共查询到20条相似文献,搜索用时 0 毫秒
1.
J Toner-Webb S M van Patten D A Walsh S S Taylor 《The Journal of biological chemistry》1992,267(35):25174-25180
The catalytic subunit of cAMP-dependent protein kinase contains two stable phosphorylation sites, Thr-197 and Ser-338 (Shoji, S., Titani, K., Demaille, J. G., and Fischer, E. H. (1979) J. Biol. Chem. 254, 6211-6214). Thr-197 is very resistant to dephosphorylation and thus cannot typically be autophosphorylated in vitro once the stable subunit is formed. Ser-338 is slowly dephosphorylated and can be rephosphorylated autocatalytically. In addition to these two stable phosphorylation sites, a new site of autophosphorylation, Ser-10, was identified. Phosphorylation at Ser-10 does not have a major effect on activity, and phosphates from Ser-10 or Ser-338 are not transferred to physiological substrates such as the type II regulatory subunit. Autophosphorylation at Ser-10 is associated with one of the two major isoelectric variants of the catalytic subunit. The form having the more acidic pI can be autophosphorylated at Ser-10 while the more basic form of the catalytic subunit cannot. Phosphorylation at Ser-10 does not account for the two isoenzyme forms. Since the reason for two isoelectric variants of the catalytic subunit is still unknown, it is not possible to provide a structural basis for the difference in accessibility of Ser-10 to phosphorylation. Either Ser-10 is not accessible in the more basic form of the catalytic subunit or some other type of post- or cotranslational modification causes Ser-10 to be a poor substrate. Whether the myristoyl group at the amino-terminal Gly is important for Ser-10 autophosphorylation remains to be established. The isoenzyme forms of the catalytic subunit do not correspond to the gene products coded for by the C alpha and C beta genes. 相似文献
2.
B A Hemmings 《FEBS letters》1986,196(1):126-130
The cAMP-dependent protein kinase from LLC-PK1 cells can be activated in vivo by calcitonin and vasopressin, or forskolin. Continuous treatment of cells with these agents results in a decrease of total cAMP-PK activity. The loss of kinase activity was enhanced when either of these three agents was incubated in the presence of isobutylmethylxanthine. Results obtained using affinity purified antibodies to the catalytic subunit show that the loss of kinase was due to specific proteolysis of this subunit. 相似文献
3.
Inhibition of the catalytic subunit of cAMP-dependent protein kinase by dicyclohexylcarbodiimide 总被引:2,自引:0,他引:2
The hydrophobic carbodiimide dicyclohexylcarbodiimide (DCCD) has been shown to inhibit the catalytic (C) subunit of adenosine cyclic 3',5'-phosphate dependent protein kinase (EC 2.7.1.3) in a time-dependent, irreversible manner. The rate of inactivation was first order and showed saturation kinetics with an apparent Ki of 60 microM. Magnesium adenosine 5'-triphosphate (MgATP) was capable of protecting against this inhibition, whereas neither a synthetic peptide substrate nor histone afforded protection. Mg alone afforded some protection. When the catalytic subunit was aggregated with the regulatory subunit in the holoenzyme complex, no inhibition was observed. The inhibition was enhanced at low pH, suggesting that a carboxylic acid group was the target for interaction with DCCD. On the basis of the protection studies, it is most likely that this carboxylic acid group is associated with the MgATP binding site, perhaps serving as a ligand for the metal. Efforts to identify the site that was modified by DCCD included (1) modification with [14C]DCCD, (2) modification by DCCD in the presence of [3H]aniline, and (3) modification with DCCD and [14C]glycine ethyl ester. In no case was radioactivity incorporated into the protein, suggesting that the irreversible inhibition was due to an intramolecular cross-link between a reactive carboxylic acid group and a nearby amino group. Differential peptide mapping identified a single peptide that was consistently lost as a consequence of DCCD inhibition. This peptide (residues 166-189) contained four carboxylic acid residues as well as an internal Lys.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
4.
S R Adavani M Schwarz M O Showers R A Maurer B A Hemmings 《European journal of biochemistry》1987,167(2):221-226
We present evidence for the existence of two forms of the catalytic (C) subunit of the cAMP-dependent protein kinase. A lambda gt-11 cDNA library constructed from poly(A)-rich RNA from the porcine kidney cell line, LLC-PK1, was screened using a 1.5-kb EcoRI fragment from a bovine cDNA for the C subunit. Two independent classes of cDNAs were identified on the basis of partial restriction map and sequence data. These two cDNAs, lambda CAT4 and lambda CAT3, apparently encode two forms of C subunit designated C alpha and C beta, respectively. The nucleotide sequence of the C alpha and C beta cDNAs revealed differences in the coding region and particularly in the 3' untranslated region. However, the deducted amino acid sequences of C alpha and C beta subunits were 96% homologous to the sequences so far determined. Specific probes from the 3' coding region of the two cDNA species were used to investigate C subunit mRNA expression in LLC-PK1 cells. Northern analysis showed a major mRNA species of 2.8 kb with the C alpha probe while the C beta probe detected two mRNA species of 5.0 kb and 3.8 kb. These data were supported by genomic blot analysis which showed distinct hybridization patterns with either the C alpha or C beta probes. All the available evidence suggests that at least two distinct genes encode the C subunit which are expressed in LLC-PK1 cells. 相似文献
5.
6.
Identification of functional cAMP-dependent protein kinase in a 'neurite minus' mouse neuroblastoma cell line 总被引:1,自引:0,他引:1
We have characterized and quantitated the level of cAMP-dependent protein kinase in the NS-20, N1E-115, N-18 and N1A-103 mouse neuroblastoma clonal cell lines, and we have correlated the occurrence of functional cAMP-dependent protein kinase with the dibutyryl cAMP-induced differentiated functions in these cells. Our results demonstrate the presence of functional cAMP-dependent protein kinase in extracts of all four cell lines examined, including the 'neurite minus' N1A-103 cell line. Dibutyryl cAMP induced neurite outgrowth and acetylcholinesterase activity in the NS-20, N1E-115 and N-18 neuroblastoma cell lines, but not in the N1A-103 cell line. However, dibutyryl cAMP caused a 2-3-fold increase in the R1 regulatory subunit protein and cAMP-phosphodiesterase activity in the 'neurite minus' N1A-103 cells in a manner similar to that of the other three 'neurite positive' cell lines. These results suggest that the biochemical lesion(s) subserving the neurite-minus phenotype of the N1A-103 cells may be distal to the activation of cAMP-dependent protein kinase and is in a biochemical pathway distinct from the induction of R1 regulatory subunit protein and cAMP-phosphodiesterase activity. 相似文献
7.
8.
Interaction of protease inhibitors with the catalytic subunit of cAMP-dependent protein kinase 总被引:1,自引:0,他引:1
The inactivation of the catalytic subunit from rabbit muscle cAMP-dependent protein kinase by the chloromethyl ketones from lysine and phenylalanine (TLCK and TPCK; A. Kupfer et al. (1979) Proc. Natl. Acad. Sci. USA , 3073) has been confirmed for the same enzyme from rat muscle. However, other structurally not related protease inhibitors, antipain and leupeptin, did not inhibit the catalytic subunit from rat muscle. Thus it seems to be critical to attribute the interference of protease inhibitors with complex biological phenomena like tumorigenesis etc. generally to the inhibition of protein kinases. 相似文献
9.
Isolation and elucidation of some functional properties of the "mute" catalytic subunit of cAMP-dependent protein kinase 总被引:1,自引:0,他引:1
A mute isoenzyme of type II cAMP-dependent protein kinase from rat muscle has been reported that is released from the regulatory subunit by cAMP but remains inactive until combination with heat- and acid-stable modulator has occurred. This enzyme has now been obtained in isolation free of the normal catalytic subunit using affinity chromatography with both an ATP analog (Blue Dextran/Sepharose) and a protein substrate analog (Kemptide/CH-Sepharose). Separation can be effected in both cases before activation of the mute enzyme. Affinity of the mute enzyme for Blue Dextran--a ligand specific for the dinucleotide fold in this kinase--is somewhat higher than that of the normal enzyme. Conversely, before reaction with the modulatory protein the mute enzyme will not bind at all to Kemptide/CH-Sepharose, where the normal enzyme elutes at 50 mM KCl. When pretreated with the modulatory protein and so activated, mute enzyme binds to Kemptide with a very high affinity and can only be eluted using a natural substrate (phosphorylase kinase), up to 500 mM salt being ineffective. The modulator thus appears to act through alteration of the protein substrate binding site on the enzyme. 相似文献
10.
11.
The structure of TPK1delta, a truncated variant of the cAMP-dependent protein kinase catalytic subunit from Saccharomyces cerevisiae, was determined in an unliganded state at 2.8 A resolution and refined to a crystallographic R-factor of 19.4%. Comparison of this structure to that of its fully liganded mammalian homolog revealed a highly conserved protein fold comprised of two globular lobes. Within each lobe, root mean square deviations in Calpha positions averaged approximately equals 0.9 A. In addition, a phosphothreonine residue was found in the C-terminal domain of each enzyme. Further comparison of the two structures suggests that a trio of conformational changes accompanies ligand-binding. The first consists of a 14.7 degrees rigid-body rotation of one lobe relative to the other and results in closure of the active site cleft. The second affects only the glycine-rich nucleotide binding loop, which moves approximately equals 3 A to further close the active site and traps the nucleotide substrate. The third is localized to a C-terminal segment that makes direct contact with ligands and the ligand-binding cleft. In addition to resolving the conformation of unliganded enzyme, the model shows that the salient features of the cAMP-dependent protein kinase are conserved over long evolutionary distances. 相似文献
12.
Christopher M. Smith Elzbieta Radzio-Andzelm Madhusudan Pearl Akamine Susan S. Taylor 《Progress in biophysics and molecular biology》1999,71(3-4):313-341
The protein kinase catalytic core in essence comprises an extended network of interactions that link distal parts of the molecule to the active site where they facilitate phosphoryl transfer from ATP to protein substrate. This review defines key sequence and structural elements, describes what is currently known about the molecular interactions, and how they are involved in catalysis. 相似文献
13.
Characterization of two mutants of the LLC-PK1 porcine kidney cell line affected in the catalytic subunit of the cAMP-dependent protein kinase 总被引:1,自引:0,他引:1
The catalytic (C) subunit activity of the cAMP-dependent protein kinase (cAMP-PK) from the mutant cell lines, FIB4 and FIB6, is only 10% compared with the parent cell line, LLC-PK1 [Jans and Hemmings (1986) FEBS Lett. 205, 127-131]. In order to understand the nature of the mutant phenotypes the cAMP-PK from parent and mutant cell lines was studied in more detail. Analysis of mutant cAMP-PK activity by ion-exchange chromatography revealed that kinase activity associated with type I holoenzyme of both FIB4 and FIB6 was only 5% parental, and the activity of the type II holoenzyme was about 20% parental. The type I regulatory (RI) subunits associated with the type I were also found to be reduced by 70-80% in both mutants, whereas the type II R subunit levels were similar to that of the parent. The residual kinase activity associated with the type I holoenzyme from FIB4 and FIB6 could not be activated by cAMP whereas the type II holoenzyme was activated by cAMP (Ka of 5.5 X 10(-8) M), and showed normal affinities for Kemptamide and ATP. A polyclonal antibody to the catalytic subunit was used to quantify the level of this protein in wild-type and mutant cells. This analysis showed that FIB4 and FIB6 had nearly normal levels of C subunit, suggesting that the C subunit synthesized by the mutants was mostly inactive. As both type I and type II cAMP-PK holoenzymes were abnormal, the most likely explanation of the mutant phenotype is a defect either in the structural gene for the C subunit or in an enzyme involved in its posttranslational processing. However, a second lesion affecting the RI subunit cannot be ruled out at this moment. 相似文献
14.
Limited trypsin digestion of type I cAMP-dependent protein kinase holoenzyme results in a proteolytic-resistant Delta(1-72) regulatory subunit core, indicating that interaction between the regulatory and catalytic subunits extends beyond the autoinhibitory site in the R subunit at the NH(2) terminus. Sequence alignment of the two R subunit isoforms, RI and RII, reveals a significantly sequence diversity at this specific region. To determine whether this sequence diversity is functionally important for interaction with the catalytic subunit, specific mutations, R133A and D328A, are introduced into sites adjacent to the active site cleft in the catalytic subunit. While replacing Arg(133) with Ala decreases binding affinity for RII, interaction between the catalytic subunit and RI is not affected. In contrast, mutant C(D328A) showed a decrease in affinity for binding RI while maintaining similar affinities for RII as compared with the wild-type catalytic subunit. These results suggest that sequence immediately NH(2)-terminal to the consensus inhibition site in RI and RII interacts with different sites at the proximal region of the active site cleft in the catalytic subunit. These isoform-specific differences would dictate a significantly different domain organization in the type I and type II holoenzymes. 相似文献
15.
Zimmermann B Chiorini JA Ma Y Kotin RM Herberg FW 《The Journal of biological chemistry》1999,274(9):5370-5378
The human X chromosome-encoded protein kinase X (PrKX) belongs to the family of cAMP-dependent protein kinases. The catalytically active recombinant enzyme expressed in COS cells phosphorylates the heptapeptide Kemptide (LRRASLG) with a specific activity of 1.5 micromol/(min.mg). Using surface plasmon resonance, high affinity interactions were demonstrated with the regulatory subunit type I (RIalpha) of cAMP-dependent protein kinase (KD = 10 nM) and the heat-stable protein kinase inhibitor (KD = 15 nM), but not with the type II regulatory subunit (RIIalpha, KD = 2.3 microM) under physiological conditions. Kemptide and autophosphorylation activities of PrKX are strongly inhibited by the RIalpha subunit and by protein kinase inhibitor in vitro, but only weakly by the RIIalpha subunit. The inhibition by the RIalpha subunit is reversed by addition of nanomolar concentrations of cAMP (Ka = 40 nM), thus demonstrating that PrKX is a novel, type I cAMP-dependent protein kinase that is activated at lower cAMP concentrations than the holoenzyme with the Calpha subunit of cAMP-dependent protein kinase. Microinjection data clearly indicate that the type I R subunit but not type II binds to PrKX in vivo, preventing the translocation of PrKX to the nucleus in the absence of cAMP. The RIIalpha subunit is an excellent substrate for PrKX and is phosphorylated in vitro in a cAMP-independent manner. We discuss how PrKX can modulate the cAMP-mediated signal transduction pathway by preferential binding to the RIalpha subunit and by phosphorylating the RIIalpha subunit in the absence of cAMP. 相似文献
16.
To understand the molecular mechanism underlying phosphoryl transfer of cAMP-dependent protein kinase, the structure of the catalytic subunit in complex with ADP, aluminum fluoride, Mg2+ ions and a substrate peptide was determined at 2.0 A resolution. Aluminum fluoride was modeled as AlF3 in a planar geometry; it is positioned 2.3 A from both the donor oxygen of ADP and the hydroxyl group of the recipient Ser residue. In this configuration, the aluminum atom forms a trigonal bipyramidal coordination with the oxygen atoms of the donor and recipient groups at the apical positions. This arrangement suggests that aluminum fluoride mimics the transition state and provides the first direct structural evidence for the in-line mechanism of phosphoryl transfer in a protein kinase. 相似文献
17.
A peptide affinity inactivator, Ac-Leu-Arg-Arg-Ala-(BrAc)Orn-Leu-Gly, was used as a tool to probe for active site residues in the catalytic subunit of bovine cAMP-dependent protein kinase. The peptide inactivated the catalytic subunit in an active site-directed and monophasic manner with a first-order rate constant of 0.03 min-1 and a dissociation constant of 675 microM. Studies with radioactive peptide indicated that approximately one equivalent of peptide was incorporated into each protein molecule. Protein sequencing identified the modified residue as Cys-199. A possible location for Cys-199 within the active site is suggested. 相似文献
18.
P Howard K H Day K E Kim J Richardson J Thomas I Abraham R D Fleischmann M M Gottesman R A Maurer 《The Journal of biological chemistry》1991,266(16):10189-10195
The mechanisms responsible for decreased levels of cAMP-dependent protein kinase activity in a mutant Chinese hamster ovary cell line have been examined. The cAMP-resistant Chinese hamster ovary 10260 cell line was found to possess only 20% of the cAMP-dependent protein kinase activity found in wild-type cells. The presence of decreased concentrations of the catalytic subunit in these cells was confirmed through binding studies using a radiolabeled, heat-stable inhibitor of the kinase. Cloned Chinese hamster ovary catalytic subunit cDNAs were isolated, characterized, and used as hybridization probes to examine the relative concentrations of catalytic subunit mRNAs in the wild-type and 10260 cell lines. A 40-50% decrease in the concentration of the mRNA for the C alpha isozyme of the catalytic subunit was observed in 10260 cells, as compared with wild-type. This decrease in catalytic subunit mRNA concentration probably accounts for a portion of the decreased kinase activity in the mutant cells. Further analysis of C alpha mRNA by polymerase chain reaction confirmed the decreased expression of C alpha mRNA in 10260 cells and further demonstrated the presence of two different species of C alpha mRNA in the 10260 cells. One species of C alpha cDNAs was indistinguishable from the wild-type cDNA, but the other species was shorter. Nucleotide sequence analysis of the amplified cDNAs led to the identification of a 191-base pair deletion in the shorter cDNA. Gene transfer studies using wild-type and 10260 C alpha cDNAs demonstrated that the longer cDNA from the 10260 cells produced wild-type activity, but the shorter cDNA was inactive. These studies suggest that at least two alterations in gene expression are responsible for decreased cAMP-dependent protein kinase activity in the 10260 cell line. One alteration results in an approximately 2-fold decrease in the concentrations of C alpha mRNA in the cells. The other change produces two species of C alpha mRNA; one of the C alpha mRNAs does not encode an active kinase. 相似文献
19.
Studies on the kinetic mechanism of the catalytic subunit of the cAMP-dependent protein kinase 总被引:13,自引:0,他引:13
S Whitehouse J R Feramisco J E Casnellie E G Krebs D A Walsh 《The Journal of biological chemistry》1983,258(6):3693-3701
The kinetic mechanism of the catalytic subunit of the cAMP-dependent protein kinase has been investigated employing the heptapeptide Kemptide (Leu-Arg-Arg-Ala-Ser-Leu-Gly) as substrate. Initial velocity measurements performed over a wide range of ATP and Kemptide concentrations indicated that the reaction follows a sequential mechanistic pathway. In line with this, the results of product and substrate inhibition studies, the patterns of dead end inhibition obtained employing the nonhydrolyzable ATP analogue, AMP X PNP (5'-adenylylimidodiphosphate), and equilibrium binding determinations, taken in conjunction with the patterns of inhibition observed with the inhibitor protein of the cAMP-dependent protein kinase that are reported in the accompanying paper (Whitehouse, S., and Walsh, D.A. (1983) J. Biol. Chem. 258, 3682-3692), are best fit by a steady state Ordered Bi-Bi kinetic mechanism. Although the inhibition patterns obtained employing the synthetic peptide analogue in which the phosphorylatable serine was replaced by alanine were apparently incompatible with this mechanism, these inconsistencies appear to be due to some element of the structure of this latter peptide such that it is not an ideal dead end inhibitor substrate analogue. The data presented both here and in the accompanying paper suggest that both this substrate, analogue and the ATP analogue, AMP X PNP, do not fully mimic the binding of Kemptide and ATP, respectively, in their mechanism of interaction with the protein kinase. It is proposed that, as with some other kinase reactions, the configuration of the terminal anhydride bond of ATP assumes a conformation once the nucleotide is bound to the protein kinase that assists in the binding of either Kemptide or the inhibitor protein but not the alanine-substituted peptide and that AMP X PNP, because of its terminal phosphorylimido bond, cannot assume this conformation which favors protein (or peptide) binding. 相似文献
20.
Phosphorylation of smooth muscle actin by the catalytic subunit of the cAMP-dependent protein kinase 总被引:1,自引:0,他引:1
M P Walsh S Hinkins D J Hartshorne 《Biochemical and biophysical research communications》1981,102(1):149-157
Partially purified smooth muscle (chicken gizzard) actomyosin contains two major substrates of cAMP-dependent protein kinase: a protein of Mr = 130,000, identified as the calmodulin-dependent myosin light chain kinase, and a protein of Mr = 42,000. This latter protein was shown by a variety of electrophoretic procedures to be actin. Purified smooth muscle actin also was phosphorylated by the catalytic subunit of cAMP-dependent protein kinase. The rate of phosphorylation of smooth muscle actin was significantly enhanced by depolyjerization of actin. A maximum of 2.0 mol phosphate could be incorporated per mol G-actin. Skeletal muscle F-actin was not significantly phosphorylated by protein kinase; however, skeletal G-actin is a substrate for the protein kinase although its rate of phosphorylation was significantly slower than that of smooth muscle G-actin. 相似文献