首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oxidative stress response in Bacillus subtilis   总被引:9,自引:0,他引:9  
Abstract Bacillus subtilis undergoes a typical bacterial stress response when exposed to low concentrations (0.1 mM) of hydrogen peroxide. Protection is thereby induced against otherwise lethal, challenge concentrations (10 mM) of this oxidant and a number of proteins are induced including the scavenging enzymes, catalase and alkyl hydroperoxide reductase, and a putative DNA binding and protecting protein. Induced protection against higher concentrations (10–30 mM) of hydrogen peroxide is eliminated in a catalase-deficient mutant. Both RecA and Spo0A influence the basal but not the induced resistance to hydrogen peroxide. A regulatory mutation has been characterized that affects the inducible phenotype and is constitutively resistant to high concentrations of hydrogen peroxide. This mutant constitutively overexpresses the proteins induced by hydrogen peroxide in the wild-type. The resistance of spores to hydrogen peroxide is partly attributable to binding of small acid soluble proteins by the spore DNA and partly to a second step which coincides with the depletion of the NADH pool, which may inhibit the generation of hydroxyl radicals from hydrogen peroxide.  相似文献   

2.
The OxyR regulon   总被引:1,自引:0,他引:1  
  相似文献   

3.
4.
The synthesis of manganese-superoxide dismutase in response to hydrogen peroxide and to paraquat was examined in strains of Escherichia coli with different mutations in the oxyR gene. Hydrogen peroxide treatment did not induce manganese-superoxide dismutase, but did induce the oxyR regulon. Paraquat induced this enzyme in a strain compromised in its ability to induce the defense response against oxidative stress (oxyR deletion) as well as in a strain that is constitutive and overexpresses the oxyR regulon. Catalase (HPI), but not manganese-superoxide dismutase, was over-expressed under anaerobic conditions in a strain harboring a constitutive oxyR mutation. The data clearly demonstrate that the induction of manganese-superoxide dismutase is independent of the oxyR-controlled regulon.  相似文献   

5.
6.
7.
The plant pathogen Ralstonia solanacearum, which causes bacterial wilt disease, is exposed to reactive oxygen species (ROS) during tomato infection and expresses diverse oxidative stress response (OSR) genes during midstage disease on tomato. The R. solanacearum genome predicts that the bacterium produces multiple and redundant ROS-scavenging enzymes but only one known oxidative stress response regulator, OxyR. An R. solanacearum oxyR mutant had no detectable catalase activity, did not grow in the presence of 250 μM hydrogen peroxide, and grew poorly in the oxidative environment of solid rich media. This phenotype was rescued by the addition of exogenous catalase, suggesting that oxyR is essential for the hydrogen peroxide stress response. Unexpectedly, the oxyR mutant strain grew better than the wild type in the presence of the superoxide generator paraquat. Gene expression studies indicated that katE, kaG, ahpC1, grxC, and oxyR itself were each differentially expressed in the oxyR mutant background and in response to hydrogen peroxide, suggesting that oxyR is necessary for hydrogen peroxide-inducible gene expression. Additional OSR genes were differentially regulated in response to hydrogen peroxide alone. The virulence of the oxyR mutant strain was significantly reduced in both tomato and tobacco host plants, demonstrating that R. solanacearum is exposed to inhibitory concentrations of ROS in planta and that OxyR-mediated responses to ROS during plant pathogenesis are important for R. solanacearum host adaptation and virulence.  相似文献   

8.
Escherichia coli treated with nontoxic levels of the superoxide-generating redox-cycling agents menadione and paraquat showed dramatic changes in protein composition as monitored by two-dimensional gel analysis. The distribution of proteins synthesized after treatment with these agents overlapped significantly with that seen after hydrogen peroxide treatment, and it included all the proteins in the oxyR regulon. The redox-cycling agents also elicited the synthesis of at least 33 other proteins that were not seen with hydrogen peroxide, including three heat shock proteins, the Mn-containing superoxide dismutase, the DNA repair protein endonuclease IV, and glucose-6-phosphate dehydrogenase. At least some of these redox-inducible proteins appear to be part of a specific response to intracellular superoxide. E. coli is thus equipped with a network of inducible responses against oxidative damage, controlled in multiple regulatory pathways.  相似文献   

9.
Peroxidative oxidation of dichlorobenzidine in vitro results in covalent binding to exogenous DNA. In a modified Ames assay, mutagenicity is observed in S. typhimurium strain TA98 following the incubation of dichlorobenzidine, bacteria, and hydrogen peroxide. In this paper, we demonstrate that [14C]dichlorobenzidine becomes covalently bound to S. typhimurium macromolecules, including DNA, when exogenous hydrogen peroxide is supplied. We compared the levels of binding in a pair of otherwise isogenic strains with wild-type (oxyR+) versus constitutive (oxyR1) expression of the hydrogen peroxide stress-induced regulon. Binding was approximately twofold higher in TA4124 (oxyR1) than in TA4123 (oxyR+). Bacterial hydroperoxidases may catalyze the activation of dichlorobenzidine to mutagenic and DNA binding species in this system.  相似文献   

10.
11.
Vitreoscilla becomes resistant to killing by hydrogen peroxide and heat shock when pretreated with nonlethal levels of hydrogen peroxide. The pretreated Vitreoscilla cells (60 microM hydrogen peroxide for 120 min) significantly increased survival of the lethal dose of 20 mM hydrogen peroxide or heat shock (22 degrees C --> 37 degrees C). This indicates the existence of an adaptive response to oxidative stress. However, cells pretreated with 60 microM hydrogen peroxide became nonresistant to a lethal dose of a menadione. This result shows that hydrogen peroxide does not induce cross-resistance to menadione in Vitreoscilla. Furthermore, Vitreoscilla treated with hydrogen peroxide, heat shock, and menadione showed a change in the protein composition, as monitored by a two-dimensional gel analysis. During adaptation to hydrogen peroxide, 12 proteins were induced. Also, 18 new proteins synthesized in response to heat shock were detected by a 2-D gel analysis. The redox-cycling agents also elicited the synthesis of 6 other proteins that were unseen with hydrogen peroxide.  相似文献   

12.
13.
14.
Tannins are plant-derived polyphenols with antimicrobial effects. The mechanism of tannin toxicity towards Escherichia coli was determined by using an extract from Acacia mearnsii (Black wattle) as a source of condensed tannins (proanthocyanidins). E. coli growth was inhibited by tannins only when tannins were exposed to oxygen. Tannins auto-oxidize, and substantial hydrogen peroxide was generated when they were added to aerobic media. The addition of exogenous catalase permitted growth in tannin medium. E. coli mutants that lacked HPI, the major catalase, were especially sensitive to tannins, while oxyR mutants that constitutively overexpress antioxidant enzymes were resistant. A tannin-resistant mutant was isolated in which a promoter-region point mutation increased the level of HPI by 10-fold. Our results indicate that wattle condensed tannins are toxic to E. coli in aerobic medium primarily because they generate H(2)O(2). The oxidative stress response helps E. coli strains to overcome their inhibitory effect.  相似文献   

15.
BACKGROUND: Mycobacterium tuberculosis is a significant human pathogen capable of replicating in mononuclear phagocytic cells. Exposure to reactive oxygen and nitrogen intermediates is likely to represent an important aspect of the life cycle of this organism. The response of M. tuberculosis to these agents may be of significance for its survival in the host. MATERIALS AND METHODS: Patterns of de novo proteins synthesized in M. tuberculosis H37Rv exposed to compounds that generate reactive oxygen and nitrogen intermediates were studied by metabolic labeling and two-dimensional electrophoresis. RESULTS: Menadione, a redox cycling compound which increases intracellular superoxide levels, caused enhanced synthesis of seven polypeptides, six of which appeared to be heat shock proteins. Chemical release of nitric oxide induced eight polypeptides of which only one could be identified as a heat shock protein. Nitric oxide also exhibited a mild inhibitory action on general protein synthesis in the concentration range tested. Hydrogen peroxide did not cause differential gene expression and exerted a generalized inhibition in a dose-dependent manner. Cumene hydroperoxide caused mostly inhibition but induction of two heat shock proteins was detectable. CONCLUSIONS: The presented findings indicate major differences between M. tuberculosis and the paradigms of oxidative stress response in enteric bacteria, and are consistent with the multiple lesions found in oxyR of this organism. The effect of hydrogen peroxide, which in Escherichia coli induces eight polypeptides known to be controlled by the central regulator oxyR, appears to be absent in M. tuberculosis. Superoxide and nitric oxide responses, which in E. coli overlap and are controlled by the same regulatory system soxRS, represent discrete and independent phenomena in M. tuberculosis.  相似文献   

16.
Killing of Escherichia coli by hydrogen peroxide proceeds by two modes. Mode one killing appears to be due to DNA damage, has a maximum near 1 to 3 mM H2O2, and requires active metabolism during exposure. Mode two killing is due to uncharacterized damage, occurs in the absence of metabolism, and exhibits a classical multiple-order dose-response curve up to at least 50 mM H2O2 (J. A. Imlay and S. Linn, J. Bacteriol. 166:519-527, 1986). H2O2 induces the SOS response in proportion to the degree of killing by the mode one pathway, i.e., induction is maximal after exposure to 1 to 3 mM H2O2. Mutant strains that cannot induce the SOS regulon are hypersensitive to peroxide. Analysis of the sensitivities of mutants that are deficient in individual SOS-regulated functions suggested that the SOS-mediated protection is due to the enhanced synthesis of recA protein, which is rate limiting for recombinational DNA repair. Specifically, strains wholly blocked in both SOS induction and DNA recombination were no more sensitive than mutants that are blocked in only one of these two functions, and strains carrying mutations in uvrA, -B, -C, or -D, sfiA, umuC or -D, ssb, or dinA, -B, -D, -F, -G, -H, -I, or -J were not abnormally sensitive to killing by H2O2. After exposure to H2O2, mutagenesis and filamentation also occurred with the dose response characteristic of SOS induction and mode one killing, but these responses were not dependent on the lexA-regulated umuC mutagenesis or sfiA filamentation functions, respectively. Exposure of E. coli to H2O2 also resulted in the induction of functions under control of the oxyR regulon that enhance the scavenging of active oxygen species, thereby reducing the sensitivity to H2O2. Catalase levels increased 10-fold during this induction, and katE katG mutants, which totally lack catalase, while not abnormally sensitive to killing by H2O2 in the naive state, did not exhibit the induced protective response. Protection equal to that observed during oxyR induction could be achieved by the addition of catalase to cultures of naive cells in an amount equivalent to that induced by the oxyR response. Thus, the induction of catalase is necessary and sufficient for the observed oxyR-directed resistance to killing by H2O2. Although superoxide dismutase appeared to be uninvolved in this enhanced protective response, sodA sodB mutants, which totally lack superoxide dismutase, were especially sensitive to mode one killing by H2O2 in the naive state. gshB mutants, which lack glutathione, were not abnormally sensitive to killing by H2O2.  相似文献   

17.
Bacterial cells respond to the deleterious effects of reactive oxygen species by inducing the expression of antioxidant defence genes. Here we show that treatment with hydrogen peroxide leads to a transient decrease in DNA negative supercoiling. We also report that hydrogen peroxide activates topA P1 promoter expression. The peroxide-dependent topA P1 activation is independent of oxyR, but is mediated by Fis. This nucleoid-associated protein binds to the promoter region of topA. We also show that a fis deficient mutant strain is extremely sensitive to hydrogen peroxide. Our results suggest that topA activation by Fis is an important component of the Escherichia coli response to oxidative stress.  相似文献   

18.
The effect of hydrogen peroxide on the activity of soxRS and oxyR regulon enzymes in different strains of Escherichia coli has been studied. Treatment of bacteria with 20 μM H2O2 caused an increase in catalase and peroxidase activities (oxyR regulon) in all strains investigated. It is shown for the first time that oxidative stress induced by hydrogen peroxide causes in some E. coli strains a small increase in activity of superoxide dismutase and glucose-6-phosphate dehydrogenase (soxRS regulon). This effect is cancelled by chloramphenicol, an inhibitor of protein synthesis in prokaryotes. The increase in soxRS regulon enzyme activities was not found in the strain lacking the soxR gene. These results provide evidence for the involvement of the soxRS regulon in the adaptive response of E. coli to oxidative stress induced by hydrogen peroxide. __________ Translated from Biokhimiya, Vol. 70, No. 11, 2005, pp. 1506–1513. Original Russian Text Copyright ? 2005 by Semchyshyn, Bagnyukova, Lushchak.  相似文献   

19.
Upon the cessation of exponential growth, Bacillus subtilis enters a transition phase leading to either sporulation or a non-sporulating stationary phase. During this transition period, cells secrete degradative enzymes, become competent for DNA transformation, are motile and acquire resistance to oxidative killing. We now report that mrgA , originally identified as a gene repressed by metal ions, encodes a member of the Dps/PexB family of general stress proteins. Like Escherichia coli Dps(PexB), MrgA forms highly stable, multimeric protein-DNA complexes which accumulate in stationary-phase cells and protect against oxidative killing. MrgA is part of an inducible oxidative stress response in B. subtilis : mrgA is induced by hydrogen peroxide, and a strain lacking MrgA displays increased sensitivity to oxidative killing. In addition, a hydrogen peroxide-resistant mutant, which constitutively overproduces catalase and alkyl hydroperoxide reductase, also overproduces MrgA. These results indicate a complex interplay between metal ions and the expression of the B. subtilis oxidative stress response.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号