首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel human liver cytochrome P-450 isozyme (P-450-AA), which catalyzes arachidonic acid epoxidation, has been purified to electrophoretic homogeneity from human liver. As judged spectrally, the newly described isozyme is low spin in the oxidized state, with a soret band at 415 nm and an increased maximum at 451 nm in the CO-difference spectrum. Cytochrome P-450-AA appeared homogeneous as judged by the appearance of a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with an estimated molecular weight of 53,100. Although cytochrome P-450-AA had a relatively low specific content of 10.8 nmol/mg, it possessed a high activity of arachidonic acid epoxidation. The P-450-AA oxidized arachidonic acid in a reconstituted system into the four regioisomeric epoxyeicosatrienoic acids (EETs) (5, 6-, 8, 9-, 11, 12-, 14, 15-EETs) at a rate of 2,010 pmol/nmol/min, a rate which is 37-fold higher than that observed with the crude microsomal preparation. Moreover, the purified cytochrome P-450-AA catalyzed the de-ethylation of 7-ethoxyresorufin at the rate of 2970 pmol/nmol/min, whereas other cytochrome P-450-dependent reactions were carried out at 23-2,000-fold lower rates and ranged between 0.3-130 pmol/nmol/min. The amino acid composition is different from that of other cytochrome P-450 isozymes. The NH2-terminal sequence of 20-amino acid residues was compared to that of LM2 and PB2-B2, the phenobarbital-induced forms in rabbit and rats, respectively. Comparison was also made with two forms of human cytochrome P-450, HLc and HLd. There were 7/20 identical residues for P-450-AA and LM2 and 4/20 for P-450-AA and PB2-B2. There were 2/20 identical residues for P-450-AA and HLd, and no identical residues were found for HLc. We conclude that the biologically active EETs, are formed by a distinct and unique P-450 isozyme from human liver and that arachidonic acid can serve as a screen for detection of the novel P-450 isozyme.  相似文献   

2.
We describe the resolution and partial purification of two minor forms of cytochrome P-450 from liver microsomes of rabbits treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Both forms have different electrophoretic mobilities when compared to the major form of cytochrome P-450 isolated from this source. The two cytochromes show different activities with several substrates. One form is very active in the hydroxylation of benzo(a)pyrene when reconstituted with highly purified NADPH-cytochrome P-450 reductase.  相似文献   

3.
A rabbit cytochrome P450 which catalyzes the epoxidation of arachidonic acid to two of the four possible regioisomeric epoxyeicosatrienoic acid metabolites was purified from renal cortex. A small amount of the unresolved omega/omega-1 hydroxylated eicosatetraenoic acid products were also produced. The enzyme had a specific content of 8.4 nmol of P450/mg of protein and exhibited a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis after silver staining. Sequencing revealed a single NH2-terminal amino acid sequence with the first 20 residues identical to rabbit cytochrome P450 2C2. We suggest this enzyme be termed P450 2CAA (for arachidonic acid) until the complete sequence and substrate selectivity are established. Purified P450 2CAA was in the low spin state as evidenced by an absorption maximum at 415 nm; the reduced-carbonyl complex exhibited a maximum at 451 nm. The specific activity for metabolism of 7 microM arachidonic acid was 1.1 nmol of product formed/min/nmol of P450. About 75% of the metabolites were two of the four possible epoxyeicosatrienoic acids identified as the 11,12- and 14,15-epoxyeicosatrienoic acids by coelution with synthetic and commercial standards on reversed and normal-phase high pressure liquid chromatographic separations. The ratio of the 11,12- to 14,15-epoxyeicosatrienoic acids was 1.5:1. The purified enzyme exhibited no significant activity toward 7-ethoxyresorufin or progesterone, but demethylated aminopyrine and benzphetamine. Other fatty acids were also substrates for the enzyme. Oleic, linoleic, and lauric acids, all at about 10 microM, were metabolized at rates of 0.32, 0.72, and 0.73 nmol/min/nmol of P450, respectively. Monoclonal antibody that cross-reacts with P450 2C2 inhibited 63% of the microsomal epoxidation activity from renal cortex microsomes from phenobarbital-treated rabbits. The production of the epoxide metabolites of arachidonic acid suggests that P450 2CAA may have a significant role in arachidonic acid-mediated intra- and intercellular signalling pathways.  相似文献   

4.
1. Two cytochrome P-450 isozymes (P-450 PB-A, PB-B) and cytochrome b5 were purified from livers of phenobarbital-treated adult hens. 2. Both the enzymes exhibited the same apparent molecular weight (54,000). 3. They could be distinguished on the basis of immunochemical properties, spectral properties, peptide pattern after partial proteolysis, tryptic peptide pattern, and N-terminal sequence. 4. The antibodies raised against P-450 PB-A and PB-B did not cross-react with microsomal P-450s of rat, mice, cat, or catfish species by immunoblotting.  相似文献   

5.
The rat kidney microsomal epoxygenase catalyzed the asymmetric epoxidation of arachidonic acid to generate as major products: 8(R),9(S)-, 11(R),12(S)- and 14(S),15(R)-epoxyeicosatrienoic acids with optical purities of 97, 88, and 70%, respectively. Inhibition studies utilizing a panel of polyclonal antibodies to several rat liver cytochrome P-450 isoforms, indicated that the renal epoxygenase(s) belongs to the cytochrome P-450 2C gene family. Dietary salt, administered either as a 2-2.5% (w/v) solution in the drinking water or as a modified solid diet containing 8% NaCl (w/w), resulted in marked and selective increases in the renal microsomal epoxygenase activity (416 and 260% of controls, for the liquid and solid forms of NaCl, respectively) with no significant changes in the microsomal omega/omega-1 oxygenase or in the hepatic arachidonic acid monooxygenase reaction. Immunoblotting studies demonstrated that dietary salt induced marked increases in the concentration of a cytochrome P-450 isoform(s) recognized by polyclonal antibodies raised against human liver cytochrome P-450 2C10 or rat liver cytochrome P-450 2C11. Comparisons of the stereochemical selectivity of the induced and non-induced microsomal epoxygenase(s) with that of purified rat liver cytochrome P-450 2C11 suggest that the salt-induced protein(s) is catalytically and structurally different from liver cytochrome P-450 2C11. The in vivo significance of dietary salt in regulating the activities of the kidney endogenous arachidonic acid epoxygenase was established by the demonstration of a salt-induced 10-20-fold increase in the urinary output of epoxygenase metabolites. These results, in conjunction with published evidence demonstrating the potent biological activities of its metabolites, suggest a role for the epoxygenase in the renal response to dietary salt.  相似文献   

6.
Administration of 2-acetylaminofluorence to chick embryos increases the cytochrome P-450 level 3.4 fold but causes no increase in total epoxide hydrase activity or other microsomal electron transport enzymes. The induction response shows some similarity to that elicited by phenabarbitone both in terms of the monooxygenase activities induced and their inhibition characteristics. Induction of a specific cytochrome P-450 subform by this agent may increase its detoxification and in part account for the resistance of avian species to its hepatocarcinogenic effect.  相似文献   

7.
Magnetic circular dichroism spectra are reported for the visible and near ultraviolet spectral regions of liver microsomes from dimethylbenzanthracene-treated rats. The sequential addition of NADH, dithionite, and carbon monoxide enables us to determine contributions to the magnetic circular dichroism by cytochromes b-5 and P-450, which dominate the spectra. The magnetic circular dichroism of the microsomal preparation is compared with that of purified oxidized and reduced cytochrome -b-5 from pig liver and with the camphor-complexed and camphor-free oxidized, reduced, and reduced carbonmonoxy cytochrome P-450-cam from Pseudomonas putida. The magnetic circular dichroism spectra of the membrane bound cytochrome -b-5 are similar to those of the purified protein, indicating that little or no alteration in the environment of the heme occurs during the isolation procedure. The soluble bacterial cytochrome P-450 also appears to be a suitable model for microsomal P-450, although differences in the magnetic circular dichroism intensity are observed for the two enzymes. No effect of dimethylbenzanthracene on the magnetic circular dichroism spectra of induced compared to control rat microsomes could be observed.  相似文献   

8.
Arachidonic acid is enzymatically oxidized by the rat liver microsomal mixed-function oxidase system, in the presence of NADPH and oxygen, to a wide variety of products. We report here, the identification of the major organic-soluble metabolites. They are the 5,6-,8,9-,11,12-, and 14,15-epoxy-eicosatrienoic acid derivatives of arachidonic acid.  相似文献   

9.
The distribution of cytochromes P-450 that catalyze aryl hydrocarbon hydroxylase and 7-ethoxycoumarin O-deethylase were studied with monoclonal antibody (MAb) 1-7-1 which completely inhibits these activities of a purified 3-methylcholanthrene-induced rat liver cytochrome P-450. The degree of inhibition by MAb 1-7-1 quantitatively assesses the contribution of different cytochromes P-450 in the liver, lung, and kidney microsomes from untreated, 3-methylcholanthrene- and phenobarbital (PB)-treated rats, mice, guinea pigs, and hamsters. Enzyme sensitivity to MAb 1-7-1 inhibition defines two types of cytochrome P-450 contributing to aryl hydrocarbon hydroxylase and 7-ethoxycoumarin O-deethylase. The MAb 1-7-1-sensitive cytochrome P-450 is a major contributor to aryl hydrocarbon hydroxylase in rat liver, lung, and kidney of 3-methylcholanthrene-treated rats, C57BL/6 mice, guinea pigs, and hamsters; this type is also present in lesser amounts in the extrahepatic tissues of the control and PB-treated animals, and in the lungs of the relatively "noninducible" DBA/2 mice treated with 3-methylcholanthrene. This form however makes little or no contribution to liver aryl hydrocarbon hydroxylase of control or PB-treated animals. 7-Ethoxycoumarin O-deethylase is also a function of both the MAb 1-7-1-sensitive and insensitive classes of cytochrome P-450. The ratio of the classes contributing to aryl hydrocarbon hydroxylase and 7-ethoxycoumarin O-deethylase differs in the various tissues and species and after inducer treatment. All of the 7-ethoxycoumarin O-deethylase activity in guinea pigs and hamsters is a function of cytochromes P-450 different than the MAb 1-7-1-sensitive cytochrome P-450 responsible for aryl hydrocarbon hydroxylase activity. Thus, the MAb 1-7-1 antigenically defines the type of cytochromes P-450 contributing to each reaction. Cytochromes P-450 can be viewed as paradigmatic for enzyme systems in which the nature and amount of product is regulated by multiple isoenzymic forms. Analyses using monoclonal antibodies to specific isoenzymes may thus have broad application to a variety of other complex systems which are composed of multiple isoenzymes.  相似文献   

10.
Chiral analysis of the endogenous rat liver epoxyeicosatrienoic acids shows the biosynthesis of 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids in a 4:1, 2:1, and 3:1 ratio of antipodes, respectively. Animal treatment with phenobarbital results in a 3.7-fold increase in microsomal cytochrome P-450 concentration and a concomitant, regioselective 6.8- and 3.4-fold increase in the liver concentration of 8,9- and 14,15-epoxyeicosatrienoic acids, respectively. Phenobarbital induces the in vivo synthesis of both regioisomers as nearly optically pure enantiomers. These results demonstrate the enzymatic origin of the epoxyeicosatrienoic acids present in rat liver and document a novel metabolic function for cytochrome P-450 in the regio- and enatioselective epoxygenation of endogenous pools of arachidonic acid.  相似文献   

11.
Hepatic microsomal cytochrome P-450 from the untreated coastal marine fish scup, Stenotomus chrysops, was solubilized and resolved into five fractions by ion-exchange chromatography. The major fraction, cytochrome P-450E (Mr = 54,300), was further purified to a specific content of 11.7 nmol heme/mg protein and contained a chromophore absorbing at 447 nm in the CO-ligated, reduced difference spectrum. NH2-terminal sequence analysis of cytochrome P-450E by Edman degradation revealed no homology with any known cytochrome P-450 isozyme in the first nine residues. S. chrysops liver NADPH-cytochrome P-450 reductase, purified 225-fold (Mr = 82,600), had a specific activity of 45–60 U/mg with cytochrome c, contained both FAD and FMN, and was isolated as the one-electron reduced semiquinone.Purified cytochrome P-450E metabolized several substrates including 7-ethoxycoumarin, acetanilide, and benzo[a]pyrene when reconstituted with lipid and hepatic NADPH-cytochrome P-450 reductase from either S. chrysops or rat. The purified, reconstituted monooxygenase system was sensitive to inhibition by 100 μM 7,8-benzoflavone, and analysis of products in reconstitutions with purified rat epoxide hydrolase indicated a preference for oxidation on the benzo-ring of benzo[a]pyrene consistent with the primary features of benzo[a]pyrene metabolism in microsomes. Cytochrome P-450E is identical to the major microsomal aromatic hydrocarbon-inducible cytochrome P-450 by the criteria of molecular weight, optical properties, and catalytic profile. It is suggested that substantial quantities of this aromatic hydrocarbon-inducible isozyme exist in the hepatic microsomes of some untreated S. chrysops. The characterization of this aryl hydrocarbon hydroxylase extends our understanding of the metabolism patterns observed in hepatic microsomes isolated from untreated fish.  相似文献   

12.
We have purified two distinct isoforms of mitochondrial cytochrome P-450 from beta-naphthoflavone (beta-NF)-induced rat liver to greater than 85% homogeneity and characterized their molecular and catalytic properties. One of these isoforms showing an apparent molecular mass of 52 kDa is termed P-450mt1 and the second isoform with 54-kDa molecular mass is termed P-450mt2. Cytochrome P-450mt2 comigrates with similarly induced microsomal P-450c (the major beta-NF-inducible form) on sodium dodecyl sulfate-polyacrylamide gels and cross-reacts with polyclonal antibody monospecific for cytochrome P-450c. Cytochrome P-450mt2, however, represents a distinct molecular species since it failed to react with a monoclonal antibody to P-450c and produced V8 protease fingerprints different from P-450c. Cytochrome P-450mt1, on the other hand, did not show any immunochemical homology with P-450c or P-450mt2 as well as partially purified P-450 from control mitochondria. Electrophoretic comparisons and Western blot analysis show that both P-450mt1 and P-450mt2 are induced forms not present in detectable levels in control liver mitochondria. A distinctive property of mitochondrial P-450mt1 and P-450mt2 was that their catalytic activities could be reconstituted with both NADPH-cytochrome P-450 reductase as well as mitochondrial specific ferredoxin and ferredoxin reductase electron transfer systems, while P-450c showed exclusive requirement for NADPH-cytochrome P-450 reductase. Cytochromes P-450mt1 and P-450mt2 were able to metabolize xenobiotics like benzo(a)pyrene and dimethyl benzanthracene at rates only one-tenth with cytochrome P-450c. Furthermore, P-450mt1, P-450mt2, as well as partially purified P-450 from control liver, but not P-450c, showed varying activities for 25- and 26-hydroxylation of cholesterol and 25-hydroxylation of vitamin D3. These results provide evidence for the presence of at least two distinct forms of beta-NF-inducible cytochrome P-450 in rat hepatic mitochondria.  相似文献   

13.
Phenobarbital, 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT), benzpyrene, 3-methylcholanthrene (3-MC) or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) were administered i.p. for 1 or 3 days to genetically “responsive” (C57BL/6J) and genetically “non-responsive” (DBA/2J) mice. 3-MC or benzpyrene stimulated aryl hydrocarbon hydroxylase (AHH) activity in C57BL/6J (B6) mice but not in DBA/2J (D2) mice. TCDD induced AHH activity in both B6 and D2 mice. Time-course studies showed that in the first 12 h after a single injection of 3-MC to B6 mice there was no shift in the reduced cytochrome P-450-CO complex absorption spectra from 450 to 448 nm, although AHH activity increased 4–5 times over (above) that of the control group. The relationship between induction of AHH activity by polycyclic hydrocarbons in B6 mice and the concomitant synthesis of cytochrome P-448 is discussed.  相似文献   

14.
The fatty acid (omega-2) hydroxylase from Bacillus megaterium ATCC 14581 was examined with respect to some general enzymatic properties attributed to an intact complex isolated in a partially purified state. Hydroxylase specific activity was found to increase with increasing protein concentration in a manner consistent with a reversible association of the components in the complex. There was a substantial kinetic lag phase for palmitate hydroxylation which was abolished by a substrate preincubation in the absence of NADPH. The substrate bound and presumably activated the hydroxylase complex without the formation of a substrate-derived intermediated. The oxidation of NADPH and the hydroxylation of palmitate were found to occur in a one to one molar ration, independent of the protein concentration. Finally, a cytochrome P-450 component of the complex was identified on the basis of its CO-binding difference spectrum. It appears, that this cytochrome P-450 component is not identical to P-450 meg of the steroid hydroxylase system of B. megaterium ATCC 13368, since progesterone, an active substrate for the latter, is not hydroxylated by the preparation from B. megaterium ATCC 14581.  相似文献   

15.
16.
Renal microsomal cytochrome P-450-dependent arachidonic acid metabolism was correlated with the level of cytochrome P-450 in the rabbit kidney. Cobalt, an inducer of haem oxygenase, reduced cytochrome P-450 in both the cortex and medulla in association with a 2-fold decrease in aryl-hydrocarbon hydroxylase, an index of cytochrome P-450 activity, and a similar decrease in the formation of cytochrome P-450-dependent arachidonic acid metabolites by renal microsomes (microsomal fractions). Formation of the latter was absolutely dependent on NADPH addition and was prevented by SKF-525A, an inhibitor of cytochrome P-450-dependent enzymes. Arachidonate metabolites of cortical microsomes were identified by g.c.-m.s. as 20- and 19-hydroxyeicosatetraenoic acid, 11,12-epoxyeicosatrienoic acid and 11,12-dihydroxyeicosatrienoic acid. The profile of arachidonic acid metabolites was the same for the medullary microsomes. Induction of cytochrome P-450 by 3-methylcholanthrene and beta-naphthoflavone increased cytochrome P-450 content and aryl-hydrocarbon hydroxylase activity by 2-fold in the cortex and medulla, and this correlated with a 2-fold increase in arachidonic acid metabolites via the cytochrome P-450 pathway. These changes can also be demonstrated in cells isolated from the medullary segment of the thick ascending limb of the loop of Henle, which previously have been shown to metabolize arachidonic acid specifically via the cytochrome P-450-dependent pathway. The specific activity for the formation of arachidonic acid metabolites by this pathway is higher in the kidney than in the liver, the highest activity being in the outer medulla, namely 7.9 microgram as against 2.5 micrograms of arachidonic acid transformed/30 min per nmol of cytochrome P-450 for microsomes obtained from outer medulla and liver respectively. These findings are consistent with high levels of cytochrome P-450 isoenzyme(s), specific for arachidonic acid metabolism, primarily localized in the outer medulla.  相似文献   

17.
The characteristic nature of the drug-metabolizing system in fetal liver microsomes of rats was investigated. The aminopyrine(AM)- and the hexobarbital (HB)-metabolizing activities in fetal liver microsomes of the 21st day of pregnancy were induced by the maternal administration of 3-methylcholanthrene (3-MC) once daily on the 18th and the 19th day of pregnancy, while they were inhibited in maternal liver microsomes. The inductions of the AM- and the HB-metabolizing enzymes in fetal liver microsomes of rat by the maternal administration of 3-MC occurred exclusively in fetal period and simultaneously hemoprotein like phenobarbital-induced type P-450 different from that in maternal liver microsomes was newly induced in fetal liver microsomes of rats.  相似文献   

18.
The role of haem synthesis during induction of hepatic cytochrome P-450 haemoproteins was studied in chick embryo in ovo and in chick embryos hepatocytes cultured under chemically defined conditions. 1. Phenobarbitone caused a prompt increase in the activity of 5-aminolaevulinate synthase, the rate-limiting enzyme of haem biosynthesis, and in the concentration of cytochrome P-450. This induction response occurred without measurable initial destruction of the haem moiety of cytochrome P-450. 2. When intracellular haem availability was enhanced by exogenous haem or 5-aminolaevulinate, phenobarbitone-medicated induction of cytochrome P-450 was not affected in spite of the well known repression of 5-aminolaevulinate synthase by haem. These data are consistent with the concept that haem does not regulate the synthesis of cytochrome P-450 haemoproteins. 3. Acetate inhibited haem biosynthesis at the level of 5-aminolaevulinate formation. When intracellular haem availability was diminished by treatment with acetate, phenobarbitone-medicated induction was decreased. 4. This inhibitory effect of acetate on cytochrome P-450 induction was reversed by exogenous haem or its precursor 5-aminolaevulinate. These data suggest that inhibition of haem biosynthesis does not decrease synthesis of apo-cytochrome P-450. Moreover, they indicate that exogenous haem can be incorporated into newly formed aop-cytochrome P-450.  相似文献   

19.
Cytochrome P-450 has been purified from goat and chick erythrocytes and characterized. Goat erythrocyte cytochrome P-450 content was higher than that of chick erythrocytes cytochrome P-450. Elution profile of purified protein from DEAE-cellulose column showed a single peak. The catalytic activities of aminopyrine-N-demethylase and acetanilide hydroxylase were found to be higher in purified proteins. Molecular weight was determined by SDS-polyacrylamide gel electrophoresis.  相似文献   

20.
Chiral analysis of the rat liver microsomal arachidonic acid epoxygenase metabolites shows enantioselective formation of 8,9-, 11,12-, and 14,15-cis-epoxyeicosatrienoic acids in an approximately 2:1, 4:1, and 2:1 ratio of antipodes, respectively. Animal treatment with the cytochrome P-450 inducer phenobarbital increased the overall enantiofacial selectivity of the microsomal epoxygenase and caused a concomitant inversion in the absolute configurations of its metabolites. These effects of phenobarbital were time-dependent and temporally linked to increases in the concentration of microsomal cytochrome P-450 enzymes. Reconstitution of the epoxygenase reaction utilizing several purified cytochrome P-450 demonstrated that the asymmetry of epoxidation is under cytochrome P-450 enzyme control. These results established that the chirality of the hepatic arachidonic acid epoxygenase is under regulatory control and confirm cytochromes P-450 IIB1 and IIB2 as two of the endogenous epoxygenases induced in vivo by phenobarbital.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号