首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extracts of vegetative cells of Blastocladiella emersonii contain 5% or less of the cyclic AMP phosphodiesterase activity in zoospore extracts. This difference in activity could be accounted for entirely by an increase in the differential rate of phosphodiesterase synthesis during sporulation, beginning after a lag period of about 60 min and extending for at least an additional 90 min into the 4-h sporulation process. To examine the relation between enzyme synthesis and cyclic nucleotide metabolicm, we determined the substrate specificity of phosphodiesterase synthesized during sporulation and partially purified from zoospores. Zoospore extracts contain two components, separable by gel filtration chromatography, with cyclic AMP phosphodiesterase activity. The larger component accounts for 20% of the total activity and the smaller component for 80%. Both components show essentially an absolute substrate specificity for cyclic AMP among several cyclic purine and cyclic pyrimidine nucleotides tested. Nevertheless, we found no change in the total cyclic AMP content of sporulating cells before, during, or after enzyme activity increased. We speculate that some other component of cyclic AMP metabolism or function limits the rate of cyclic AMP hydrolysis in sporulating cells.  相似文献   

2.
When synaptic plasma membrane fragments are incubated with ATP in the presence of Mg2+, phosphate is transferred, not only to protein-bound serine, but also to protein-bound histidine. The phosphorylation of protein-bound serine is stimulated by cyclic AMP and has a Km for ATP of about 0.12 mM, both in the presence and absence of cyclic AMP. By contrast, the phosphorylation of protein-bound histidine is unaffected by cyclic AMP and does not follow Michaelis-Menton kinetics since a non-linear double reciprocal plot is given when activity is measured at various ATP concentrations.  相似文献   

3.
  • 1.1. Sensitive and specific binding assays for cyclic GMP-dependent and cyclic AMP-dependent protein kinases have been developed for use in rat liver.
  • 2.2. The addition of mixed histone to the binding mixture and the inclusion of ammonium sulfate in the termination and wash buffer enhanced the observed cyclic GMP- and cyclic AMP-binding activities markedly.
  • 3.3. The principal effect of histone is to increase the binding of cyclic GMP and cyclic AMP to their respective protein kinases.
  • 4.4. During filtration ammonium sulfate markedly increased the retention of the protein-bound cyclic nucleotides and markedly decreased the rapid dissociation component of cyclic GMP-binding.
  相似文献   

4.
Cyclic AMP levels doubled in Myxococcus xanthus under conditions in which cells aggregate and form fruiting bodies. In liquid medium, glycerol- or dimethyl sulfoxide-induced sporulating cultures exhibited a sharp but transient rise in cyclic AMP concentration after 45 min.  相似文献   

5.
In liver cells isolated from fed female rats, glucagon (290nM) increased adenosine 3':5'-monophosphate (cyclic AMP) content and decreased cyclic AMP binding 30 s after addition of hormones. Both returned to control values after 10 min. Glucagon also stimulated cyclic AMP-independent protein kinase activity at 30 s and decreased protein kinase activity assayed in the presence of 2 muM cyclic AMP at 1 min. Glucagon increased the levels of glycogen phosphorylase a, but there was no change in total glycogen phosphorylase activity. Glucagon increased glycogen phosphorylase a at concentrations considerably less than those required to affect cyclic AMP and protein kinase. The phosphodiesterase inhibitor, 1-methyl-3-isobutyl xanthine, potentiated the action of glucagon on all variables, but did not increase the maximuM activation of glycogen phosphorylase. Epinephrine (1muM) decreased cyclic AMP binding and increased glycogen phosphorylase a after a 1-min incubation with cells. Although 0.1 muM epinephrine stimulated phosphorylase a, a concentration of 10 muM was required to increase protein kinase activity. 1-Methyl-3-isobutyl xanthine (0.1 mM) potentiated the action of epinephrine on cyclic AMP and protein kinase. (-)-Propranolol (10muM) completely abolished the changes in cyclic AMP binding and protein kinase due to epinephrine (1muM) in the presence of 0.1mM 1-methyl-3-isobutyl xanthine, yet inhibited the increase in phosphorylase a by only 14 per cent. Phenylephrine (0.1muM) increased glycogen phosphorylase a, although concentrations as great as 10 muM failed to affect cyclic AMP binding or protein kinase in the absence of phosphodiesterase inhibitor. Isoproterenol (0.1muM) stimulated phosphorylase and decreased cyclic AMP binding, but only a concentration of 10muM increased protein kinase. 1-Methyl-3-isobutyl xanthine potentiated the action of isoproterenol on cyclic AMP binding and protein kinase, and propranolol reduced the augmentation of glucose release and glycogen phosphorylase activity due to isoproterenol. These data indicate that both alpha- and beta-adrenergic agents are capable of stimulating glycogenolysis and glycogen phosphorylase a in isolated rat liver cells. Low concentrations of glucagon and beta-adrenergic agonists stimulate glycogen phosphorylase without any detectable increase in cyclic AMP or protein kinase activity. The effects of alpha-adrenergic agents appear to be completely independent of changes in cyclic AMP protein kinase activity.  相似文献   

6.
Regulation of cyclic AMP-dependent protein kinase, cyclic AMP-receptor activity and intracellular cyclic AMP concentrations by choriogonadotropin was studied in ovarian cells prepared from 26-day-old rats. A close correlation was observed between phospho-transferase activity and cyclic AMP-receptor activity in 12000g supernatant fractions from rat ovarian homogenate. The apparent activation constant (K(a)) and I(50) (concentration required to produce 50% inhibition) of different cyclic nucleotides for phosphotransferase and cyclic AMP receptor activities respectively were also determined. Cyclic AMP and 8-bromo cyclic AMP were most effective, giving K(a) values of 0.08 and 0.09mum and I(50) of 0.12 and 0.16mum respectively. Other nucleotides were also effective, but required higher concentrations to give a comparable effect. An increased concentration of cyclic AMP produced by choriogonadotropin (1mug/ml) treatment was accompanied by decreased cyclic AMP binding as early as 5min after hormone addition. Choriogonadotropin also stimulated the protein kinase activity ratio (-cyclic AMP/+cyclic AMP) under identical experimental conditions. The phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine potentiated the action of choriogonadotropin on the three parameters measured in a dose- and time-dependent manner. The maximal cyclic AMP-binding capacity, as determined by cyclic AMP-exchange assay, remained unchanged before and after hormone addition. The endogenously bound cyclic AMP was determined from the difference between the maximal binding capacity and the exogenously bound cyclic AMP. With different choriogonadotropin concentrations, a quantitative correlation was established between maximal binding capacity, exogenous binding and endogenous binding activities. Approx. 60% of total binding sites were endogenously occupied in untreated cells, and choriogonadotropin (1mug/ml) treatment fully saturated available binding sites with a parallel 10-fold increase in cellular cyclic AMP. The present results provide evidence for a probable intracellular compartmentalization of cyclic AMP in the ovarian cell, and suggest that in the unstimulated state all cyclic AMP present in the ovarian cell may not be available for protein kinase activation.  相似文献   

7.
When synaptic plasma membrane fragments are incubated with ATP in the presence of Mg2+, phosphate is transferred, not only to protein-bound serine, but also to protein-bound histidine. The phosphorylation of protein-bound serine is stimulated by cyclic AMP and has a Km for ATP of about 0.12 mM, both in the presence and absence of cyclic AMP. By contrast, the phosphorylation of protein-bound histidine is unaffected by cyclic AMP and does not follow Michaelis-Menton kinetics since a non-linear double reciprocal plot is given when activity is measured at various ATP concentrations.  相似文献   

8.
9.
Dopaminergic and glutamatergic signalling cascades are integrated in striatal medium spiny neurones by cyclic AMP response-element binding protein and Elk-1 phosphorylation. Phosphorylated cyclic AMP response-element binding protein and phosphorylated Elk-1 contribute to c-fos expression by binding to the calcium and cyclic AMP response-element and the serum response element, respectively, in the c-fos promoter. The role of cyclic AMP and mitogen-activated protein kinase signalling cascades in glutamate-induced cyclic AMP response-element binding protein and Elk-1 phosphorylation and Fos expression was investigated using semiquantitative immunocytochemistry in vivo. Intracerebroventricular infusion of the sodium channel blocker, tetrodotoxin, decreased the glutamate-induced increase in phosphorylated cyclic AMP response-element binding protein, phosphorylated Elk-1, and Fos immunoreactivity. Intracerebroventricular infusion of the mitogen-activated and extracellular signal-regulated kinase inhibitor, PD98059, the p38 mitogen-activated protein kinase inhibitor, SB203580, or the cyclic AMP inhibitor, Rp-8-Br-cAMPS, decreased glutamate-induced phosphorylated cyclic AMP response-element binding protein, phosphorylated Elk-1, and Fos immunoreactivity. Simultaneous infusion of glutamate and Sp-8-Br-cAMPS, a cyclic AMP analogue, augmented induction of Fos immunoreactivity but not phosphorylated cyclic AMP response-element binding protein or phosphorylated Elk-1 immunoreactivity. These data indicate that cyclic AMP and mitogen-activated protein kinase signalling cascades are necessary for glutamate to induce cyclic AMP response-element binding protein and Elk-1 phosphorylation and Fos expression in the striatum. Furthermore, neuronal activity plays an important role in glutamate-induced signalling cascades in vivo.  相似文献   

10.
The relative efficiency of 1,N6-etheno-2aza-adenosine 3', 5'-monophosphate (cyclic 2-aza-epsilon AMP), 1,N6-etenoadenosine 3', 5'-monophosphate (cyclic epsilon AMP) and cyclic AMP in activation of membrane protein kinase and binding to membrane was examined using isolated membranes from human erythrocytes. Cyclic 2-aza-epsilon AMP was 81% as active as cyclic AMP in erythrocyte membrane binding and activation of membrane protein kinase. On the other hand, cyclic epsilon AMP was 37% as active toward membrane protein kinase and 29% toward membrane cyclic AMP binding. Since we have previously shown that the fluorescence of cyclic 2-aza-epsilon AMP is highly sensitive to the polarity of solvents, the high efficiency of cyclic 2-aza-epsilon AMP to substitute for cyclic amp suggests that it may be a suitable microenvironmental fluorescent probe for cyclic AMP binding sites.  相似文献   

11.
A cyclic AMP binding protein has been purified to electrophoretic homogeneity from Jerusalem artichoke rhizome tissues. Its MW is ca. 240 000 and the apparent constant of cyclic AMP binding to the protein is 2.3 × 10?7 M. When tested using Millipore filter assay, cyclic AMP binding activity was enhanced by protamine and histone, but not by casein and phosvitin. Of several purine derivatives tested, only 5′-AMP and adenosine inhibited significantly the binding of cyclic AMP by the protein. The protein also binds adenosine and this binding is not affected by cyclic AMP or by other purine derivatives. The apparent binding constant for adenosine is 1.0 × 10?6 M. The binding protein did not show protein kinase activity. In addition, it did not affect the chromatin-bound DNA dependent RNA polymerase of homologous origin, either in the presence or absence of cyclic AMP. The binding protein is devoid of the following activities: cyclic AMP phosphodiesterase, 5′-nucleotidase, adenosine deaminase and ATPase.  相似文献   

12.
13.
14.
Summary Protein-bound cyclic AMP (cAMP) levels in cultured rat Sertoli cells have been determined after exposure to follicle-stimulating hormone (FSH) and agents which elevate intracellular cAMP or mimic cAMP action. Changes in the content of protein-bound cAMP were correlated with changes in receptor availability determined by measuring [3H] cAMP binding. Using the photoaffinity analog of cAMP, 8-N3 [32P] cAMP, two major cAMP-binding proteins in Sertoli cell cytosol, with molecular weights of 47 000 and 53 000 daltons, were identified as regulatory subunits of type I and type II cAMP-dependent protein kinases, respectively. Densitometric analysis of autoradiograms demonstrated differential activation of the two isozymes in response to treatment with FSH and other agents. Results of this study demonstrate the value of measuring changes in protein-bound cAMP and the utility of the photoaffinity labeling technique in correlating hormone-dependent processes in which activation of cAMP-dependent protein kinase occurs.  相似文献   

15.
This study examined the binding of both cyclic AMP and cyclic GMP to receptor proteins in particulate and soluble subfractions of renal cortical homogenates from the golden hamster. The binding of both nucleotides was compared to subsequent effects of both nucleotides on the phosphorylation of histone from identical fractions. Cyclic AMP binding and cyclic AMP-dependent protein kinase activity predominated in the cytosol, with some binding and enzyme activity also detected in particulate fractions. Cyclic GMP and cyclic GMP-dependent protein kinase activity could only be demonstrated in cytosolic fractions and represented only 20-30% of cyclic AMP-dependent activity in this fraction. Binding of both nucleotides was highly specific, however, cyclic AMP showed some interaction with cyclic GMP binding. Evidence suggesting that each nucleotide interacts with a specific protein kinase was as follows: both the binding activity of the cyclic nucleotides and their combined protein kinase activity show additivity; cyclic AMP and cyclic GMP binding activity could be separated on sucrose gradients; cyclic AMP and cyclic GMP protein kinase activity could be separated with Sephadex G-100 chromatography, after preincubation of homogenate supernatants with either cyclic AMP or cyclic GMP. The results demonstrate the presence of both cyclic AMP- and cyclic GMP-dependent protein kinase in renal cortex.  相似文献   

16.
Cyclic AMP was not found in vegetative cells or sporulating cells or dormant spores of Bacillusmegaterium using an assay which would have detected an invivo concentration of 1 – 2 × 10?9 M. Adenyl cyclase and cyclic AMP phosphodiesterase were also not detected in sonicates of vegetative or sporulating B.megaterium cells.  相似文献   

17.
The ability of cyclic AMP to inhibit growth, cause cytolysis and induce synthesis of cyclic AMP-phosphodiesterase in S49.1 mouse lymphoma cells is deficient in cells selected on the basis of their resistance to killing by 2 mM dibutyryl cyclic AMP. The properties of the cyclic AMP-dependent protein kinase (ATP:protein phosphotransferase, EC 2.7.1.37) in the cyclic AMP-sensitive (S) and cyclic AMP-resistant (R) lymphoma cells were comparatively studied. The cyclic AMP-dependent protein kinase activity or R cells cytosol exhibits an apparent Ka for activation by cyclic AMP 100-fold greater than that of the enzyme from the parental S cells. The free regulatory and catalytic subunits from both S and R kinase are thermolabile, when associated in the holoenzyme the two subunits are more stable to heat inactivation in R kinase than in S kinase. The increased heat stability of R kinase is observed however only for the enzyme in which the catalytic and cyclic AMP-binding activities are expressed at high cyclic AMP concentrations (10(-5)--10(-4) M), the activities expressed at low cyclic AMP concentrations (10(-9)--10(-6) M) being thermolabile. The regulatory subunit of S kinase can be stabilized against heat inactivation by cyclic AMP binding both at 2-10(-7) and 10(-5) M cyclic AMP concentrations. In contrast, the regulatory subunit-cyclic AMP complex from R kinase is stable to heat inactivation only when formed in the presence of high cyclic AMP concentrations (10(-5)M). The findings indicate that the transition from a cyclic AMP-sensitive to a cyclic AMP-resistant lymphoma cell phenotype is related to a structural alteration in the regulatory subunit of the cyclic AMP-dependent protein kinase which has affected the protein's affinity for cyclic AMP and its interaction with the catalytic subunit.  相似文献   

18.
A protein fraction of molecular weight 33,000-36,000 accounted for about 40% of the cyclic AMP binding capacity of the cytoplasmic extract of human tonsillar lymphocytes. This cyclic AMP binding fraction (designated as R' protein [10]) proved to be a proteolytic fragment of the regulatory subunit of the cyclic AMP-dependent protein kinase. The Scatchard plot of cyclic AMP binding by the isolated R' fraction indicated positive cooperativity. 50% saturation of the cyclic AMP binding sites was achieved at about 4 . 10(-9) M cyclic AMP. An upward concave curve was obtained in the Scatchard plot of cyclic GMP binding by the R' protein. These results strongly suggest that more than one molecule of cyclic nucleotide can be bound by one molecule of the R' protein. The R' protein could not be detected in the physiological salt extract of isolated nuclei in which type I cyclic AMP-dependent protein kinase was the dominating isoenzyme (according to the terminology used by Corbin, S.D., Keely, S.L. and Park, C.R. (1975) J. Biol. Chem. 250, 218-225). The cytoplasm of cells contained a higher amount of type II than type I regulatory subunit. In the cytoplasm the predominant part of RII was present in the dissociated state in all preparations, while when the RII was found in the nucleus it was mainly in the holoenzyme form. The R' protein presumably from the dissociated type II regulatory subunit.  相似文献   

19.
Binding activity obtained from an established line of hepatoma tissue culture (HTC) cells has a lower apparent affinity for cyclic AMP at physiological pH than has the analogous binding activity from rat liver. However, the apparent binding affinity of HTC preparations can be reversibly increased by adding NaCl or guanidine · HCl. In the presence of such activating substances, a macromolecular inhibitory activity has been chromatographically separated from the cyclic AMP-binding activity. Removal of this inhibitory component causes the apparent affinity of the cyclic AMP-binding activity from HTC cells to increase and resemble that observed with liver preparations. Before treatment with salt, the inhibitory activity seems to be physically associated with the binding activity. Adding the isolated inhibitory component back to a suitably activated binding preparation from HTC cells results in a decrease in the apparent affinity for cyclic AMP. The isolated inhibitory component is devoid of cyclic AMP-binding and cyclic AMP phosphodiesterase activities and has an apparent minimal molecular weight of about 30,000 by gel filtration. It possesses protein kinase activity and seems to be identical to the catalytic subunit of a cyclic AMP-stimulated protein kinase on the basis of chromatographic properties and sensitivities to heat and low pH. This catalytic subunit represents only a minor portion of total cellular protein kinase activity and is also present in liver extracts. However, the binding activity from liver is not inhibited significantly under conditions where the binding from HTC cells is affected by the catalytic subunit. The difference in this inhibitory response between liver and HTC preparations appears to reflect differences in the cyclic AMP-binding proteins themselves.  相似文献   

20.
N-6,O-2'-dibutyryl adenosine 3',5'-monophosphate kills cultured mouse lymphosarcoma cells, but not resistant mutants derived by a single-step clonal selection. Resistant clones lack the cyclic AMP binding proteins present in wild type, cyclic AMP sensitive clones. Both endogenous cyclic AMP, accumulated in response to isoproterenol or cholera toxin, and exogenous dibutyryl cyclic AMP induce cyclic AMP phosphodiesterase, slow growth, and eventually kill wild type cells. In the resistant mutants, however, the endogenous and exogenous cyclic nucleotides appear to be completely inactive. These results indicate that an intracellular receptor for cyclic AMP, previously shown to be associated with a cyclic AMP-dependent protein kinase, mediates cyclic AMP's regulation of growth and phosphodiesterase synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号