首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
海藻糖广泛存在于细菌、真菌、昆虫、无脊椎动物和植物等大量生物中。它不仅可以作为昆虫的能量来源,而且在抗逆等方面起着重要作用。海藻糖合成酶(Trehalose-6-phosphate synthase,TPS)是海藻糖合成过程中的一个关键酶。目前细菌、真菌和植物中都已经被发现和克隆,但其不存在于哺乳动物中。海藻糖是昆虫的"血糖",主要通过海藻糖合成酶和海藻糖-6-磷酸脂酶(Trehalose-6-phosphate phosphatase,TPP)在脂肪体中催化合成。TPS基因所编码的蛋白序列一般都包含两个保守的结构域:TPS和TPP,分别对应着酵母中的Ots A和Ots B基因。昆虫海藻糖合成酶的基因表达和酶活性的变化与昆虫的多项生理过程有着密切的关系,海藻糖合成酶有可能成为控制害虫的新靶标。  相似文献   

2.
植物海藻糖代谢及海藻糖-6-磷酸信号研究进展   总被引:2,自引:0,他引:2  
海藻糖代谢和海藻糖-6-磷酸(T6P)信号途径在植物生长和发育过程中具有重要的调控作用。T6P是海藻糖的代谢前体,是植物响应碳元素可用性、调控生长发育的关键信号分子。植物体中除了自身的海藻糖合成途径外,由病原菌产生的海藻糖或T6P能够导致植物代谢和发育的重新编程。植物不同阶段的生长发育,包括胚胎发育、幼苗生长、成花诱导及叶片衰老等,都受T6P的调控。T6P信号的一个关键互作因子是蔗糖非发酵相关激酶1(SnRKl),T6P能够抑制SnRK1的催化活性,进而调控植物的生长和发育过程。  相似文献   

3.
4.
植物戊糖磷酸途径及其两个关键酶的研究进展   总被引:1,自引:0,他引:1  
戊糖磷酸途径是植物体中糖代谢的重要途径,主要生理功能是产生供还原性生物合成需要的NADPH,可供核酸代谢的磷酸戊糖以及一些中间产物可参与氨基酸合成和脂肪酸合成等。葡萄糖-6-磷酸脱氢酶和6-磷酸葡萄糖酸脱氢酶是戊糖磷酸途径的两个关键酶,广泛的分布于高等植物的胞质和质体中。本文综述了植物戊糖磷酸途径及其两个关键酶的分子生物学的研究进展,讨论了该途径在植物生长发育和环境胁迫应答中的作用。  相似文献   

5.
植物戊糖磷酸途径及其两个关键酶的研究进展   总被引:6,自引:1,他引:6  
戊糖磷酸途径是植物体中糖代谢的重要途径,主要生理功能是产生供还原性生物合成需要的NADPH,可供核酸代谢的磷酸戊糖以及一些中间产物可参与氨基酸合成和脂肪酸合成等.葡萄糖-6-磷酸脱氢酶和6-磷酸葡萄糖酸脱氢酶是戊糖磷酸途径的两个关键酶,广泛的分布于高等植物的胞质和质体中.本文综述了植物戊糖磷酸途径及其两个关键酶的分子生物学的研究进展,讨论了该途径在植物生长发育和环境胁迫应答中的作用.  相似文献   

6.
利用日本DDBJ数据库电子克隆了条斑紫菜的6-磷酸海藻糖合成酶基因(pytps),得到全长cDNA序列2727bp;经过ORF finder分析,获得了相应蛋白质的全长序列908Aa,分子量约为101.8kD。将条斑紫菜的6-磷酸海藻糖合成酶与多种模式生物大肠杆菌、裂殖酵母、拟南芥、水稻、秀丽隐杆线虫、黑腹果蝇的同源蛋白进行序列比对得到了聚类分析图表明它们之间具有一定的进化相关性功能结构域预测分析显示PyTPS拥有两个功能结构域Glyco.transf 20 domain和Trehalose.PPase domain,这对于进一步分析蛋白质结构与功能的关系将有很大的启示。  相似文献   

7.
8.
海藻糖合酶的研究进展   总被引:1,自引:0,他引:1  
海藻糖是一种天然存在的非还原性二糖, 对生物膜和蛋白质等大分子有独特的保护作用, 在食品、医药、化妆品等多个领域中都有广泛的发展空间。海藻糖合酶(TreS)是一类分子内转糖苷酶, 专一性地以麦芽糖为底物, 一步转化生成海藻糖, 操作工艺简单、底物价格低廉、应用前景良好。本文综述了海藻糖合酶的酶学性质、催化机理、基因工程以及目前存在的主要问题和拟解决方案。  相似文献   

9.
垫状卷柏海藻糖-6-磷酸合成酶基因的克隆及功能分析   总被引:1,自引:0,他引:1  
林荆  付凤玲  蒋伟  牟禹  雍太明  李晚忱 《遗传》2010,32(5):498-504
海藻糖-6-磷酸合成酶(Trehalose-6-phosphate synthse, TPS)是植物海藻糖合成途径的关键酶, 在旱生卷柏等复苏植物对逆境胁迫应答中起重要作用。文章以我国特有旱生植物垫状卷柏(Selaginella pulvinata)为材料, 采用同源扩增与RACE技术相结合的方法克隆了海藻糖-6-磷酸合成酶基因SpTPS1, cDNA全长3 223 bp, 包括一个2 790 bp的开放阅读框, 推导的氨基酸序列与模式物种的海藻糖-6-磷酸合成酶具有较高的序列相似性, 催化活性中心保守位点基本一致。酵母功能互补实验证明, 用SpTPS1基因开放阅读框转化的海藻糖合成酶基因突变(tps1△)酵母菌株, 可恢复在以葡萄糖作为唯一碳源培养基上的生长, 说明垫状卷柏海藻糖-6-磷酸合成酶基因SpTPS1的编码蛋白具有生物活性, 可应用于植物抗逆性的转基因改良。  相似文献   

10.
6-磷酸海藻糖(T6P)在植物体内广泛分布,对植物的生长发育起着重要的调节作用,其信号途径伴随植物胚胎发育直至衰老的整个过程。T6P是海藻糖的代谢前体物质,其主要通过抑制蔗糖非酵解相关激酶1(SnRK1)的催化活性,进而调控植物生长代谢,故称为T6P/SnRK1信号。在T6P/SnRK1信号调控植物代谢过程中,转录因子b ZIP11、己糖激酶HXK及PIF信号途径也参与到植物T6P/SnRK1信号调控路径。  相似文献   

11.
海藻糖合酶的分子生物学研究进展   总被引:3,自引:0,他引:3  
海藻糖合酶能够将麦芽糖转化为海藻糖,在海藻糖的工业生产中具有十分重要的意义。本文从海藻糖合酶的基因克隆、基因工程应用、结构和催化机制的研究以及其在微生物体内的功能等方面讨论了海藻糖合酶的研究进展。  相似文献   

12.
为了明确甜瓜海藻糖-6-磷酸合成酶基因(CmTPS)家族信息及对逆境信号的响应,该研究采用生物信息学方法,通过拟南芥TPS家族基因与甜瓜基因组数据库比对,从甜瓜基因组中共鉴定出7个海藻糖-6-磷酸合成酶基因,按照其在染色体上的位置分别命名为CmTPS1~7。系统进化分析结果显示,CmTPS4和CmTPS7为第1类,二者均含有16个内含子,推测其编码产物均具有海藻糖-6-磷酸合成酶(TPS)活性;其余5个CmTPS基因归为第2类,分别含有2~4个内含子;在这7个甜瓜TPS中,除CmTPS3只有TPS结构域外,其余CmTPS都含有TPS、TPP及UDP-forming结构域;蛋白序列比对结果显示,甜瓜TPS家族各成员间相似性较低(15.90%~57.31%);亚细胞定位预测表明,CmTPS1、CmTPS2和CmTPS6定位在细胞核内,其余4个CmTPS定位在细胞质内。qRTPCR表达分析表明,低温胁迫下甜瓜叶片可能以CmTPS4为主要的TPS编码基因;CmTPS基因家族对盐胁迫较为敏感,同时在ABA信号传递中起调控作用。这为进一步研究甜瓜TPS基因家族奠定了基础。  相似文献   

13.
海藻糖-6-磷酸合成酶(trehalose-6-phosphate synthase, TPS)是昆虫海藻糖合成途径中的关键酶之一。本研究通过对葱蝇Delia antiqua海藻糖-6-磷酸合成酶基因的克隆、 序列分析及滞育相关表达的分析, 旨在证明该基因在能源合成以及抵御高温和低温环境方面发挥重要作用, 为进一步弄清葱蝇滞育分子机制提供理论依据。根据葱蝇抑制消减杂交文库中的EST序列信息, 设计特异性引物, 并通过RACE技术克隆了葱蝇海藻糖-6-磷酸合成酶基因全长cDNA, 命名为DaTPS1 (GenBank登录号: JX681124), 其全长为2 904 bp, 开放阅读框2 448 bp, 编码815个氨基酸, 推测其相对分子质量为91.2 kD, 等电点为5.96。生物信息学分析表明, 该基因编码的氨基酸序列具有两个保守结构域, 与其他物种TPS具有较高的同源性, 其中和黑腹果蝇Drosophila melanogaster亲缘关系最近, 氨基酸序列一致性为92.1%; 其蛋白质三维结构有15条大的α螺旋和11股反向平行的β链折叠。RT-PCR分析表明, DaTPS1在葱蝇非滞育、 夏滞育和冬滞育期蛹中都有表达, 但是非滞育期各时期表达量基本没有变化, 而在夏滞育和冬滞育蛹的滞育前期表达量较高, 滞育保持期表达量较低, 滞育期后期表达量又有所升高。推断在葱蝇蛹夏滞育和冬滞育期前期, TPS1开始催化合成较多的海藻糖以提高滞育期抵御不良环境的能力, 滞育保持期蛹的新陈代谢降低, 所需能量较少, 所以TPS1处于低水平表达状态, 而滞育期结束后, 蛹生长发育逐渐恢复, 所需能量有所增加, TPS1的表达量再次升高。本研究对揭示昆虫TPS在能量代谢通路中的作用及昆虫滞育的分子机理具有一定的科学意义。  相似文献   

14.
海藻糖生产过程中产酶发酵条件的研究   总被引:1,自引:0,他引:1  
研究了产酶的培养基组分和比例以及最佳培养条件对微球菌生产麦芽寡糖基海藻糖合成酶(MTSase)和麦芽寡糖基海藻糖海藻糖水解酶(MTHase)的影响,得到最优培养基组成为:葡萄糖2.0%,酵母膏2.0%,蛋白胨1.0%,磷酸氢二钾0.1%,硫酸镁0.05%;优化后的培养条件为:以15%的接种量接种至250mL的锥形瓶中,装液量为50mL,初始pH值7.5~8.5,培养温度为30℃,摇床培养4d。经优化后菌体干重由原来的1.938g/L增加到18.5g/L,生物量几乎增长了10倍;而酶活也由原来的30.64U/g增加到206.11U/g,酶活提高了接近7倍。  相似文献   

15.
从耐热性极强的酿酒酵母菌株AS21416中分离纯化出总RNA和mRNA,以AMV逆转录酶合成cDNA,采用保守引物,从该cDNA中扩增克隆出tps1基因,对该基因的全序列分析表明,该基因含有1507个核苷酸,与国外报道相关基因的同源性达99.6%。利用BamHⅠ和SacⅠ切点将tps1基因插入植物表达载体pBin438多克隆位点上,得到tps1基因植物表达载体重组质粒。  相似文献   

16.
藤黄微球菌海藻糖生物合成基因的克隆与鉴定   总被引:1,自引:0,他引:1  
首次从一株能利用淀粉产生海藻糖的藤黄微球菌中克隆了海藻糖生物合成基因。采用PCR方法结合非随机鸟枪法得到藤黄微球菌中低聚麦芽糖苷基海藻糖合成酶(MTSase)基因(MtreY)的全序列及低聚麦芽糖苷基海藻糖水解酶(MTHase)基因(MtreZ)的部分序列,其中MtreY共有2,370个碱基,编码789个氨基酸,表达产物分子量为86·7kD。同源性分析表明,与已报道的MTSase和α-淀粉酶家族成员具有相同的保守模体。将MtreY基因在大肠杆菌JM83中表达,证明表达产物具有预期的酶活性。  相似文献   

17.
海藻糖的生物合成与分解途经及其生物学功能   总被引:1,自引:0,他引:1  
海藻糖是一类在干旱、低温、热击或脱水等逆境环境下具有独特抗逆保护作用的二糖,广泛分布于藻类、细菌、真菌和动植物体内。近年来,随着对海藻糖研究的深入,海藻糖已经被广泛应用到食品、医药、化妆品和分子生物学研究等领域。该文简述了海藻糖在生物体内的代谢途径、生物学功能和研究进展,并对灭蚊真菌Pythiumsp.GY1938菌株海藻糖代谢酶基因的研究前景加以展望。  相似文献   

18.
通过硫酸铵沉淀、DE_(52)层析、超滤和高压羟基磷灰石层析,从大鼠肌肉条件培养液中得到电泳纯的神经白介素(NLK)。未发现NLK的神经营养活性(维持鸡胚背根神经元存活和促进脊髓神经元突起伸展)及免疫活性(促进外周血单个核细胞产生免疫球蛋白),却有较强的6-磷酸葡萄糖异位酶(GPI)活性。SDS-PAGE测得亚基分子量为56kD;IEF示五条细而相距很近的带,PⅠ值分别为8.20,8.15,8.10,7.90,7.75。Western Blot证实,PAGE和IEF的五条带均可与抗GPI抗体结合,即五种同工酶形式;NLK与GPI的氨基酸组成相近,BrCN水解NLK和GPI得剖相同的肽谱。许多研究表明:NLK不作为一种神经营养因子,而可能是糖酵解酶,即6-磷酸葡萄糖异位酶。  相似文献   

19.
通过构建红色亚栖热菌(Meiothermus ruberCBS-01)的基因组DNA文库,克隆得到该嗜热菌海藻糖合成途径中的磷酸海藻糖合成酶(TPS)和磷酸海藻糖磷酸酯酶(TPP)基因。以pET21a为表达载体,将磷酸海藻糖合成酶和磷酸海藻糖磷酸酯酶在大肠杆菌中进行表达并纯化,利用薄层层析的方法验证了这两个酶的活性。同时,本研究检测了红色亚栖热菌在各种环境压力下细胞内含物成分的变化情况,发现在高渗环境压力的诱导下,该菌会在胞内积累大量的6-磷酸海藻糖,而并非海藻糖,这为进一步研究TPS/TPP和TreS途径在细胞体内的作用奠定了基础。  相似文献   

20.
提高生物能源生产菌株对各种胁迫因素的耐受性对于提高生产过程的经济性和高效生产生物能源具有重要的意义。对酿酒酵母乙醇耐性的分子机制的研究,可揭示影响其耐受性的关键基因,并通过代谢工程操作定向提高酵母菌的乙醇耐受性,从而提高燃料乙醇的生产效率。海藻糖对酵母菌在多种环境胁迫下的细胞活性具有保护作用,但其对乙醇耐性分子机制的研究还不够深入。克隆了自絮凝酵母Saccharomyces cerevisiae flo的海藻糖-6-磷酸合成酶基因TPS1的启动子区域,利用pYES2.0载体骨架,构建了PTPS1启动绿色荧光蛋白EGFP标记基因的报告载体,并转化酿酒酵母ATCC4126。对酵母转化子在含有7%和10%乙醇的生长培养基中的EGFP的表达情况进行相对荧光定量分析,发现PTPS1活性在7%乙醇存在下受到强烈诱导。EGFP表达量对高温和高糖胁迫无明显差别,显示了TPS1启动子对乙醇浓度的特异响应。研究结果表明,絮凝酵母海藻糖的合成是对乙醇胁迫的保护性反应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号