首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The transmembrane adaptor molecule TRIM is strongly expressed within thymus and in peripheral CD4(+) T cells. Previous studies suggested that TRIM is an integral component of the T-cell receptor (TCR)/CD3 complex and might be involved in regulating TCR cycling. To elucidate the in vivo function of TRIM, we generated TRIM-deficient mice by homologous recombination. TRIM(-/-) mice develop normally and are healthy and fertile. However, the animals show a mild reduction in body weight that appears to be due to a decrease in the size and/or cellularity of many organs. The morphology and anatomy of nonlymphoid as well as primary and secondary lymphoid organs is normal. The frequency of thymocyte and peripheral T-cell subsets does not differ from control littermates. In addition, a detailed analysis of lymphocyte development revealed that TRIM is not required for either positive or negative selection. Although TRIM(-/-) CD4(+) T cells showed an augmented phosphorylation of the serine/threonine kinase Akt, the in vitro characterization of peripheral T cells indicated that proliferation, survival, activation-induced cell death, migration, adhesion, TCR internalization and recycling, TCR-mediated calcium fluxes, tyrosine phosphorylation, and mitogen-activated protein family kinase activation are not affected in the absence of TRIM. Similarly, the in vivo immune response to T-dependent and T-independent antigens as well as the clinical course of experimental autoimmune encephalomyelitis, a complex Th1-mediated autoimmune model, is comparable to that of wild-type animals. Collectively, these results demonstrate that TRIM is dispensable for T-cell development and peripheral immune functions. The lack of an evident phenotype could indicate that TRIM shares redundant functions with other transmembrane adaptors involved in regulating the immune response.  相似文献   

4.
Murine gammaherpesvirus 68 (MHV-68) is a naturally occurring rodent pathogen with significant homology to human pathogens Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus. T cells are essential for primary clearance of MHV-68 and survival of mice following intranasal infection. Previous reports have suggested that protein kinase C theta (PKCtheta) is essential for T-cell activation and cytokine production in vitro. To determine the role of this molecule in vivo during the immune response to a viral infection, PKCtheta-/- mice were infected with MHV-68. Despite the essential role of T cells in viral clearance, PKCtheta-/- mice survived infection, cleared lytic virus, and maintained effective long-term control of latency. CD8 T-cell expansion, trafficking to the lung, and cytotoxic activity were similar in PKCtheta+/+ and PKCtheta-/- mice, whereas antiviral antibody and T-helper cell cytokine production were significantly lower in PKCtheta-/- mice than in PKCtheta+/+ mice. These studies demonstrate a differential requirement for PKCtheta in the immune response to MHV-68 and show that PKCtheta is not essential for the T-cell activation events leading to viral clearance.  相似文献   

5.
6.
The pre-B cell receptor (pre-BCR) and the BCR are required for B lymphopoiesis and for the allelic exclusion of Ig genes. Mice lacking B cell linker (BLNK) protein that is a component of the BCR signaling pathway have impaired B cell development. In this report, we show that allelic exclusion is intact in BLNK(-/-) mice harboring a V(H)12 transgene. This differs from mice lacking the tyrosine kinase Syk that is upstream of BLNK in BCR signaling and contrasts with mice lacking SLP-76 that is the equivalent adaptor molecule in TCR-signal transduction. We also show that, whereas most wild-type V(H)12-expressing B cells are CD5(+), the majority of the splenic V(H)12-expressing BLNK(-/-) B cells are CD5(-). A small population of V(H)12-expressing, BLNK(-/-) CD5(+) B cells is detectable in the peritoneal cavity of younger but not older mice. This suggests that BLNK deficiency affects not only the generation but also the persistence of B-1 cells.  相似文献   

7.
Intracellular cAMP may inhibit T cell activation and proliferation via activation of the cAMP-dependent protein kinase, PKA. PKA signaling is maintained through interactions of the regulatory subunit with A-kinase anchoring proteins (AKAPs). We demonstrated that T cells contain AKAPs and now ask whether PKA anchoring to AKAPs via the RIIalpha regulatory subunit is necessary for cAMP-mediated inhibition of T cell activation. We studied the immune systems of mice lacking the RIIalpha regulatory subunit of PKA (-/-) and the ability of cells isolated from these mice to respond to cAMP. Dissection of spleen and thymus from wild-type (WT) and -/- mice, single cell suspensions generated from these organs, and flow cytometry analysis illustrate that the gross morphology, cell numbers, and cell populations in the spleen and thymus of the -/- mice are similar to WT controls. In vitro, splenocytes from -/- mice respond to anti-CD3/anti-CD28 and PMA/ionomycin stimulation and produce IL-2 similar to WT. Cytokine analysis revealed no significant difference in Th1 or Th2 differentiation. Finally, equivalent frequencies of CD8(+) IFN-gamma producing effector cells were stimulated upon infection of WT or -/- mice with Listeria monocytogenes. These data represent the first study of the role of RIIalpha in the immune system in vivo and provide evidence that T cell development, homeostasis, and the generation of a cell-mediated immune response are not altered in the RIIalpha -/- mice, suggesting either that RIIalpha is not required for normal immune function or that other proteins are able to compensate for RIIalpha function.  相似文献   

8.
9.
MEKK2 is a member of the mitogen-activated protein kinase (MAPK) kinase kinase gene family involved in regulating multiple MAPK signaling pathways. To elucidate the in vivo function of MEKK2, we generated mice carrying a targeted mutation in the Mekk2 locus. Mekk2(-/-) mice are viable and fertile. Major subsets of thymic and spleen T cells in Mekk2-deficient mice were indistinguishable from those in wild-type mice. B-cell development appeared to proceed similarly in the bone marrow of Mekk2-deficient and wild-type mice. However, Mekk2(-/-) T-cell proliferation was augmented in response to anti-CD3 monoclonal antibody (MAb) stimulation, and these T cells produced more interleukin 2 and gamma interferon than did the wild-type T cells, suggesting that MEKK2 may be involved in controlling the strength of T-cell receptor (TCR) signaling. Consistently, Mekk2(-/-) thymocytes were more susceptible than wild-type thymocytes to anti-CD3 MAb-induced cell death. Furthermore, TCR-mediated c-Jun N-terminal kinase activation was not blocked but moderately enhanced in Mekk2(-/-) T cells. Neither extracellular signal-regulated kinase nor p38 MAPK activation was affected in Mekk2(-/-) T cells. In conclusion, we found that MEKK2 may be required for controlling the strength of TCR/CD3 signaling.  相似文献   

10.
BACKGROUND: The Jun N-terminal kinase (JNK) signaling pathway has been implicated in cell proliferation and apoptosis, but its function seems to depend on the cell type and inducing signal. In T cells, JNK has been implicated in both antigen-induced activation and apoptosis. RESULTS: We generated mice lacking the JNK2 isozymes. The mutant mice were healthy and fertile but defective in peripheral T-cell activation induced by antibody to the CD3 component of the T-cell receptor (TCR) complex - proliferation and production of interleukin-2 (IL-2), IL-4 and interferon-gamma (IFN-gamma) were reduced. The proliferation defect was restored by exogenous IL-2. B-cell activation was normal in the absence of JNK2. Activation-induced peripheral T-cell apoptosis was comparable between mutant and wild-type mice, but immature (CD4(+) CD8(+)) thymocytes lacking JNK2 were resistant to apoptosis induced by administration of anti-CD3 antibody in vivo. The lack of JNK2 also resulted in partial resistance of thymocytes to anti-CD3 antibody in vitro, but had little or no effect on apoptosis induced by anti-Fas antibody, dexamethasone or ultraviolet-C (UVC) radiation. CONCLUSIONS: JNK2 is essential for efficient activation of peripheral T cells but not B cells. Peripheral T-cell activation is probably required indirectly for induction of thymocyte apoptosis resulting from administration of anti-CD3 antibody in vivo. JNK2 functions in a cell-type-specific and stimulus-dependent manner, being required for apoptosis of immature thymocytes induced by anti-CD3 antibody but not for apoptosis induced by anti-Fas antibody, UVC or dexamethasone. JNK2 is not required for activation-induced cell death of mature T cells.  相似文献   

11.
The genetic inactivation of the atypical protein kinase C (aPKC) inhibitor, Par-4, gives rise to increased NF-kappaB activation and decreased stimulation of JNK in embryo fibroblasts. Here we have characterized the immunological phenotype of the Par-4(-/-) mice and found that the loss of this gene leads to an increased proliferative response of peripheral T cells when challenged through the TCR. This is accompanied by a higher increase in cell cycle entry and inhibition of apoptosis, with enhanced IL-2 secretion but normal CD25 synthesis. Interestingly, the TCR-triggered activation of NF-kappaB was augmented and that of JNK was severely abrogated. Consistent with previous data from knock outs of different JNKs, NFATc1 activation and IL-4 secretion were augmented in the Par-4-deficient CD4+ T cells, suggesting that the loss of Par-4 drives T-cell differentiation towards a Th2 response. This is compelling evidence that Par-4 is a novel modulator of the immune response through its ability to impact aPKC activity, which translates into lower JNK signaling.  相似文献   

12.
Mnt is a Max-interacting protein that can antagonize the activities of Myc oncoproteins in cultured cells. Mnt null mice die soon after birth, but conditional deletion of Mnt in breast epithelium leads to tumor formation. These and related data suggest that Mnt functions as a tumor suppressor. Here we show that conditional deletion of Mnt in T cells leads to tumor formation but also causes inflammatory disease. Deletion of Mnt caused increased apoptosis of thymic T cells and interfered with T-cell development yet led to spleen, liver, and lymph node enlargement. The proportion of T cells in the spleen and lymph nodes was reduced, and the numbers of cells in non-T-cell immune cell populations were elevated. The disruption of immune homeostasis is linked to a strong skewing toward production of T-helper 1 (Th1) cytokines and enhanced proliferation of activated Mnt-deficient CD4+ T cells. Consistent with Th1 polarization in vivo, extensive intestinal inflammation and liver necrosis developed. Finally, most mice lacking Mnt in T cells ultimately succumbed to T-cell lymphoma. These results strengthen the argument that Mnt functions as a tumor suppressor and reveal a critical and surprising role for Mnt in the regulation of T-cell development and in T-cell-dependent immune homeostasis.  相似文献   

13.
CD4(+) and CD8(+) T cells play specific roles during an immune response. Different molecular mechanisms could regulate the proliferation, death, and effector functions of these two subsets of T cells. The p38 mitogen-activated protein (MAP) kinase pathway is induced by cytokines and environmental stress and has been associated with cell death and cytokine expression. Here we report that activation of the p38 MAP kinase pathway in vivo causes a selective loss of CD8(+) T cells due to the induction of apoptosis. In contrast, activation of p38 MAP kinase does not induce CD4(+) T-cell death. The apoptosis of CD8(+) T cells is associated with decreased expression of the antiapoptotic protein Bcl-2. Regulation of the p38 MAP kinase pathway in T cells is therefore essential for the maintenance of CD4/CD8 homeostasis in the peripheral immune system. Unlike cell death, gamma interferon production is regulated by the p38 MAP kinase pathway in both CD4(+) and CD8(+) T cells. Thus, specific aspects of CD4(+) and CD8(+) T-cell function are differentially controlled by the p38 MAP kinase signaling pathway.  相似文献   

14.
Li H  Oliver T  Jia W  He YW 《The EMBO journal》2006,25(17):4097-4107
Rho guanosine triphosphatases (GTPases) regulate multiple aspects of dendritic cell (DC) function, but what regulates the expression of Rho GTPases in DCs is unknown. Here, we show that the extracellular matrix protein mindin regulates the expression of Rho GTPases in DCs. Mindin(-/-) mice displayed defective CD4+ T-cell priming and impaired humoral immune responses to T-dependent antigens. Mindin(-/-) DCs had reduced expression of Rac1/2 and impaired priming capacity owing to inefficient engagement with T lymphocytes. Ectopic Rac1 expression restored the priming capability of Mindin(-/-) DCs. Furthermore, we show that DC adhesion to mindin matrix was blocked by antibodies to alpha4, alpha5 and beta1 integrins. DCs lacking beta1 integrin had reduced adhesion to mindin matrix, decreased expression of Rac1/2 and impaired priming capacity. These results suggest that mindin-integrin interactions play a key role in regulating Rho GTPase expression in DCs and DC priming of T lymphocytes.  相似文献   

15.
Huber SA  Sartini D  Exley M 《Journal of virology》2002,76(21):10785-10790
T cells expressing the Vgamma4 T-cell receptor (TCR) promote myocarditis in coxsackievirus B3 (CVB3)-infected BALB/c mice. CD1, a major histocompatibility complex (MHC) class I-like molecule, is required for activation of Vgamma4(+) cells. Once activated, Vgamma4(+) cells initiate myocarditis through gamma interferon (IFN-gamma)-mediated induction of CD4(+) T helper type 1 (Th1) cells in the infected animal. These CD4(+) Th1 cells are required for activation of an autoimmune CD8(+) alphabeta TCR(+) effector, which is the predominant pathogenic agent in this model of CVB3-induced myocarditis. Activated Vgamma4(+) cells can adoptively transfer myocarditis into BALB/c mice infected with a nonmyocarditic variant of CVB3 (H310A1) but cannot transfer myocarditis into either uninfected or CD1(-/-) recipients, demonstrating the need for both infection and CD1 expression for Vgamma4(+) cell function. In contrast, CD8(+) alphabeta TCR(+) cells transfer myocarditis into either infected CD1(-/-) or uninfected recipients, showing that once activated, the CD8(+) alphabeta TCR(+) effectors function independently of both virus and CD1. Vgamma4(+) cells given to mice lacking CD4(+) T cells minimally activate the CD8(+) alphabeta TCR(+) cells. These studies show that Vgamma4(+) cells determine CVB3 pathogenicity by their ability to influence both the CD4(+) and CD8(+) adaptive immune response. Vgamma4(+) cells enhance CD4(+) Th1 (IFN-gamma(+)) cell activation through IFN-gamma- and CD1-dependent mechanisms. CD4(+) Th1 cells promote activation of the autoimmune CD8(+) alphabeta TCR(+) effectors.  相似文献   

16.
Ca(2+)/calmodulin-dependent protein kinase IV-deficient (CaMKIV(-/-)) mice have been used to investigate the role of this enzyme in CD4(+) T cells. We identify a functional defect in a subpopulation of CD4(+) T cells, characterized by a cell surface marker profile usually found on memory phenotype CD4(+) T cells. Upon T-cell receptor engagement, the mutant cells produce diminished levels of interleukin-2 (IL-2), IL-4, and gamma interferon protein and mRNA. The defect is secondary to an inability to phosphorylate CREB and to induce CREB-dependent immediate-early genes, including c-jun, fosB, fra2, and junB, which are required for cytokine gene induction. In contrast, stimulated naive CD4(+) T cells from CaMKIV(-/-) mice show normal CREB phosphorylation, induction of immediate-early genes, and cytokine production. Thus, in addition to defining an important signaling role for CaMKIV in a subpopulation of T cells, we identify differential signaling requirements for cytokine production between naive T cells and T cells that express cell surface markers characteristic of the memory phenotype.  相似文献   

17.
TLR ligands are potent activators of dendritic cells and therefore function as adjuvants for the induction of immune responses. We analyzed the capacity of TLR ligands to enhance CD8+ T cell responses toward soluble protein Ag. Immunization with OVA together with LPS or poly(I:C) elicited weak CD8+ T cell responses in wild-type C57BL/6 mice. Surprisingly, these responses were greatly increased in mice lacking CD4+ T cells indicating the induction of regulatory CD4+ T cells. In vivo, neutralization of IL-10 completely restored CD8+ T cell responses in wild-type mice and OVA-specific IL-10 producing CD4+ T cells were detected after immunization with OVA plus LPS. Our study shows that TLR ligands not only activate the immune system but simultaneously induce Ag specific, IL-10-producing regulatory Tr1 cells that strongly suppress CD8+ T cell responses. In this way, excessive activation of the immune system may be prevented.  相似文献   

18.
B cells require MHC class II (MHC II)-restricted cognate help and CD40 engagement by CD4(+) T follicular helper (T(FH)) cells to form germinal centers and long-lasting Ab responses. Invariant NKT (iNKT) cells are innate-like lymphocytes that jumpstart the adaptive immune response when activated by the CD1d-restricted lipid α-galactosylceramide (αGalCer). We previously observed that immunization of mice lacking CD4(+) T cells (MHC II(-/-)) elicits specific IgG responses only when protein Ags are mixed with αGalCer. In this study, we investigated the mechanisms underpinning this observation. We find that induction of Ag-specific Ab responses in MHC II(-/-) mice upon immunization with protein Ags mixed with αGalCer requires CD1d expression and CD40 engagement on B cells, suggesting that iNKT cells provide CD1d-restricted cognate help for B cells. Remarkably, splenic iNKT cells from immunized MHC II(-/-) mice display a typical CXCR5(hi)programmed death-1(hi)ICOS(hi)Bcl-6(hi) T(FH) phenotype and induce germinal centers. The specific IgG response induced in MHC II(-/-) mice has shorter duration than that developing in CD4-competent animals, suggesting that iNKT(FH) cells preferentially induce transient rather than long-lived Ab responses. Together, these results suggest that iNKT cells can be co-opted into the follicular helper function, yet iNKT(FH) and CD4(+) T(FH) cells display distinct helper features, consistent with the notion that these two cell subsets play nonredundant functions throughout immune responses.  相似文献   

19.
CD19 and the Src family protein tyrosine kinases (PTKs) are important regulators of intrinsic signaling thresholds in B cells. Regulation is achieved by cross-talk between Src family PTKs and CD19; Lyn is essential for CD19 phosphorylation, while CD19 establishes an Src family PTK activation loop that amplifies kinase activity. However, CD19-deficient (CD19(-/-)) B cells are hyporesponsive to transmembrane signals, while Lyn-deficient (Lyn(-/-)) B cells exhibit a hyper-responsive phenotype resulting in autoimmunity. To identify the outcome of interactions between CD19 and Src family PTKs in vivo, B cell function was examined in mice deficient for CD19 and Lyn (CD19/Lyn(-/-)). Remarkably, CD19 deficiency suppressed the hyper-responsive phenotype of Lyn(-/-) B cells and autoimmunity characterized by serum autoantibodies and immune complex-mediated glomerulonephritis in Lyn(-/-) mice. Consistent with Lyn and CD19 each regulating conventional B cell development, B1 cell development was markedly reduced by Lyn deficiency, with further reductions in the absence of CD19 expression. Tyrosine phosphorylation of Fyn and other cellular proteins induced following B cell Ag receptor ligation was dramatically reduced in CD19/Lyn(-/-) B cells relative to Lyn(-/-) B cells, while Syk phosphorylation was normal. In addition, the enhanced intracellular Ca(2+) responses following B cell Ag receptor ligation that typify Lyn deficiency were delayed by the loss of CD19 expression. BCR-induced proliferation and humoral immune responses were also markedly inhibited by CD19/Lyn deficiency. These findings demonstrate that while the CD19/Lyn amplification loop is a major regulator of signal transduction thresholds in B lymphocytes, CD19 regulation of other Src family PTKs also influences B cell function and the development of autoimmunity.  相似文献   

20.
Tetraspanins are a superfamily of integral membrane proteins involved in the organization of microdomains that consist of both cell membrane proteins and cytoplasmic signalling molecules. These microdomains are important in regulating molecular recognition at the cell surface and subsequent signal transduction processes central to the generation of an efficient immune response. Tetraspanins, both immune-cell-specific, such as CD37, and ubiquitously expressed, such as CD81, have been shown to be imp-ortant in both innate and adaptive cellular immunity. This is via their molecular interaction with important immune cell-surface molecules such as antigen-presenting MHC proteins, T-cell co-receptors CD4 and CD8, as well as cytoplasmic molecules such as Lck and PKC (protein kinase C). Moreover, the generation of tetraspanin-deficient mice has enabled the study of these proteins in immunity. A variety of tetraspanins have a role in the regulation of pattern recognition, antigen presentation and T-cell proliferation. Recent studies have also begun to elucidate roles for tetraspanins in macrophages, NK cells (natural killer cells) and granulocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号