首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the selective catalytic cleavage of the HIV coat protein gp120, a B cell superantigen, by IgM antibodies (Abs) from uninfected humans and mice that had not been previously exposed to gp120. The rate of IgM-catalyzed gp120 cleavage was greater than of other polypeptide substrates, including the bacterial superantigen protein A. The kinetic parameters of gp120 cleavage varied over a broad range depending on the source of the IgMs, and turnover numbers as great as 2.1/min were observed, suggesting that different Abs possess distinct gp120 recognition properties. IgG Abs failed to cleave gp120 detectably. The Fab fragment of a monoclonal IgM cleaved gp120, suggesting that the catalytic activity belongs to the antibody combining site. The electrophoretic profile of gp120 incubated with a monoclonal human IgM suggested hydrolysis at several sites. One of the cleavage sites was identified as the Lys(432)-Ala(433) peptide bond, located within the region thought to be the Ab-recognizable superantigenic determinant. A covalently reactive peptide analog (CRA) corresponding to gp120 residues 421-431 with a C-terminal amidino phosphonate diester mimetic of the Lys(432)-Ala(433) bond was employed to probe IgM nucleophilic reactivity. The peptidyl CRA inhibited the IgM-catalyzed cleavage of gp120 and formed covalent IgM adducts at levels exceeding a control hapten CRA devoid of the peptide sequence. These observations suggest that IgMs can selectively cleave gp120 by a nucleophilic mechanism and raise the possibility of their role as defense enzymes.  相似文献   

2.
Antibody (Ab) nucleophilic reactivity was studied using hapten and polypeptide antigens containing biotinylated phosphonate diester groups (covalently reactive antigen analogs, CRAs). Polyclonal IgG from healthy donors formed covalent adducts with a positively charged hapten CRA at levels superior to trypsin. Each of the 16 single chain Fv clones studied expressed a similar reactivity, indicating the V domain location of the nucleophiles and their broad distribution in diverse Abs. The formation of hapten CRA-Fv adducts was correlated with Fv proteolytic activity determined by cleavage of a model peptide substrate. Despite excellent nucleophilicity, proteolysis by IgG proceeded at lower rates than trypsin, suggesting that events occurring after nucleophilic attack on the substrate limit the rate of Ab proteolysis. The extracellular domain of the epidermal growth factor receptor with phosphonate diester groups at Lys side chains and a synthetic peptide corresponding to residues 421- 431 of human immunodeficiency virus glycoprotein (gp) 120 with the phosphonate diester at the C terminus formed covalent adducts with specific polyclonal and monoclonal Abs raised by immunization with epidermal growth factor receptor and synthetic gp120-(421- 436) devoid of phosphonate diester groups, respectively. Adduct formation was inhibited by extracellular domain of the epidermal growth factor receptor (exEGFB) and synthetic gp120-(421- 436) devoid of phosphonate groups, suggesting that the nucleophiles are located within the antigen binding sites. These results suggest the innate character of the Ab nucleophilic reactivity, its functional coordination with non-covalent adaptive binding interactions developing over the course of B cell maturation, and novel routes toward permanent inhibition of Abs.  相似文献   

3.
We report the results of efforts to strengthen and direct the natural nucleophilic activity of antibodies (Abs) for the purpose of specific cleavage of the human immunodeficiency virus-1 coat protein gp120. Phosphonate diester groups previously reported to form a covalent bond with the active site nucleophile of serine proteases (Paul, S., Tramontano, A., Gololobov, G., Zhou, Y. X., Taguchi, H., Karle, S., Nishiyama, Y., Planque, S., and George, S. (2001) J. Biol. Chem. 276, 28314-28320) were placed on Lys side chains of gp120. Seven monoclonal Abs raised by immunization with the covalently reactive analog of gp120 displayed irreversible binding to this compound (binding resistant to dissociation with the denaturant SDS). Catalytic cleavage of biotinylated gp120 by three monoclonal antibodies was observed. No cleavage of albumin and the extracellular domain of the epidermal growth factor receptor was detected. Cleavage of model peptide substrates occurred on the C-terminal side of basic amino acids, and Km for this reaction was approximately 200-fold greater than that for gp120 cleavage, indicating Ab specialization for the gp120 substrate. A hapten phosphonate diester devoid of gp120 inhibited the catalytic activity with exceptional potency, confirming that the reaction proceeds via a serine protease mechanism. Irreversible binding of the hapten phosphonate diester by polyclonal IgG from mice immunized with gp120 covalently reactive analog was increased compared with similar preparations from animals immunized with control gp120, indicating induction of Ab nucleophilicity. These findings suggest the feasibility of raising antigen-specific proteolytic antibodies on demand by covalent immunization.  相似文献   

4.
Influence of the isotype of the light chain on the properties of IgG.   总被引:1,自引:0,他引:1  
It is widely appreciated that the isotype of the H chain of the Ab molecule influences its functional properties. We have now investigated the contribution of the isotype of the L chain to the structural and functional properties of the Ab molecule. In these studies, the L chain variable region of a murine anti-dansyl Ab was joined to either human kappa or lambda constant region domains and expressed with mouse-human chimeric H chains of the four human IgG isotypes. The resulting Abs were secreted as fully assembled molecules although, as has been previously observed, IgG4 with either kappa or lambda L chains was also secreted as HL half-molecules. However, the isotype of the L chain can influence the kinetics of intracellular assembly with IgG1lambda, IgG2lambda, and IgG4lambda assembling more slowly than their kappa counterparts. The isotype of the L chain also influenced the susceptibility of the interchain disulfide bonds to attack by reducing agents with variable effects, depending on the isotype of the H chains. For IgG2, but not for IgG1, -3, and -4, the isotype of the L chain influenced the rate of clearance in mice, with IgG2lambda having a shorter in vivo half-life than IgG2kappa. Only slight differences were also observed between lambda and kappa molecules in their kinetics of binding to and dissociation from the hapten dansyl. These studies demonstrate that the isotype of the L chain has only a slight impact on the structural and functional properties of variable region identical Abs.  相似文献   

5.
IgG class antibodies express catalytic activities rarely and at very low levels. Here, we studied polyclonal IgA and IgG preparations from healthy human sera and saliva for the ability to hydrolyze model peptidyl-aminomethylcoumarin (peptide-AMC) substrates. These substrates permit objective evaluation of the catalytic potential of the antibody classes with minimal effects of noncovalent interactions occurring at sites remote from the reaction center. The IgA preparations hydrolyzed Glu-Ala-Arg-AMC at rates 3-orders of magnitude greater than IgG preparations from the same individuals. The cleavage occurred preferentially on the C terminal side of a basic residue. The activity was confirmed using monoclonal IgAs isolated from patients with multiple myeloma. Active site-directed inhibitors of serine proteases inhibited the catalytic activity and were bound irreversibly by the IgA, suggesting the involvement of a serine protease-like mechanism similar to that utilized by previously described IgM antibodies. These observations suggest that mechanisms underlying B cell clonal selection favor the retention and improvement of catalytic activity in the IgA, but not the IgG compartment of the immune response.  相似文献   

6.
7.
Ab specificity is determined by V region sequence. The murine Mab 18B7 (IgG1) binds to the Cryptococcus neoformans capsular polysaccharide glucuronoxylomannan and produces annular immunofluorescence (IF) on yeast cells. The heavy and light V regions of 18B7 were expressed with the human C regions micro, gamma 1, gamma 2, gamma 3, gamma 4, and alpha1, and the specificity and binding properties of these mouse-human chimeric (ch) Abs was determined. The chIgG1, chIgG2, chIgG4, and the chIgA produced annular IF, whereas the IgM and IgG3 produced punctate IF, despite identical V region sequences. Competition experiments with murine Abs that competed with mAb 18B7 and binding assays to peptide mimetics of glucuronoxylomannan provided additional evidence for altered specificity in some of the ch Abs. Expression of 18B7 heavy V region with murine micro C region produced IgM with a punctate IF, indicating that a change in fine specificity also accompanied the change from murine IgG1 to IgM. Our results show that Ab fine specificity can be a function of isotype. This phenomenon may be most apparent for Abs that bind to Ag with repeating epitopes, such as polysaccharides, where the quarternary structure of the Ag-Ab complex may be influenced by such constraints as Fab-Fab angles, Fc-Fc interactions, Ab size, and solvent accessibility to exposed surfaces. Alterations in Ab fine specificity following isotype change could have important implications for current concepts on the generation of secondary Ab responses to certain Ags and for the isotype preference observed in Abs to polysaccharides.  相似文献   

8.
The antigen recognition site of antibodies consists of the heavy and light chain variable domains (VL and VH domains). VL domains catalyze peptide bond hydrolysis independent of VH domains (Mei, S., Mody, B., Eklund, S. H., and Paul, S. (1991) J. Biol. Chem. 266, 15571–15574). VH domains bind antigens noncovalently independent of VL domains (Ward, E. S., Güssow, D., Griffiths, A. D., Jones, P. T., and Winter, G. (1989) Nature 341, 544–546). We describe specific hydrolysis of fusion proteins of the hepatitis C virus E2 protein with glutathione S-transferase (GST-E2) or FLAG peptide (FLAG-E2) by antibodies containing the VH domain of an anti-E2 IgG paired with promiscuously catalytic VL domains. The hybrid IgG hydrolyzed the E2 fusion proteins more rapidly than the unpaired light chain. An active site-directed inhibitor of serine proteases inhibited the proteolytic activity of the hybrid IgG, indicating a serine protease mechanism. The hybrid IgG displayed noncovalent E2 binding in enzyme-linked immunosorbent assay tests. Immunoblotting studies suggested hydrolysis of FLAG-E2 at a bond within E2 located ∼11 kDa from the N terminus. GST-E2 was hydrolyzed by the hybrid IgG at bonds in the GST tag. The differing cleavage pattern of FLAG-E2 and GST-E2 can be explained by the split-site model of catalysis, in which conformational differences in the E2 fusion protein substrates position alternate peptide bonds in register with the antibody catalytic subsite despite a common noncovalent binding mechanism. These studies provide proof-of-principle that the catalytic activity of a light chain can be rendered antigen-specific by pairing with a noncovalently binding heavy chain subunit.Antibodies (Abs)2 are composed of light and heavy chain subunits linked by intra- and inter-chain disulfide bonds. The noncovalent antigen binding site of Abs is formed mainly by amino acids located in the complementarity determining regions of the light and heavy chain variable domains (VL and VH domains). Physiological Ab-antigen binding reactions require both Ab subunits. The individual light and heavy chains can bind antigens independent of each other, but the binding affinity of the isolated subunits is often lower than the intact Abs from which they are derived (14). From crystallography analyses of Ab-antigen complexes, it appears that antigen contact areas with the VH domain are somewhat greater than the VL domain (5, 6). Recombinant IgG Abs composed of the heavy chain drawn from antigen-specific IgGs paired with irrelevant light chains retain antigen binding activity, albeit at reduced levels (1, 3).Following the initial noncovalent antigen binding step, some Abs proceed to catalyze hydrolysis of peptide bonds (712). The chemical catalysis step entails nucleophilic attack on the electrophilic carbonyl of peptide bonds by serine protease-like sites present in Ab V domains followed by hydrolysis of the covalent reaction intermediate if a water molecule is available (1315). Unlike reversible binding, the catalytic function offers a means to permanently inactivate the antigen by its hydrolysis into smaller fragments. Reversibly binding Abs bind the antigen stoichiometrically (e.g. 2 antigen molecules/IgG molecule). As catalysts are reusable, a single catalytic Ab molecule can hydrolyze multiple antigen molecules. This offers the possibility of increased antigen neutralizing potency. Therefore, there is considerable interest in developing catalytic Abs directed to individual polypeptide antigens. The serine protease-like activity is a heritable trait encoded by germline Ab V genes, and Abs in the preimmune repertoire can hydrolyze peptides with diverse sequence promiscuously (13, 14, 16, 17). However, the adaptive immune system has evolved to maximize noncovalent binding affinity of Abs over the course of B cell differentiation. Physiological immune mechanisms do not favor retention and improvement of the catalytic function. B cell clonal proliferation is driven by antigen binding to B cell receptors (Abs associated with signal transducing proteins). Antigen hydrolysis by catalytic B cell receptors is followed by release of the antigen fragments, resulting in reduced B cell receptor occupancy and loss of the proliferative stimulus for the cells. Therefore, unlike the noncovalent antigen binding activity, the catalytic function is poorly selectable. Indeed, other than Abs to autoantigen and B cell superantigen substrates, there are no examples of antigen-specific catalytic Abs generated by physiological adaptive mechanisms (18).Much effort has been devoted to developing antigen-specific catalytic Abs by immune and protein engineering strategies. Based on the premise that binding to the transition state reduces the activation energy of the catalytic reaction, immunization with transition state analogs has been applied to raise Abs that catalyze ester bonds in small haptens (19). Attempts to improve the esterase activity by random mutagenesis followed by isolation of transition state analog-binding Abs have also been described (20). Developing antigen-specific proteolytic Abs, however, has been difficult because peptide bond hydrolysis is an energetically demanding reaction. Moreover, there is no viable engineering strategy available to render catalytic Abs specific for individual polypeptide antigens. We (8, 21, 22) and others (23, 24) have identified Ab light chains that hydrolyze peptide bonds promiscuously without participation from the heavy chain subunit. Disruption of the serine protease-like catalytic triad in an Ab light chain by site-directed mutagenesis was without effect on its ability to bind the polypeptide antigen by noncovalent means (13), and a discrete peptide epitope remote from the bond hydrolyzed by a proteolytic Ab preparation has been identified (25). This lead to a split-site model of proteolysis, in which distinct subsites present within the Ab combining site are responsible for initial noncovalent antigen binding and the ensuing peptide bond hydrolysis reaction (26). If this model is correct, it should be possible to develop hybrid proteolytic Abs specific for individual antigens by pairing light chains containing a promiscuous catalytic subsite with heavy chains that contribute the noncovalent subsite responsible for specific antigen binding. We describe proof-of-principle for this engineering approach using previously described catalytic light chains paired with the heavy chain of a monoclonal IgG that binds the hepatitis C virus (HCV) E2 coat protein. This protein is thought to be important in viral entry into hepatocytes and B cells by virtue of its ability to bind receptors expressed on the host cells (27, 28).  相似文献   

9.
The IgM antibodies from rheumatoid arthritis (RA) patients' sera were screened for peptide hydrolyzing activity. Recovery of structurally intact IgM antibodies (Abs), in a single step, was achieved using a weak anion-exchange methacrylate monolith disk. The IgM Abs from patients' sera hydrolyzed the Pro-Phe-Arg-4-methyl-coumaryl-7-amide (PFR-MCA) substrate appreciably compared to the healthy donors. The apparent K(m) values of IgM Abs from patients' sera were between 0.4 and 0.7 mM. Furthermore, IgM Abs displayed 5 to 10-folds greater proteolysis activity than IgG Abs, recovered from the same pathological serum. The proteolysis activity, as a function, was found to be independent of IgM-RF titer value. Affinity labeling approach targeted at the catalytic site histidine was studied, using a specific irreversible inhibitor, N-α-tosyl-L-lysine chloromethyl ketone (TLCK). Despite modification of catalytic His, observation of serine protease like activity suggest presence of an atypical catalytic framework in a few pathological IgM Abs.  相似文献   

10.
Rare monoclonal antibodies (Abs) can form irreversible complexes with antigens by enzyme-like covalent nucleophile-electrophile pairing. To determine the feasibility of applying irreversible antigen inactivation by Abs as the basis of vaccination against microbes, we studied the polyclonal nucleophilic Ab response induced by the electrophilic analog of a synthetic peptide corresponding to the principal neutralizing determinant (PND) of human immunodeficiency virus type-1 (HIV) gp120 located in the V3 domain. Abs from mice immunized with the PND analog containing electrophilic phosphonates (E-PND) neutralized a homologous HIV strain (MN) approximately 50-fold more potently than control Abs from mice immunized with PND. The IgG fractions displayed binding to intact HIV particles. HIV complexes formed by anti-E-PND IgG dissociated noticeably more slowly than the complexes formed by anti-PND IgG. The slower dissociation kinetics are predicted to maintain long-lasting blockade of host cell receptor recognition by gp120. Pretreatment of the anti-PND IgG with a haptenic electrophilic phosphonate compound resulted in more rapid dissociation of the HIV-IgG complexes, consistent with the hypothesis that enhanced Ab nucleophilic reactivity induced by electrophilic immunization imparts irreversible character to the complexes. These results suggest that electrophilic immunization induces a sufficiently robust nucleophilic Ab response to enhance the anti-microbial efficacy of candidate polypeptide vaccines.  相似文献   

11.
It has been proposed that autoreactivity of modest affinity contributes to positive selection of a preimmunization B cell repertoire, whereas high-affinity autoreactivity leads to negative selection. This hypothesis predicts that a B cell producing a physiologically selected unmutated ssDNA-binding Ab should be a precursor of cells that respond to diverse exogenous Ags. To test this prediction, we prepared transgenic mice bearing the rearranged V(H) domain of an IgM Ab from a nonautoimmune mouse immunized with a DNA-protein complex, poly(dC)-methylated BSA. The Ab, dC1, binds both poly(dC) and ssDNA. It is encoded by V(H) and V(L) gene segments with no mutations, suggesting that the producing cell may have been selected before and activated during immunization. The dC1V(H) transgene was targeted to the IgH locus. In heterozygous mice, on a nonautoimmune C57BL/6 background, the transgene allotype was expressed on B cell surfaces and in serum Ig, but about one-third of B cells expressed the endogenous allele instead. Total serum Ig concentrations were normal and included both transgene- and endogenous gene-coded IgM and IgG. The transgene V(H) D(H)J(H) was expressed in splenic IgM cDNA with few or no mutations, and in IgG cDNA with multiple mutations. The transgene allotype was also expressed in Abs formed on immunization with thyroglobulin, pneumococcal polysaccharide, and ssDNA-methylated BSA. Consistent with the hypothesis, cells with a rearranged autoreactive V(H) domain selected for reactivity with a form of ssDNA did serve as precursors for cells producing IgM and IgG Abs to diverse Ags.  相似文献   

12.
Some antibodies contain variable (V) domain catalytic sites. We report the superior amide and peptide bond-hydrolyzing activity of the same heavy and light chain V domains expressed in the IgM constant domain scaffold compared with the IgG scaffold. The superior catalytic activity of recombinant IgM was evident using two substrates, a small model peptide that is hydrolyzed without involvement of high affinity epitope binding, and HIV gp120, which is recognized specifically by noncovalent means prior to the hydrolytic reaction. The catalytic activity was inhibited by an electrophilic phosphonate diester, consistent with a nucleophilic catalytic mechanism. All 13 monoclonal IgMs tested displayed robust hydrolytic activities varying over a 91-fold range, consistent with expression of the catalytic functions at distinct levels by different V domains. The catalytic activity of polyclonal IgM was superior to polyclonal IgG from the same sera, indicating that on average IgMs express the catalytic function at levels greater than IgGs. The findings indicate a favorable effect of the remote IgM constant domain scaffold on the integrity of the V-domain catalytic site and provide a structural basis for conceiving antibody catalysis as a first line immune function expressed at high levels prior to development of mature IgG class antibodies.  相似文献   

13.
We have produced mice that carry the human Ig heavy (IgH) and both kappa and lambda light chain transloci in a background in which the endogenous IgH and kappa loci have been inactivated. The B lymphocyte population in these translocus mice is restored to about one-third of normal levels, with preferential (3:1) expression of human lambda over human kappa. Human IgM is found in the serum at levels between 50 and 400 microg/ml and is elevated following immunization. This primary human Ab repertoire is sufficient to yield diverse Ag-specific responses as judged by analysis of mAbs. The use of DH and J segments is similar to that seen in human B cells, with an analogous pattern of N nucleotide insertion. Maturation of the response is accompanied by somatic hypermutation, which is particularly effective in the light chain transloci. These mice therefore allow the production of Ag-specific repertoires of both IgM,kappa and IgM,lambda Abs and should prove useful for the production of human mAbs for clinical use.  相似文献   

14.
We detected natural antibodies (auto-Abs) binding human granulocyte-macrophage colony stimulating factor (GM-CSF) in umbilical cord blood (CB) (23 of 94 samples screened) and peripheral blood of women at the end of pregnancy (6 of 42 samples tested). To demonstrate that Abs detected in CB were produced by the fetus, CB mononuclear cells were infected with Epstein-Barr virus in vitro. Ten cell lines producing constitutively anti-recombinant human GM-CSF (rhGM-CSF) Abs were isolated and characterized. These cells displayed a male karyotype, an early activated B cell phenotype, coexpressed surface IgM and IgD, and secreted only IgM with prevailing lambda clonal restriction. Specific cell surface binding of biotinylated rhGM-CSF and high-level anti-rhGM-CSF IgM Ab production were typical features of early cell cultures. In late cell passages the frequency of more undifferentiated B cells increased. Serum Abs of either maternal or fetal origin or Abs produced in culture did not affect the granulocyte and macrophage colony stimulating activity of rhGM-CSF from bone marrow progenitors in soft agar, suggesting that the Abs produced were nonneutralizing.  相似文献   

15.
Mouse immunoglobulin (Ig) molecules have previously been shown to bind to the surface of CD5(+) B cells from patients with B-cell chronic lymphocytic leukemia (B-CLL). The results indicated that surface IgM was involved in the interaction and suggested the phenomenon was an example of the polyreactive binding capacity of the surface Ig (sIg) expressed by these malignant cells. This article describes the further characterization of the interaction between human IgM and mouse Ig molecules and subunits. Mouse Ig molecules of both kappa and lambda light chain classes bound to the B-CLL cell surface. The dissociation constant for the interaction of mouse IgG1 (K121) with the B-CLL cell surface was 3.6 x 10(-7) M. To confirm the involvement of the human IgM expressed by the B-CLL cells in the interaction, the malignant cells were stimulated in vitro to induce secretion of human IgM. Enzyme immunoassay was used to show that secreted human IgM bound to intact mouse Ig, as occurred with the cell surface analysis. The mouse Ig epitope recognized by the purified secreted human IgM was shown by Western blot analysis to be located on the light chain of the mouse Ig molecule and to be conformationally dependent. K121 light chain was cloned and expressed in E. coli and the recombinant light chain bound to the surface of CLL B cells. The results confirm that human IgM is the reactive ligand in the interaction with mouse Ig and indicate that the interaction of polyreactive IgM with mouse IgG occurs via the light chain component of IgG.  相似文献   

16.
1E10 mAb is an anti-Id murine mAb (Ab2 mAb) specific for an Ab1 mAb that reacts with NeuGc-containing gangliosides, sulfatides, and Ags expressed in some human tumors. In preclinical studies, this Ab2 Ab was able to mimic NeuGc-containing gangliosides only in animals lacking expression of these Ags in normal tissues. In this study, we report on the immune responses elicited in 20 non-small cell lung cancer patients treated with 1 mg of aluminum hydroxide-precipitated 1E10 mAb. In the hyperimmune sera from 16 of 20 patients, a strong specific Ab response of both IgM and IgG isotypes against NeuGcGM3 ganglioside was observed. Patient immune sera were able to induce complement-independent cell death of NeuGcGM3-expressing X63 murine myeloma target cells. Significant immunoreactivity to NeuGcGM3 was still detected after the complete abrogation of the reactivity against 1E10 mAb by the adsorption of patient sera with this Ab. We hypothesize that Id(-)Ag(+) Abs could reflect the activation of an autologous idiotypic cascade into the patients. Both Id(+)Ag(+) and Id(-)Ag(+) fractions were separated by affinity chromatography and characterized. Although IgG isotype Abs were found in both fractions, IgM isotype Abs were found only in the Id(-)Ag(+) fraction. Both Id(+)Ag(+) and Id(-)Ag(+) Abs were able to specifically recognize and induce cell death in NeuGcGM3-expressing X63 myeloma target cells. Patients that developed IgG and/or IgM Abs against NeuGcGM3 showed longer median survival times.  相似文献   

17.
The elicitation of contact sensitivity (CS) to local skin challenge with the hapten trinitrophenyl (TNP) chloride requires an early process that is necessary for local recruitment of CS-effector T cells. This is called CS initiation and is due to the B-1 subset of B cells activated at immunization to produce circulating IgM Ab. At challenge, the IgM binds hapten Ag in a complex that locally activates C to generate C5a that aids in T cell recruitment. In this study, we present evidence that CS initiation is indeed mediated by C-activating classic IgM anti-TNP pentamer. We further demonstrate the involvement of IgM subunits derived either from hybridomas or from lymphoid cells of actively immunized mice. Thus, reduced and alkylated anti-TNP IgM also initiates CS, likely due to generated H chain-L chain dimers, as does a mixture of separated H and L chains that still could weakly bind hapten, but could not activate C. Remarkably, anti-TNP kappa L chains alone mediated CS initiation that was C-independent, but was dependent on mast cells. Thus, B-1 cell-mediated CS initiation required for T cell recruitment is due to activation of C by specific IgM pentamer, and also subunits of IgM, while kappa L chains act via another C-independent but mast cell-dependent pathway.  相似文献   

18.
Phosphonate ester probes for proteolytic antibodies   总被引:2,自引:0,他引:2  
The reactivity of phosphonate ester probes with several available proteolytic antibody (Ab) fragments was characterized. Irreversible, active site-directed inhibition of the peptidase activity was evident. Stable phosphonate diester-Ab adducts were resolved by column chromatography and denaturing electrophoresis. Biotinylated phosphonate esters were applied for chemical capture of phage particles displaying Fv and light chain repertoires. Selected Ab fragments displayed enriched catalytic activity inhibitable by the selection reagent. Somewhat unexpectedly, a phosphonate monoester also formed stable adducts with the Abs. Improved catalytic activity of phage Abs selected by monoester binding was evident. Turnover values (kcat) for a selected Fv construct and a light chain against their preferred model peptide substrates were 0.5 and 0.2 min(-1), respectively, and the corresponding Michaelis-Menten constants (Km) were 10 and 8 microm. The covalent reactivity of Abs with phosphonate esters suggests their ability to recapitulate the catalytic mechanism utilized by classical serine proteases.  相似文献   

19.
Preformed and induced Ab responses present a major immunological barrier to the use of pig organs for human xenotransplantation. We generated IgM and IgG gene libraries established from lymphocytes of patients treated with a bioartificial liver (BAL) containing pig hepatocytes and used these libraries to identify IgVH genes that encode human Ab responses to pig xenoantigens. Genes encoded by the VH3 family are increased in expression in patients following BAL treatment. cDNA libraries representing the VH3 gene family were generated, and the relative frequency of expression of genes used to encode the Ab response was determined at days 0, 10, and 21. Ig genes derived from the IGHV3-11 and IGHV3-74 germline progenitors increase in frequency post-BAL. The IGHV3-11 gene encodes 12% of VH3 cDNA clones expressed as IgM Abs at day 0 and 32.4-39.0% of cDNA clones encoding IgM Abs in two patients at day 10. IGHV3-11 and IGHV3-74 genes encoding IgM Abs in these patients are expressed without evidence of somatic mutation. By day 21, an isotype switch occurs and IGHV3-11 IgVH progenitors encode IgG Abs that demonstrate somatic mutation. We cloned these genes into a phagemid vector, expressed these clones as single-chain Abs, and demonstrated that the IGHV3-11 gene encodes Abs with the ability to bind to the gal alpha (1,3) gal epitope. Our results demonstrate that the xenoantibody response in humans is encoded by IgVH genes restricted to IGHV3-11 and IGHV3-74 germline progenitors. IgM Abs are expressed in germline configuration and IgG Abs demonstrate somatic mutations by day 21.  相似文献   

20.
The spirochetemia of relapsing fever in mice is cleared by a complement-independent, polyclonal IgM response with reactivity to two prominent Ags of 20 and 35 kDa. In this study, we have dissected the polyclonal IgM Ab response against a relapsing fever spirochete to determine the specificity of its complement-independent bactericidal properties. Our experimental approach selectively generated an IgM murine mAb from the early specific immune response to a variable outer membrane protein. This IgM is bactericidal in the absence of complement and is part of the polyclonal Ab response that mediates the clearance of this bacterium from the blood. Purified monoclonal IgM caused direct structural damage to the outer membrane of the spirochete, in the absence of complement, and protected both B cell- and C5-deficient mice from challenge when administered passively. The direct, complement-independent, bactericidal activity of Abs is a critical mechanism of host defense against infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号