首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIMS: The suitability of genetic fingerprinting to study the microbiological basis of anaerobic bioreactor failure is investigated. METHODS AND RESULTS: Two laboratory-scale anaerobic expanded granular sludge bed bioreactors, R1 and R2, were used for the mesophilic (37 degrees C) treatment of high-strength [10 g chemical oxygen demand (COD) l(-1)] synthetic industrial-like wastewater over a 100-day trial period. A successful start up was achieved by both bioreactors with COD removal over 90%. Both reactors were operated under identical parameters; however, increased organic loading during the trial induced a reduction in the COD removal of R1, while R2 maintained satisfactory performance (COD removal >90%) throughout the experiment. Specific methanogenic activity measurements of biomass from both reactors indicated that the main route of methane production was hydrogenotrophic methanogenesis. Terminal restriction fragment length polymorphism (TRFLP) analysis was applied to the characterization of microbial community dynamics within the system during the trial. The principal differences between the two consortia analysed included an increased abundance of Thiovulum- and Methanococcus-like organisms and uncultured Crenarchaeota in R1. CONCLUSIONS: The results indicated that there was a microbiological basis for the deviation, in terms of operational performance, of R1 and R2. SIGNIFICANCE AND IMPACT OF THE STUDY: High-throughput fingerprinting techniques, such as TRFLP, have been demonstrated as practically relevant for biomonitoring of anaerobic reactor communities.  相似文献   

2.
This paper describes the membrane-aerated, membrane-coupled bioreactor (M2BR), which was developed for wastewater treatment during long-term space missions because it achieves aeration and biomass separation using components that are compatible with microgravity conditions. In the experiments described herein, the M2BR was used to treat a synthetic wastewater formulated by NASA to simulate the wastewater typically collected during space missions. The M2BR was able to achieve more than 90% removal of both chemical oxygen demand (COD) and total nitrogen when it was fed a modified NASA wastewater that had a 4:1 COD to nitrogen ratio. When the full-strength synthetic wastewater was fed to the M2BR (COD:N=1), however, the nitrogenous pollutant removal efficiency was adversely affected because of either insufficient oxygen transfer to support nitrification (an air-fed M2BR) or insufficient electron donor to support denitrification (an oxygen-fed M2BR). In conclusion, the M2BR provides considerable promise for wastewater treatment during long-term space missions, although additional research is needed to identify the best approach to treat the space mission wastewater, which poses a unique challenge because of its low COD:N ratio.  相似文献   

3.
Synthetic wastewater containing 2,4-dichlorophenol (DCP) was biologically treated using a hybrid-loop bioreactor system consisting of a packed column biofilm reactor (PCBR) and an aerated tank with effluent recycle. Effects of the feed DCP concentration on COD, DCP and toxicity removals were investigated. Biomass concentration in the packed column and in the aeration tank decreased with increasing feed DCP content due to toxic effects of DCP on the microorganisms. Low biomass concentrations at high DCP contents resulted in low COD, DCP and toxicity removals. Therefore, percent DCP, COD and toxicity removals decreased with increasing feed DCP content. Nearly 70% COD removal was achieved with a feed DCP content of 380 mg L(-1). The system should be operated with the feed DCP lower than 100 mg L(-1) in order to obtain DCP, COD and toxicity removals above 90%.  相似文献   

4.
Two modified Ludzack-Ettinger (MLE)-type membrane-coupled bioreactors (MBRs) were investigated in this study for the purpose of removing both nitrogenous and carbonaceous pollutants from a synthetic wastewater. During the first MBR experiment, removal efficiencies were high (>90%) for chemical oxygen demand (COD) and ammonia, but total nitrogenous pollutant removal efficiency was poor (~25%). Bacterial community analysis of ammonia oxidizing bacteria (AOB) by a nested PCR-DGGE approach detected two Nitrosomonas-like populations and one Nitrosospira-like population. During the initial portion of the second MBR experiment, COD and ammonia removal efficiencies were similar to the first MBR experiment until the COD of the influent wastewater was increased to provide additional electron donors to support denitrification. Total nitrogen removal efficiencies eventually exceeded 90%, with a hydraulic residence time (HRT) of 24 h and a recirculation ratio of 8. When the HRT of the MBR experiment was decreased to 12 h, however, ammonia removal efficiency was adversely affected. A subsequent increase in the HRT to 18 h helped improve removal efficiencies for both ammonia (>85%) and total nitrogenous compounds (~70%). Our research demonstrates that MBRs can be effectively designed to remove both carbonaceous and nitrogenous pollutants. The ability of the microbial community to switch between anoxic (denitrifying) and oxic (nitrifying) conditions, however, represents a critical process constraint for the application of MLE-type MBR systems, such that little benefit is gained compared to conventional designs.  相似文献   

5.
With the rapid development of scaled anaerobic digestion of pig manure, the generation of liquid anaerobic digestate exceeds the farmland loading capacity, causing serious environmental pollution. Three laboratory‐scale horizontal subsurface flow constructed wetlands (CWs; planted + aeration, planted, and unplanted) were set up to investigate the feasibility of liquid digestate treatment in wetlands. Treatment capacity in different wetlands was evaluated under different influent concentrations (chemical oxygen demand [COD], 5 days biochemical oxygen demand [BOD5], and nitrogen forms). The effect of aeration and effluent recirculation on organic matter and total nitrogen removal was investigated. Results showed that integrating intermittent aeration in CWs significantly improved the oxygen condition (p < 0.01) in the wetland bed and promoted BOD5 removal to 90% in aerated CWs as compared with <15% in the unaerated CWs. Meanwhile, COD removal between these three wetlands did not show any difference and varied from 52 to 72% under influent concentration of 200–820 mg/L because of the high content of hard‐degradable organic matter in the liquid digestate. Intermittent aeration resulted in high ammonium removal (>98%) although the influent loading varied from 65 to 350 mg/L. However, intermittent aeration caused nitrate accumulation of 300 mg/L and limited total nitrogen (TN) removal of 33%. To intensify the TN removal, we verified effluent recirculation to increase the removal efficiency of TN to 78%. These results not only show the potential application of CWs for treatment of high‐strength liquid anaerobic digested slurry, but also indicate the significance of intermittent aeration on the enhanced removal of organic matter and ammonium.  相似文献   

6.
A simple, efficient and cost-effective method for municipal wastewater treatment is examined in this paper. The municipal wastewater is treated using an upflow anaerobic sludge bed (UASB) reactor followed by flash aeration (FA) as the post-treatment, without implementing aerobic biological processes. The UASB reactor was operated without recycle, at hydraulic retention time (HRT) of 8 h and achieved consistent removal of BOD, COD and TSS of 60-70% for more than 12 months. The effect of FA on UASB effluent post-treatment was studied at different HRT (15, 30 and 60 min) and dissolved oxygen (DO) concentrations (low DO = 1-2 mg/L and high DO = 5-6 mg/L). The optimum conditions for BOD, COD and sulfide removal were 30-60 min HRT and high DO concentration inside the FA tank. The final effluent after clarification was characterized by BOD and COD values of 28-35 and 50-58 mg/L, respectively. Sulfides were removed by more than 80%, but the fecal coliform only by ~2 log. The UASB followed by FA is a simple and efficient process for municipal wastewater treatment, except for fecal coliform, enabling water and nutrients recycling to agriculture.  相似文献   

7.
《Process Biochemistry》2014,49(12):2241-2248
Membrane bioreactors (MBR) technology for wastewater offers many advantages over conventional technologies such as high effluent quality, less footprint and others. The main disadvantage of membrane bioreactors (MBR) is related to membrane fouling, which is mainly caused by extracellular polymeric substance (EPS) and soluble microbial products (SMP). This research studied EPS and SMP dynamics at different heights of a submerged anaerobic membrane bioreactor (SAMBR). The SAMBR was operated under two organic loading rates (OLR) (0.79 and 1.56 kg/m3 d) and was fed with synthetic wastewater with glucose as the carbon source. The results showed percentages of chemical oxygen demand (COD) removal above 95% and the highest COD removal rates were observed at the bottom of the reactor (>83%) for both OLR. The EPS showed a stratification with highest quantities in the supernatant. For the SMP the highest concentration was in the bottom of SAMBR where utilization predominated associated products whereas in the SAMBR supernatant predominated biomass associated products. The OLR change led to a significant increase in SMP accumulation but not in EPS. These facts showed that EPS and SMP dynamic in the SAMBR seemed to be mainly influenced by biological activity, total suspended solids concentration and substrate composition.  相似文献   

8.
The anaerobic treatment of the wastewater from the meat processing industry was studied using a 7.2 1 UASB reactor. The reactor was equipped with an unconventional configuration of the three-phase separation system. The effluent was characterized in terms of pH (6.3-6.6), chemical oxygen demand (COD) (2,000-6,000 mg l(-1)), biochemical oxygen demand BOD5 (1,300-2,300 mg 1(-1)), fats (40-600 mg l(-1)) and total suspended solids (TSS) (850-6,300 mg l(-1)) The reactor operated continuously throughout 80 days with hydraulic retention time of 14, 18 and 22 h. The wastewater from Rezende Industrial was collected after it had gone through pretreatment (screening, flotation and equalization). COD, BOD and TSS reductions and the biogas production rate were the parameters considered in analyzing the efficiency of the process. The average production of biogas was 111 day(-1) (STP) for the three experimental runs. COD removal varied from 77% to 91% while BOD removal was 95%. The removal of total suspended solids varied from 81% to 86%. This fact supports optimal efficiency of the proposed three-phase separation system as well as the possibility of applying it to the treatment of industrial effluents.  相似文献   

9.
A pilot scale anaerobic submerged membrane bioreactor (AnSMBR) with an external filtration unit for municipal wastewater treatment was operated for 100 days. Besides gas sparging, additional shear was created by circulating sludge to control membrane fouling. During the first 69 days, the reactor was operated under mesophilic temperature conditions. Afterwards, the temperature was gradually reduced to 20 °C. A slow and linear increase in the filtration resistance was observed under critical flux conditions (7 L/(m2 h)) at 35 °C. However, an increase in the fouling rate probably linked to an accumulation of solids, a higher viscosity and soluble COD concentrations in the reactor was observed at 20 °C. The COD removal efficiency was close to 90% under both temperature ranges. Effluent COD and BOD5 concentrations were lower than 80 and 25 mg/L, respectively. Pathogen indicator microorganisms (fecal coliforms bacteria) were reduced by log(10)5. Hence, the effluent could be used for irrigation purposes in agriculture.  相似文献   

10.
A 30-l anaerobic bioreactor with biomass recycling was used to provide a continuous reduction in sulphate and a continuous COD removal from wastewater, which consisted of the effluent from an industrial pig fattening farm, enriched with technical FeSO(4) x 7H(2)O, a waste product from ferrous metallurgy. The concentrations of sulphate and COD in the wastewater amounted to 2.73 g l(-1) and 3.15 g l(-1), respectively. The HRT (hydraulic retention time) of 10-1.7d produced an extent of sulphate and COD reduction which totalled 98% and 88%, respectively. When the HRT was further shortened, the efficiency of reduction in sulphate and COD decreased. The maximum removal rate constants for both the pollutants, calculated by means of a modified Stover-Kincannon model, were 80.9 g COD l(-1)d(-1) and 41.8 g SO(4)(2-)l(-1)d(-1), the values of the saturation constants being 91.582 g COD l(-1)d(-1) and 42.398 g SO(4)(2-)l(-1)d(-1).  相似文献   

11.
Membrane bioreactors can replace the activated sludge process and the final clarification step in municipal wastewater treatment. The combination of bioreactor and crossflow microfiltration allows for a high chemical oxygen demand (COD) reduction of synthetic wastewater. From biomass, grown at high production rates in the aerobic bioreactor, energy rich biogas can be obtained in a subsequent anaerobic bioreactor. In this paper, experimental data from a laboratory scale membrane bioreactor are presented. The degradation of synthetic wastewater at short hydraulic retention times down to 1.5 h has been studied. The organic loading rate (OLR) has been varied in the range of 6-13 kg m(-3) per day. At steady state a high quality filtrate could be obtained at different operating conditions. At biomass concentrations of 10-22 g l(-1), COD reduction was above 95%.  相似文献   

12.
This study describes the feasibility of anaerobic treatment of synthetic coal wastewater using four identical 13.5L (effective volume) bench scale hybrid up flow anaerobic sludge blanket (HUASB) reactors (R1, R2, R3 and R4) under mesophilic (27+/-5 degrees C) conditions. Synthetic coal wastewater with an average chemical oxygen demand (COD) of 2240 mg/L and phenolics concentration of 752 mg/L was used as substrate. Effluent recirculation was employed at four different effluent to feed recirculation ratios (R/F) of 0.5, 1.0, 1.5 and 2.0 for 100 days to study the effect of recirculation on the performance of the reactors. Phenolics and COD removal was found to improve with increase in effluent recirculation. An effluent to feed recycle ratio of 1.0 resulted in maximum removal of phenolics and COD. Phenolics and COD removal improved from 88% and 92% to 95% each, respectively. The concentration of volatile fatty acids in the effluent was lower than the influent when effluent to feed recirculation was employed. Effect of shock loading on the reactors revealed that phenolics shock load up to 2.5 times increase in the normal input phenolics concentration in the form of continuous shock load for 4days did not affect the reactors performance irreversibly.  相似文献   

13.
Treatment of textile wastewater is a big challenge because of diverse chemical composition, high chemical strength and color of the wastewater. In the present study, treatment of wastewater containing reactive black-5 azo dye was studied in anaerobic sequencing batch bioreactor (SBBR) using mixed liquor suspended solids (MLSS) from suspended and attach growth bioreactors. MLSS at concentration of 1000 mg/L and reactive black-5 azo dye at 100 mg/L were used. A culture (108–109 CFU/ml) of pre-isolated bacterial strains (Psychrobacter alimentarius KS23 and Staphylococcus equorum KS26)) capable of degrading azo dyes in mineral salt medium was used to accelerate the treatment process in bioreactor. Different combinations of sludge, culture and dye were used for treatment using different co-substrates. About 85% COD removal was achieved by consortium (MLSS + KS23 + KS26) after 24 h in attach growth bioreactor. Similarly, 92% color removal was observed with consortium in attach growth bioreactor compared to 85% color removal in suspended bioreactor. Addition of bacterial culture (20%, v/v) to the bioreactor could enhance the rate of color removal. This study suggests that biotreatment of wastewater containing textile dyes can be achieved more efficiently in the attach growth bioreactor using yeast extract as a co-substrate and MLSS augmented with dye-degrading bacterial strains.  相似文献   

14.
Combining membrane technology with biological reactors for the treatment of municipal and industrial wastewaters has led to the development of three generic membrane processes within bioreactors: for separation and recycle of solids; for bubbleless aeration of the bioreactor; and for extraction of priority organic pollutants from hostile industrial wastewaters. Commercial aerobic and anaerobic membrane separation bioreactors already provide a small footprint alternative to conventional biological treatment methods, producing a high-quality effluent at high organic loading rates. Both the bubbleless aeration and extractive membrane bioreactors are in the development stages. The former uses gas-permeable membranes to improve the mass transfer of oxygen to the bioreactor by providing bubbleless oxygen. By using a silicone membrane process, extractive membrane bioreactors transfer organic pollutants from chemically hostile wastewaters to a nutrient medium for subsequent biodegradation. All three membrane bioreactor (MBR) processes are comparatively and critically reviewed. (c) 1996 John Wiley & Sons, Inc.  相似文献   

15.
The aim of this study was to assess the effect of several operational variables on both biological and separation process performance in a submerged anaerobic membrane bioreactor pilot plant that treats urban wastewater. The pilot plant is equipped with two industrial hollow-fibre ultrafiltration membrane modules (PURON? Koch Membrane Systems, 30 m2 of filtration surface each). It was operated under mesophilic conditions (at 33 °C), 70 days of SRT, and variable HRT ranging from 20 to 6h. The effects of the influent COD/SO?-S ratio (ranging from 2 to 12) and the MLTS concentration (ranging from 6 to 22 g L?1) were also analysed. The main performance results were about 87% of COD removal, effluent VFA below 20 mg L?1 and biogas methane concentrations over 55% v/v. Methane yield was strongly affected by the influent COD/SO?-S ratio. No irreversible fouling problems were detected, even for MLTS concentrations above 22 g L?1.  相似文献   

16.
Kraft mill is responsible for massive discharge of highly polluted effluents. The main characteristics of this effluent are high toxicity and low biodegradability due to tannin, lignin and chlorophenol compounds. The composition may vary dramatically depending, for instance, on the utilised feedstock and process. The purpose of this work was to investigate the molecular weight distribution of Pinus radiata kraft pulping wastewater treated by anaerobic digestion by using two types of anaerobic reactors: fixed bed and sludge blanket. Anaerobic sludge blanket (UASB) and anaerobic filter (AF) were operated. In both reactors, the total alkalinity ranged between 1.0 and 1.5 g CaCO3/l, while the organic load rate (OLR) was increasing during operation from 1.2 to 3.3 gCOD/l d. COD and total phenolic compounds (UV215) removal ranged between 30-50% and 13-20%, respectively, while the BOD5 removal ranged 60-90%. However only a partial biodegradation (10-43%) of tannin and lignin was observed. Results from ultrafiltration analyses indicated that the fraction with a molecular weight (MW) < 1000, COD and colour decreased after anaerobic treatment, but the total phenolic compounds increased. In the 1000 < MW < 10,000 fraction, there was no change in COD, UV215 and colour. In the > 10,000 MW fraction, colour and COD fraction increased by 14% and 5%, respectively, after anaerobic treatment. It can be concluded from this study, that treatment with UASB or AF reactors is not enough, under the conditions tested, for a large COD removal from Pinus radiata wastewater.  相似文献   

17.
Biological treatment systems for high strength wastewaters are usually operated in continuous mode such as activated sludge systems. When operated at steady-state, continuous systems result in constant effluent standards. However, in the presence of shock loadings and/or toxic compounds in feed wastewater, system performance drops quite significantly as a result of partial loss of microbial activity. In fed-batch operation, wastewater is fed to the aeration tank with a flow rate determined by effluent standards. In this type of operation, wastewater can be fed to biological oxidation unit intermittently or continuously with a low flow rate without any effluent removal. Feed flow rate is adjusted by measuring COD concentration in the effluent. As a result of intermittent addition of wastewater high COD concentrations and toxic compounds are diluted in large volume of aeration tank and inhibition effects of those compounds are reduced. As a result, biological oxidation of these compounds take place at a much higher rate. In order to show the aforementioned advantage of fed-batch operation, a high strength synthetic wastewater consisting of diluted molasses, urea, KH2PO4 and MgSO4 was treated in an biological aeration tank by fed-batch operation. Organisms used were an active and dominant culture of Zooglea ramigera commonly encountered in activated sludge operations. COD removal kinetics was found to be first order and the rate constant was determined.  相似文献   

18.
Summary An anaerobic hybrid reactor was used in the anaerobic treatment of an acidic petrochemical effluent. An organic loading rate of 20.04 kg COD/(m3d) at a HRT of 17 hours was obtained with a volatile fatty acid removal of 91%, and COD removal of 84%. A final reactor effluent containing 44 mg/l ammonia nitrogen and 12.3 mg/l PO4-P was produced.  相似文献   

19.
Pilot-scale constructed wetlands (CW) were constructed and operated to treat pre-treated olive mill wastewater. Pilot-scale units comprising three identical series with four pilot-scale vertical flow CWs were operated for one harvest season in a Greek olive mill plant. The pilot-scale CWs were filled with various porous media (i.e., cobble, gravel, and sand) of different gradations. Two series of pilot-scale units were planted with common reeds and the third (control) was unplanted. Mean influent concentrations were 14,120 mg/L, 2841 mg/L, 95 mg/L, 123 mg/L and 506 mg/L for COD, phenols, ortho-phosphate, ammonia and TKN, respectively. Despite the rather high influent concentrations, the performance of the CW units was very effective since it achieved removals of about 70%, 70%, 75% and 87% for COD, phenols, TKN and ortho-phosphate, respectively. COD, phenol and TKN removal seems to be significantly higher in the planted series, while ortho-phosphate removal shows no significant differences among the three series. Temperature and pollutant surface load seem to affect the removal efficiency of all pollutants. Compared to previous studies, pollutant surface loads applied here were higher (by one or two orders of magnitude). Even though high removal efficiencies were achieved, effluent pollutant concentrations remained high, thus preventing their use for irrigation or immediate disposal into the environment.  相似文献   

20.
In Ireland, wastewaters emanating from the food industry typically contain elevated levels of nitrogen and phosphorus before treatment. Two pilot scale studies were performed to determine the feasibility of achieving biological N and P removal on-site at a food ingredients plant. The wastewater treated by the pilot reactors was that which resulted from the day-to-day production in the full-scale food ingredients plant. Both reactors were of the anaerobic/anoxic/oxic (A/A/O) design, however the sizing of the zones was varied in this study. In the first pilot study, while treating a wastewater of the following strength: 1008 mg COD/l; 30.1 mg NH4-N/l and 26.7 mg P/l, removal efficiencies of 93%, 99% and 98% were obtained for COD, NH4-N and P, respectively. In the second study, while operating at reduced hydraulic retention times and lower recycle rates, the pilot plant treated a wastewater of the following strength: 1757 mg COD/l; 62 mg NH4-N/l and 57 mg P/l, with removal efficiencies of 94%, 97% and 75% obtained for COD, NH4-N and P, respectively. This work showed that biological nutrient removal could be successfully applied to treatment of food industry wastewaters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号