus species commonly used to simulate B. anthracis (Bacillus atrophaeus and Bacillus subtilis) and four close neighbours (Bacillus cereus, Bacillus megaterium, Bacillus thuringiensis and Bacillus stearothermophilus), using identical media, protocols and instruments. We determined the wet densities of all spores by measuring their buoyant density in gradients of Percoll and their dry density in gradients of two organic solvents, one of high and the other of low chemical density. The wet density of different strains of B. anthracis fell into two different groups. One group comprised strains of B. anthracis producing spores with densities between 1·162 and 1·165 g ml?1 and the other group included strains whose spores showed higher density values between 1·174 and 1·186 g ml?1. Both Bacillus atrophaeus and B. subtilis were denser than all the B. anthracis spores studied. Interestingly and in spite of the significant differences in wet density, the dry densities of all spore species and strains were similar. In addition, we correlated the spore density with spore volume derived from measurements made by electron microscopy analysis. There was a strong correlation (R2 = 0·95) between density and volume for the spores of all strains and species studied. Conclusions: The data presented here indicate that the two commonly used simulants of B. anthracis, B. atrophaeus and B. subtilis were considerably denser and smaller than all B. anthracis spores studied and hence, these simulants could behave aerodynamically different than B. anthracis. Bacillus thuringiensis had spore density and volume within the range observed for the various strains of B. anthracis. The clear correlation between wet density and volume of the B. anthracis spores suggest that mass differences among spore strains may be because of different amounts of water contained within wet dormant spores. Significance and Impact of the Study: Spores of nonvirulent Bacillus species are often used as simulants in the development and testing of countermeasures for biodefense against B. anthracis. The similarities and difference in density and volume that we found should assist in the selection of simulants that better resemble properties of B. anthracis and, thus more accurately represent the performance of countermeasures against this threat agent where spore density, size, volume, mass or related properties are relevant.  相似文献   

4.
The technique of sedimentation equilibrium in density gradients in the analytical ultracentrifuge has been applied to the study of proteins. A variety of effects and procedures including the use of density marker beads, the effects of pressure on buoyant density and pH, and the calculation of compositional density gradient proportionality constants and density--refractive index relations have been developed. The buoyant densities of twenty-four proteins have been measured and hydration values computed. The buoyant titrations of six proteins have been measured. These data have been interpreted in terms of the buoyant titrations which have been obtained for six ionizable homopolypeptides, five copolypeptides, two non-ionizable homopolypeptides and three chemically modified proteins. Spectropolarimetry and potentiometric titrations were employed to further interpret these data. Approximate values for dissociation constants, numbers of ionizable residues, and the nature of ions bound or dissociated upon ionization have been obtained. The relation between potentiometric and buoyant titrations and the use of density gradient centrifugation as a probe for protein structure have been explored.  相似文献   

5.
M Ohsumi  K Uchiyama    Y Ohsumi 《Journal of bacteriology》1993,175(17):5714-5716
The buoyant densities of the yeast cells of defective vacuolar morphology mutants were examined by equilibrium sedimentation centrifugation in a Percoll density gradient. These vacuoleless mutants also show density fluctuation as wild-type cells during the cell cycle. This suggests that morphological changes of the vacuole are not related to cyclic density fluctuation in Saccharomyces cerevisiae.  相似文献   

6.
ABSTRACT. A new method of fractionation and purification of different life cycle stages of microsporidia Nosema grylli , parasitizing the fat body of cricket Gryllus bimaculatus , by centrifugation in Percoll density gradient is elaborated. The whole procedure can be summarized as: 1) infected fat body preparation, 2) homogenization in buffer and filtration through cotton wad and filter paper, 3) first centrifuging, resulting in the separation of the pellet into three layers containing different life cycle stages, 4) second centrifuging of the chosen layer in Percoll density gradient, 5) washing out the Percoll from the fraction under study. After centrifugation in Percoll density gradient, meronts and early sporonts form a band in the area corresponding to density 1.016 g/ml. Mature spores form the pellet at the bottom of centrifuge tube, while immature spores are distributed throughout the layer of 1.016 g/ml up to the bottom of the centrifuge tube, according to their buoyant densities. The offered technique is simple, it takes about one hour and may become a routine procedure for biochemical studies on microsporidia.  相似文献   

7.
The physical and functional properties of Leydig cell populations obtained by centrifugation of testicular cells in two different density gradient media, Percoll and Metrizamide, were compared. Percoll-gradient centrifugation yielded two Leydig cell bands (Peak I and Peak II) that were comparable, as to their density and testosterone-producing capacity, to the respective Leydig cell bands, Population I and Population II, isolated in a Metrizamide gradient. The denser Leydig cell band (II) had a greater capacity for testosterone production than the less dense band (I), regardless of the type of gradient used for its isolation. Metrizamide gradient centrifugation separated the majority of germ cells from the "light" (Population I) Leydig cells, whereas in the Percoll gradient, germ cells comigrated with Peak I Leydig cells. Leydig cell separation by Percoll gradients was highly dependent on the presence of Ca2+ and Mg2+ in the medium, while these cations had no effect on the separation of Leydig cells by Metrizamide. In conclusion, Metrizamide gradient centrifugation yielded two Leydig cell populations of similar functional and physical properties to the respective populations isolated in Percoll gradients.  相似文献   

8.
Twenty-eight types of lysozyme-sensitive spores among seven Bacillus species representative of thermophiles, mesophiles, and psychrophiles were obtained spanning a 3,000-fold range in moist-heat resistance. The resistance within species was altered by demineralization of the native spores to protonated spores and remineralization of the protonated spores to calcified spores and by thermal adaptation at maximum, optimum, and minimum sporulation temperatures. Protoplast wet densities, and thereby protoplast water contents, were obtained by buoyant density sedimentation in Nycodenz gradients (Nyegaard and Co., Oslo, Norway). Increases in mineralization and thermal adaptation caused reductions in protoplast water content between limits of ca. 57 and 28% (wet weight basis), and thereby correlated with increases in sporal heat resistance. Above and below these limits, however, increases in mineralization and thermal adaptation correlated with increases in sporal resistance independently of unchanged protoplast water contents. All three factors evidently contributed to and were necessary for heat resistance of the spores, but dehydration predominated.  相似文献   

9.
Twenty-eight types of lysozyme-sensitive spores among seven Bacillus species representative of thermophiles, mesophiles, and psychrophiles were obtained spanning a 3,000-fold range in moist-heat resistance. The resistance within species was altered by demineralization of the native spores to protonated spores and remineralization of the protonated spores to calcified spores and by thermal adaptation at maximum, optimum, and minimum sporulation temperatures. Protoplast wet densities, and thereby protoplast water contents, were obtained by buoyant density sedimentation in Nycodenz gradients (Nyegaard and Co., Oslo, Norway). Increases in mineralization and thermal adaptation caused reductions in protoplast water content between limits of ca. 57 and 28% (wet weight basis), and thereby correlated with increases in sporal heat resistance. Above and below these limits, however, increases in mineralization and thermal adaptation correlated with increases in sporal resistance independently of unchanged protoplast water contents. All three factors evidently contributed to and were necessary for heat resistance of the spores, but dehydration predominated.  相似文献   

10.
The growth rates and buoyant densities of a Salmonella typhimurium mutant, TL126 (proB74A+), with enhanced osmotolerance caused by proline overproduction were measured and compared with the growth rates and buoyant densities of an isogenic (wild-type) strain, TL128 (proB+ A+), with normal control of proline production. Growth rates were determined in a rich medium (Luria broth) with added NaCl to produce various osmotic strengths ranging from 300 to 2,000 mosM. At low concentrations of NaCl, there was little variation in doubling times between the two strains. However, as the osmotic strength of the medium approached and exceeded 1,300 mosM, the doubling times of TL126 (osmotolerant) were 1.5 to 2 times faster than those of TL128 (wild type), confirming the osmotolerance of TL126. Buoyant densities were determined by equilibrium sedimentation in a Percoll gradient of osmotic strength equal to that of the growth medium. The osmolarity of the Percoll gradient was adjusted by the addition of NaCl. At low osmolarities (300 to 500 mosM), the buoyant density of TL126 (osmotolerant) was slightly but consistently lower than that of TL128 (wild type). As the osmotic strength was increased, the buoyant density of TL126 (osmotolerant) increased in proportion to the osmotic strength. In contrast, the buoyant density of strain TL128 (wild type) did not increase as much. At high osmolarities (1,600 to 2,000 mosM), the buoyant density of TL126 (osmotolerant) was consistently higher than that of TL128 (wild type). These results suggest that the intracellular accumulation of proline by TL126, the osmotolerant strain, increases both the growth rates and buoyant densities at osmolarities of 1,300 mosM and above.  相似文献   

11.
To improve usability of methods for quantifying environmentally persistent entomophthoralean resting spores in soil, we modified and tested two methods using resting spores (azygospores) of the gypsy moth pathogen Entomophaga maimaiga. Both methods were effective for recovering resting spores at concentrations >100 resting spores/g dry soil. While a modification of a method originally described by Weseloh and Andreadis (2002) recovered more resting spores than a modified method based on Percoll density gradients, the ability to estimate true densities from counts was similar for both methods. Regression equations are provided for predicting true resting spore densities from counts, with R2 values for both methods ?0.90.  相似文献   

12.
Thirty nine untreated patients of bacilliferous leprosy with a mean bacteriological index of 4.8 and morphological index of 1.3% formed the study group. Adenosine triphosphate assay was carried out by (i) enzyme treatment method in 18 patients and (ii) percoll buoyant density gradient method in 21 patients. ATP content obtained by percoll buoyant density gradient method was significantly higher than that obtained by enzyme treatment method. Percoll buoyant density centrifugation for purification and isolation of bacilli from human leproma is simplier, quicker and can serve as an alternate method of enzyme treatment.  相似文献   

13.
The observation of Milleret al. (1969) that the two types of cells (the prestalk and prespore cells) constituting the slug ofDictyostelium are separated by isopicnic centrifugation was reexamined by using more reliable methods both for dissociation of the slug and for identification of the cell type. Dissociated cells of slugs which had been grown on a standard culture medium formed two distinct bands after centrifugation through a Urografin density gradient. Contrary to Miller's findings, however, the light band consisted of the prestalk cells and the heavy band of the prespore cells. When the culture medium was modified, a population of spores of different buoyant density newly appeared during the subculture. Slug cells derived from such a spore had different buoyant densities and formed extra bands in a Urografin gradient. However, the prespore fraction was always heavier than the prestalk fraction derived from the same type of spores.  相似文献   

14.
A method has been developed that uses capillary electrophoresis (CE) with laser-induced fluorescence detection (LIF) for measuring protein abundance in individual mitochondria collected from a discontinuous density gradient and labeled with Mitotracker Green. From these measurements we determined the distribution of protein content per mitochondrion and the relative abundance of mitochondrial proteins in density gradient fractions. In addition, this method is useful for counting mitochondria and, as a consequence, determining the number of mitochondria per unit volume or estimate mitochondria copy number per cell. It was determined that mitochondria accumulate in two interfaces defined by consecutive layers of 35% Metrizamide, 17% Metrizamide, and 6% Percoll. The presence of mitochondria in these interfaces was also confirmed using a modified Lowry assay that prevents interference from Metrizamide and Percoll and determines total protein content, and a succinate dehydrogenase assay that uses dichloroindophenol as an electron acceptor and that specifically indicates abundance of mitochondria. The CE-LIF analysis of mitochondrial properties, based on the individual mitochondrial determinations, has a wider scope than the average values determined by enzymatic or bulk protein assays.  相似文献   

15.
The buoyant density of intracellular organelles is dependent in part on the nature of the buffer composition of the density gradient and the permeability characteristics of the organelle membrane to the constituents of this buffer. Therefore, knowledge of the transport properties of different organelles allows the design of density gradients useful for their purification. We have used this approach to significantly decrease mitochondrial contamination of pancreatic zymogen granules in a one-step purification procedure on a 40% Percoll density gradient. These gradients, prepared with isoosmotic sucrose, yield a narrow band of zymogen granules and mitochondria. However, by substitution of sucrose with salts to which mitochondria but not zymogen granules are permeable, the densities of mitochondria are altered to give a significant separation. For example, the incorporation of 100 mM sodium succinate in the Percoll gradient can produce a 70% reduction in mitochondrial contamination. The increased ionic strength has an additional beneficial effect on zymogen granule yield by 5-10%. The recognition and utilization of transport pathways in organelle membranes is the principal feature of this technique and should prove to be widely applicable to other isolation procedures.  相似文献   

16.
To test the suitability of DNA stable isotope probing (DNA-SIP) for characterizing bacterial spore populations in soils, the properties of Bacillus subtilis cells and spores intensely labeled with [13C]glucose were characterized. Spore germination, vegetative growth rates, and sporulation efficiency were indistinguishable on glucose versus [13C]glucose, as were spore wet heat and UV resistance. Unlabeled and 13C-labeled spores contained 1.0989 and 74.336 at.% 13C, and exhibited wet densities of 1.356 and 1.365 g/ml, respectively. Chromosomal DNAs containing 12C versus 13C were readily separated by their different buoyant densities in cesium chloride/ethidium bromide gradients.  相似文献   

17.
Rapid and reliable methods have been developed for the preparation and purification of dormant spores of the cellular slime mold, Dictyostelium discoideum, using Percoll density gradient centrifugation. Percoll gradients were generated in situ (20,000g; 30 min) with subsequent banding of nondamaged dormant spores at an isopycnic density equal to about 1.12 g/cm3. Examination of the prepared spores by phase-contrast microscopy indicated the absence of stalk cells and other nonspore material and the retention by the spores of their morphological integrity. Biochemical integrity was also retained by the isolated spores as evidenced by their efficiency of germination and the level of endogenous trehalase activity present in crude cell-free spore extracts.  相似文献   

18.
A sensitive method is proposed for the determination of small differences between the buoyant densities of different species of monodisperse macromolecules by analytical density gradient equilibrium centrifugation. The procedure involves the measurement at sedimentation equilibrium of the bandwidths of the concentration distribution of the separate macromolecules and of a mixture of the different species. The difference in buoyant densities can then be estimated from the difference between the bandwidths.  相似文献   

19.
The relationship between growth rate and buoyant density was determined for cells from exponential-phase cultures of Escherichia coli B/r NC32 by equilibrium centrifugation in Percoll gradients at growth rates ranging from 0.15 to 2.3 doublings per h. The mean buoyant density did not change significantly with growth rate in any of three sets of experiments in which different gradient conditions were used. In addition, when cultures were allowed to enter the stationary phase of growth, mean cell volumes and buoyant densities usually remained unchanged for extended periods. These and earlier results support the existence of a highly regulated, discrete state of buoyant density during steady-state growth of E. coli and other cells that divide by equatorial fission.  相似文献   

20.
Cell buoyant densities were determined by centrifugation in Percoll gradients containing exponential-phase cells of Streptococcus faecium ATCC 9790 grown at a mass doubling time of about 33 min. This bacterium showed the highest average density values (1.13 g/ml) measured to date for any eucaryotic or procaryotic organism. Fractions having the highest densities were enriched with cells that were in the process of dividing or had just divided. These high-density fractions were also enriched with cells that had newly initiated sites of cell wall growth. It appears that S. faecium shows minimum cell densities in the midportion of its cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号