首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Exhaled nitric oxide (NO) is altered in asthmatic subjects with exercise-induced bronchoconstriction (EIB). However, the physiological interpretation of exhaled NO is limited because of its dependence on exhalation flow and the inability to distinguish completely proximal (large airway) from peripheral (small airway and alveolar) contributions. We estimated flow-independent NO exchange parameters that partition exhaled NO into proximal and peripheral contributions at baseline, postexercise challenge, and postbronchodilator administration in steroid-naive mild-intermittent asthmatic subjects with EIB (24-43 yr old, n = 9) and healthy controls (20-31 yr old, n = 9). The mean +/- SD maximum airway wall flux and airway diffusing capacity were elevated and forced expiratory flow, midexpiratory phase (FEF(25-75)), forced expiratory volume in 1 s (FEV(1)), and FEV(1)/forced vital capacity (FVC) were reduced at baseline in subjects with EIB compared with healthy controls, whereas the steady-state alveolar concentration of NO and FVC were not different. Compared with the response of healthy controls, exercise challenge significantly reduced FEV(1) (-23 +/- 15%), FEF(25-75) (-37 +/- 18%), FVC (-12 +/- 12%), FEV(1)/FVC (-13 +/- 8%), and maximum airway wall flux (-35 +/- 11%) relative to baseline in subjects with EIB, whereas bronchodilator administration only increased FEV(1) (+20 +/- 21%), FEF(25-75) (+56 +/- 41%), and FEV(1)/FVC (+13 +/- 9%). We conclude that mild-intermittent steroid-naive asthmatic subjects with EIB have altered airway NO exchange dynamics at baseline and after exercise challenge but that these changes occur by distinct mechanisms and are not correlated with alterations in spirometry.  相似文献   

2.
The purpose of this study was to assess whether our method of inducing forced expiration detects small airway obstruction in horses. Parameters derived from forced expiratory flow-volume (FEFV) curves were compared with lung mechanics data obtained during spontaneous breathing in nine healthy horses, in three after histamine challenge, and in two with chronic obstructive pulmonary disease (COPD) pre- and posttherapy with prednisone. Parameters measured in the healthy horses included forced vital capacity (FVC = 41.6 +/- 5.8 liters; means +/- SD) and forced expiratory flow (FEF) at various percentages of FVC (range of 20.4-29.7 l/s). Histamine challenge induced a dose-dependent decrease in FVC and FEF at low lung volume. After therapy, lung function of the two COPD horses improved to a point where one horse had normal lung mechanics during tidal breathing; however, FEF at 95% of FVC (4.9 l/s) was still decreased. We concluded that FEFV curve analysis allowed the detection of induced or naturally occurring airway obstruction.  相似文献   

3.
Hypoxia and hypoxic exercise increase pulmonary arterial pressure, cause pulmonary capillary recruitment, and may influence the ability of the lungs to regulate fluid. To examine the influence of hypoxia, alone and combined with exercise, on lung fluid balance, we studied 25 healthy subjects after 17-h exposure to 12.5% inspired oxygen (barometric pressure = 732 mmHg) and sequentially after exercise to exhaustion on a cycle ergometer with 12.5% inspired oxygen. We also studied subjects after a rapid saline infusion (30 ml/kg over 15 min) to demonstrate the sensitivity of our techniques to detect changes in lung water. Pulmonary capillary blood volume (Vc) and alveolar-capillary conductance (D(M)) were determined by measuring the diffusing capacity of the lungs for carbon monoxide and nitric oxide. Lung tissue volume and density were assessed using computed tomography. Lung water was estimated by subtracting measures of Vc from computed tomography lung tissue volume. Pulmonary function [forced vital capacity (FVC), forced expiratory volume after 1 s (FEV(1)), and forced expiratory flow at 50% of vital capacity (FEF(50))] was also assessed. Saline infusion caused an increase in Vc (42%), tissue volume (9%), and lung water (11%), and a decrease in D(M) (11%) and pulmonary function (FVC = -12 +/- 9%, FEV(1) = -17 +/- 10%, FEF(50) = -20 +/- 13%). Hypoxia and hypoxic exercise resulted in increases in Vc (43 +/- 19 and 51 +/- 16%), D(M) (7 +/- 4 and 19 +/- 6%), and pulmonary function (FVC = 9 +/- 6 and 4 +/- 3%, FEV(1) = 5 +/- 2 and 4 +/- 3%, FEF(50) = 4 +/- 2 and 12 +/- 5%) and decreases in lung density and lung water (-84 +/- 24 and -103 +/- 20 ml vs. baseline). These data suggest that 17 h of hypoxic exposure at rest or with exercise resulted in a decrease in lung water in healthy humans.  相似文献   

4.
Spirometry should be more widely used in routine examinations. Equipment should meet the individual physician''s or hospital''s needs and include either a dependable water-sealed spirometer or an easily calibrated and accurate electronic spirometer. Justifiable concern over the reliability of electronic spirometers has resulted in requests to determine performance standards for these medical devices. Predicted normal standards must apply to the particular spirometer. Recommended tests are those of vital capacity (VC), forced vital capacity (FVC), one-second forced expiratory volume (FEV1), the ratio of one-second forced expiratory flow (FEF200-1200) and forced midexpiratory flow (FEF25-75 percent). The maximum voluntary ventilation (MVV) test may be useful for evaluation of work disability and detection of extrathoracic obstruction. Additional consideration may be given to measurements of total lung capacity (TLC) to discriminate between restrictive and obstructive impairment and the forced end-expiratory flow (FEF75-85 percent) to detect mild small airway obstruction. At this time, flow-volume curves measurement cannot be justified for routine clinical use.  相似文献   

5.
The FVC, FEV1.0, FEF25-75%, and FEV1.0/FVC (%) were measured in 162 males aged 18.9-78.6 yr using a Stead-Wells spirometer. Multiple regression equations were generated to predict these lung parameters from the best weighted combination (p less than or equal to 0.05) of age, standing height, sitting height, biacromial breadth, and chest expansion (FVC: R = 0.843, SEE = 513 ml BTPS; FEV1.0: R = 0.850, SEE = 436 ml BTPS; FEF25-75%: R = 0.665, SEE = 997 ml/s BTPS; FEV1.0/FVC: R = 0.537, SEE = 4.95%). The lower limit of normality was defined as the predicted value minus the 95% confidence interval (one-tailed test). Cross-validation of other FVC, FEV1.0, and FEF25-75% equations in the literature indicate that all the FVC and FEV1.0 ones are unsuitable for the sample and instrumentation used in this investigation.  相似文献   

6.
Wang DY  Feng K  Chen L  Zu SY  Han SM  Zhu GJ 《生理学报》2010,62(5):455-464
The aim of the present study was to evaluate the relation between fat mass (FM), fat free mass (FFM) and ventilatory function in children and adolescents. 1 174 healthy children and adolescents (583 males and 591 females) aged 10-18 years were selected from Heilongjiang Province through random sampling by means of questionnaire and physical examination, and measured for height, weight, waist to hip ratio (WHR), FM, FFM and ventilatory function. The data were analyzed by means of independent-samples t test, Pearson correlation analysis and multi-factors regression analysis. Regardless of sex, an independent positive correlation was found (P<0.001) between age and FFM index (FFMI). FM index (FMI) correlated negatively with age in males (P<0.001), but positively with age in females (P<0.001). Regardless of sex, FFMI correlated positively with forced vital capacity (FVC), forced expiratory volume in one second (FEV1), peak expiratory flow (PEF), forced expiratory flow at 25% of forced vital capacity (FEF25%), FEF50%, and maximal mid-expiratory flow (MMEF) (P<0.05), while negatively with FEV1/FVC (P<0.01). FFMI was correlated positively with FEF75% in males (P<0.05), but not correlated in females. In males, FMI correlated negatively with FEV1, FEV1/FVC, PEF, FEF25%, FEF50%, FEF75% and MMEF (P<0.05), but not correlated with FVC. No correlation was found between the ventilatory function indices and FMI in females. Except FEV1/FVC and FEF75% in males, the effect of FFMI in predicting ventilatory function was higher than FMI regardless of sex. Moreover, the predicting effect of FFMI was higher in males than that in females. Growth spurt of lung function occurred in the ages of 12-15 years in males, while in the ages of 12, 13 and 18 years in females. During the period of growth spurt of lung function, regardless of sex, the effect of FFMI in predicting the lung function was higher than that of age. In conclusion, regardless of sex, FFMI correlates positively with ventilatory function, as a reflection of muscle mass. The effect of FFM in predicting ventilatory function is higher in males than that in females. FM correlates negatively with ventilatory function in males, but not in females. The rapid growth of height and FFM are possibly the main reasons for growth spurt of lung function.  相似文献   

7.
Chen X  Zhang ZG  Feng K  Chen L  Han SM  Zhu GJ 《生理学报》2011,63(4):377-386
本文旨在研究儿童青少年肺通气功能预测的后向传播神经网络(backpropagation neural network,BPNN)方法,以期得到更准确的肺通气功能预计值。样本数据包括内蒙古自治区10~18岁汉族健康儿童青少年999人(男性500人,女性499人),测量身高和体重,使用肺功能仪检测肺通气功能。利用BPNN和多元逐步回归,对用力肺活量(forced vital capacity,FVC)、用力呼气一秒量(forced expiratory volume in one second,FEV1)、最大呼气流量(peak expiratory flow,PEF)、用力呼出25%肺活量时呼气流量(forced expiratory flow at25%of forced vital capacity,FEF25%)、用力呼出50%肺活量时呼气流量(forced expiratoryflow at50%of forced vital capacity,FEF50%)、最大呼气中段流量(maximal mid-expiratory flow,MMEF)、用力呼出75%肺活量时呼气流量(forced expira...  相似文献   

8.
To compare the responses of asthmatic and normal subjects to high effective doses of ozone, nine asthmatic and nine normal subjects underwent two randomly assigned 2-h exposures to filtered, purified air and 0.4 ppm ozone with alternating 15-min periods of rest and exercise on a cycle ergometer (minute ventilation = 30 l.min-1.m-2). Before and after each exposure, pulmonary function and bronchial responsiveness to methacholine were measured and symptoms were recorded. Ozone exposure was associated with a statistically significant decrease in forced vital capacity (FVC), forced expired volume in 1 s (FEV1), percent FEV1 (FEV1%), and forced expired flow at 25-75% FVC (FEF25-75) in both normal and asthmatic subjects. However, comparing the response of asthmatic and normal subjects to ozone revealed a significantly greater percent decrease in FEV1, FEV1%, and FEF25-75 in the asthmatic subjects. The effect of ozone on FVC and symptom scores did not differ between the two groups. In both normal and asthmatic subjects, exposure to ozone was accompanied by a significant increase in bronchial responsiveness. We conclude that exposure to a high effective ozone dose produces 1) increased bronchial responsiveness in both normal and asthmatic subjects, 2) greater airways obstruction in asthmatic than in normal subjects, and 3) similar symptoms and changes in lung volumes in the two groups.  相似文献   

9.
Indicator dilution technique was used to study effects of reduced vascular volume or acute injury on removal of low doses of [3H]propranolol and [14C]serotonin (5-hydroxytryptamine, 5-HT) by perfused rabbit lung. Glass-bead (500 micron) embolization doubled pulmonary arterial pressure (Ppa) at flow rates of 20, 50, and 100 ml/min, decreased volume of distribution by approximately 50%, and increased pulmonary vascular resistance by at least 60%. Before embolization, (flow rate 20 ml/min) removal of [3H]propranolol and [14C] 5-HT was 89 +/- 2 and 75 +/- 5%, respectively, and was unaltered by changes in flow rate. However, after embolization, [3H]propranolol and [14C]5-HT removal decreased in a flow-dependent manner, reaching 28 +/- 4 and 1 +/- 3% (P less than 0.05), respectively, at a flow rate of 100 ml/min. When phorbol myristate acetate (PMA, 200 nM) was perfused (50 ml/min) through the lungs for 15 min, Ppa increased from 13 +/- 1 to 25 +/- 2 cmH2O (P less than 0.05), whereas [3H]propranolol removal decreased from 92 +/- 1 to 75 +/- 5% (P less than 0.05) and [14C]5-HT removal decreased from 73 +/- 3 to 46 +/- 8% (P less than 0.05). The PMA also caused vasoconstriction, which could be partially blocked by adding papaverine (500 microM) to the perfusion medium. Under the latter conditions, Ppa increased to 19 +/- 1 cmH2O and [3H]propranolol removal was unaffected. However, the combination of PMA and papaverine reduced [14C]5-HT removal from 64 +/- 4 to 19 +/- 3%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
X-ray TV system for measuring microcirculation in small pulmonary vessels   总被引:1,自引:0,他引:1  
We developed a new system that consists of 1) a specially designed X-ray apparatus, 2) an X-ray-sensitive 1-in. Vidicon camera, and 3) a digital image-processing device. The picture element is approximately 20 micron in size, and the time required for one frame is 1/30 s. Using this system, we measured the internal diameter (ID), the cross-sectional area, flow velocity, volume flow, and transit time of small pulmonary vessels of approximately 100-500 micron at control and with serotonin in anesthetized cats. Flow velocity and volume flow from large [458 +/- 22 (SE) micron] to small (340 +/- 32 micron) arteries were 5.4 +/- 0.4 cm/s and 0.53 +/- 0.06 ml/min, respectively. Transit times of the contrast medium from large to small arteries (Ta) and to large veins (Tv) were 0.68 +/- 0.04 and 3.71 +/- 0.25 s, respectively. Serotonin injection (20-30 micrograms/kg iv) decreased ID, flow velocity, and volume flow of arteries by 8-48, 32, and 76%, respectively, whereas Ta and Tv increased by 91 and 69%, respectively. The system can provide useful information regarding the local circulation in the lung.  相似文献   

11.
While airway constriction has been shown to affect exhaled nitric oxide (NO), the mechanisms and location of constricted airways most likely to affect exhaled NO remain obscure. We studied the effects of histamine-induced airway constriction and ventilation heterogeneity on exhaled NO at 50 ml/s (Fe(NO,50)) and combined this with model simulations of Fe(NO,50) changes due to constriction of airways at various depths of the lung model. In 20 normal subjects, histamine induced a 26 +/- 15(SD)% Fe(NO,50) decrease, a 9 +/- 6% forced expiratory volume in 1 s (FEV(1)) decrease, a 19 +/- 9% mean forced midexpiratory flow between 25% and 75% forced vital capacity (FEF(25-75)) decrease, and a 94 +/- 119% increase in conductive ventilation heterogeneity. There was a significant correlation of Fe(NO,50) decrease with FEF(25-75) decrease (P = 0.006) but not with FEV(1) decrease or with increased ventilation heterogeneity. Simulations confirmed the negligible effect of ventilation heterogeneity on Fe(NO,50) and showed that the histamine-induced Fe(NO,50) decrease was due to constriction, with associated reduction in NO flux, of airways located proximal to generation 15. The model also indicated that the most marked effect of airways constriction on Fe(NO,50) is situated in generations 10-15 and that airway constriction beyond generation 15 markedly increases Fe(NO,50) due to interference with the NO backdiffusion effect. These mechanical factors should be considered when interpreting exhaled NO in lung disease.  相似文献   

12.
The FRC, RV, VC, TLC, RV/TLC (%), FVC, FEV1.0, FEF25-75%, and FEV1.0/FVC (%) were measured in 161 South Australian females aged 18.4-81.2 yr using a Stead-Wells spirometer and helium analyzer. Multiple regression equations were generated to predict these lung volume and spirometric parameters from the best weighted combination of age, mass, standing height, and various other anthropometric variables (FRC: R = 0.715, SEE = 387 ml; RV: R = 0.684, SEE = 256 ml; VC: R = 0.815, SEE = 383 ml; TLC: R = 0.754, SEE = 468 ml; RV/TLC: R = 0.780, SEE = 4.2%; FVC: R = 0.839, SEE = 375 ml; FEV1.0: R = 0.869, SEE = 326 ml; FEV1.0/FVC: R = 0.644, SEE = 5.7%; FEF25-75%: R = 0.753, SEE = 802 ml/s). The range of normality for the lung volumes was defined as the predicted value plus or minus the 95% confidence interval (two-tailed test), and the lower limit of normality for the spirometric variables was designated as the predicted value minus the 95% confidence interval (one-tailed test). Cross-validation of other equations in the literature indicates that they are of limited use for the sample and instrumentation used in this study.  相似文献   

13.
OBJECTIVE--To determine whether birth weight and gestational age are associated with respiratory illness and lung function in children aged 5-11 years. DESIGN--Cross sectional analysis of parent reported birth weight, gestational age, and respiratory symptoms; parental smoking and social conditions; forced vital capacity (FVC), forced expiratory volume in one second (FEV1), forced expiratory rates between 25% and 75% and 75% and 85% (FEF25-75 and FEF75-85), and height. SETTING--Primary schools in England and Scotland in 1990. SUBJECTS--5573 children aged 5-11 (63.3% of eligible children) had respiratory symptoms analysed and 2036 children (67.1% of eligible children) had lung function measured. MAIN OUTCOME MEASURES--Symptoms of asthma, bronchitis, occasional and frequent wheeze, cough first thing in the morning, and cough at any other time and lung function. RESULTS--Birth weight adjusted for gestational age was significantly associated with all lung function measurements, except FEF25-75. The association remained for FVC (b = 0.475, 95% confidence interval 0.181 to 0.769) and FEV1 (b = 0.502, 0.204 to 0.800) after adjustment for gestational age, parental smoking, and social factors. FEF75-85 was the only lung function related to gestational age. Respiratory symptoms, especially wheeze most days (adjusted odds ratio 0.9, 0.84 to 0.97) were significantly associated with prematurity. Every extra week of gestation reduced the risk of severe wheeze by about 10%. CONCLUSIONS--Lung function is affected mainly by intrauterine environment while respiratory illness, especially wheezing, in childhood is related to prematurity.  相似文献   

14.
Flow limitation, cough, and patterns of aerosol deposition in humans   总被引:1,自引:0,他引:1  
We studied deposition of radioactive monodisperse 1.5-micron aerosol in humans following inhalation during quiet breathing. Two groups were studied: normal, defined by tidal loops below the maximum expiratory flow-volume (MEFV) envelope [forced expiratory volume at 1 s at percent of forced vital capacity (FEV1%) 62-78]; and flow-limited, with tidal loops superimposed on MEFV relationship (FEV1% 21-57) and flow-limiting segments (FLS) known to exist in central airways. During simultaneous imaging with a gamma camera, fraction of inhaled aerosol deposited in the lung (DF) was determined by right-angle light scattering. With regions of interest defined by an equilibrium image of 133Xe, regional deposition was normalized for area and lung thickness and expressed as a central-to-peripheral (C/P) ratio. Deposition was uniform throughout the lung in normal subjects [C/P 1.02 +/- 0.07 (SD), n = 6]. In flow-limited group, central deposition predominated (C/P 1.98 +/- 0.64, n = 6, P less than 0.05). Tidal volume and inspiratory flow, forces thought to influence deposition during inspiration, were not different between groups. Spontaneous cough occurred in five flow-limited subjects during aerosol inhalation, with further increase in central deposition when compared with quiet breathing (C/P 1.85 +/- 0.60 to 2.69 +/- 0.600, P less than 0.01). During cough, tidal volume (ml) was reduced significantly (576 +/- 151 to 364 +/- 117, P less than 0.01) with no change in inspiratory flow (l/s) (1.37 +/- 0.23 to 1.38 +/- 0.40, P = NS). DF, however, was unaffected by cough (0.34 +/- 0.13 to 0.61 +/- 0.12, P = NS).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
目的建立Wistar大鼠肺功能各项指标的参考值。方法用创体描法小动物肺功能检测仪检测大鼠肺功能各项指标,根据肺功能指标检测结果,通过统计分析,确定其参考值范围。结果 Ri(吸气阻力)为1.81(0.94~4.10)cm H2O/(mL·s),Re(呼气阻力)为1.83(0.71~3.57)cm H2O/(mL·s),Cl(肺顺应性)为0.15(0.05~0.29)mL/cm H2O,MVV(最大通气量)为144.65(77.28~256.20)mL/min,FVC(用力肺活量)为8.49(5.82~12.70)mL,Fev0.2(第0.2秒用力呼气容积)为5.72(3.62~7.01)mL,Fev0.2/FVC(第0.2秒用力呼出容积占用力肺活量百分比)为8.12(39.14~85.28)%,FEF(25~75)%(用力中期呼气流速)为34.11(28.25~46.87)mL/min。PEF(用力最大呼气流速)为38.28(30.75~50.25)mL/min。结论 Wistar大鼠肺功能指标的参考值范围可为临床和科研工作以及未来制定国家标准和规范提供参考依据。  相似文献   

16.
OBJECTIVE: To examine the role of exposure to the 1984 Bhopal gas leak in the development of persistent obstructive airways disease. DESIGN: Cross sectional survey. SETTING: Bhopal, India. SUBJECTS: Random sample of 454 adults stratified by distance of residence from the Union Carbide plant. MAIN OUTCOME MEASURES: Self reported respiratory symptoms; indices of lung function measured by simple spirometry and adjusted for age, sex, and height according to Indian derived regression equations. RESULTS: Respiratory symptoms were significantly more common and lung function (percentage predicted forced expiratory volume in one second (FEV1), forced vital capacity (FVC), forced expiratory flow between 25% and 75% of vital capacity (FEF25-75), and FEV1/FVC ratio) was reduced among those reporting exposure to the gas leak. The frequency of symptoms fell as exposure decreased (as estimated by distance lived from the plant), and lung function measurements displayed similar trends. These findings were not wholly accounted for by confounding by smoking or literacy, a measure of socioeconomic status. Lung function measurements were consistently lower in those reporting symptoms. CONCLUSION: Our results suggest that persistent small airways obstruction among survivors of the 1984 disaster may be attributed to gas exposure.  相似文献   

17.
Childhood BMI has been reported to be positively associated with adult lung function. The aim of this study was to investigate the effect of childhood BMI on young adult lung function independently of the effects of lean body mass (LBM). Clinical and questionnaire data were collected from 654 young Australian adults (aged 27-36 years), first studied when age 9, 12, or 15 years. Adult lung function was measured by forced vital capacity (FVC), forced expiratory volume in 1 s (FEV(1)), FEV(1)/FVC ratio, and the forced expiratory flow in the middle 50% of FVC (FEF(25-75)). BMI and LBM were derived from anthropometric measures at baseline (1985) and at follow-up (2004-2006). Multivariable models were used to investigate the effect of age and sex standardized BMI in childhood on adult lung function, before and after adjustment for LBM. Adult adiposity had a strong deleterious effect on lung function, irrespective of childhood BMI, and adjustment for childhood LBM eliminated any apparent beneficial effect of childhood BMI on adult FEV(1) or FVC. This suggests that the beneficial effect of increased BMI in childhood on adult FEV(1) and FVC observed in previous longitudinal studies is likely to be attributable to greater childhood LBM not adiposity. Obese children who become obese adults can expect to have poorer lung function than those who maintain healthy weight but large deficits in lung function are also likely for healthy weight children who become obese adults. This highlights the importance of lifetime healthy weight maintenance.  相似文献   

18.
Theoretical models of particle deposition in the respiratory tract predict high fractional deposition for particles of less than 0.1 micron, but there are few confirming experimental data for those predictions. We have measured the deposition fraction of a nonhygroscopic aerosol in the human respiratory tract. The aerosol had a count mean diameter of 0.044 micron SD of 1.93, as measured with an electrical aerosol analyzer, and was produced from a 0.01% solution of bis(2-ethylhexyl) sebacate using a condensation generator. Subjects inhaled the aerosol using a controlled respiratory pattern of 1 liter tidal volume, 12/min. Deposition was calculated as the difference in concentration between inhaled and exhaled aerosol of five size fractions corrected for system deposition and dead-space constants. Three deposition studies were done on each of five normal male volunteers. Means (+/- SE) for the five size fractions were 0.024 micron, 0.71 +/- 0.06; 0.043 micron, 0.62 +/- 0.06; 0.075 micron, 0.53 +/- 0.05; 0.13 micron, 0.44 +/- 0.04; and 0.24 micron, 0.37 +/- 0.06. These data demonstrate that deposition of inhaled particles in the 0.024- to 0.24-micron size range is high and increases with decreasing size. These observations agree with and validate predictions of mathematical models.  相似文献   

19.
The extent to which sympathetic nerve activity restrains metabolic vasodilation in skeletal muscle remains unclear. We determined forearm blood flow (FBF; ultrasound/Doppler) and vascular conductance (FVC) responses to 10 min of ischemia [reactive hyperemic blood flow (RHBF)] and 10 min of systemic hypoxia (inspired O(2) fraction = 0.1) before and after regional sympathetic blockade with the alpha-receptor antagonist phentolamine via Bier block in healthy humans. In a control group, we performed sham Bier block with saline. Consistent with alpha- receptor inhibition, post-phentolamine, basal FVC (FBF/mean arterial pressure) increased (pre vs. post: 0.42 +/- 0.05 vs. 1.03 +/- 0.21 units; P < 0.01; n = 12) but did not change in the saline controls (pre vs. post: 0.56 +/- 0.14 vs. 0.53 +/- 0.08 units; P = not significant; n = 5). Post-phentolamine, total RHBF (over 3 min) increased substantially (pre vs. post: 628 +/- 75 vs. 826 +/- 92 ml/min; P < 0.01) but did not change in the controls (pre vs. post: 618 +/- 66 vs. 661 +/- 35 ml/min; P = not significant). In all conditions, compared with peak RHBF, peak skin reactive hyperemia was markedly delayed. Furthermore, post-phentolamine (pre vs. post: 0.43 +/- 0.06 vs. 1.16 +/- 0.17 units; P < 0.01; n = 8) but not post-saline (pre vs. post: 0.93 +/- 0.16 vs. 0.87 +/- 0.19 ml/min; P = not significant; n = 5), the FVC response to hypoxia (arterial O(2) saturation = 77 +/- 1%) was markedly enhanced. These data suggest that sympathetic vasoconstrictor nerve activity markedly restrains skeletal muscle vasodilation induced by local (forearm ischemia) and systemic (hypoxia) vasodilator stimuli.  相似文献   

20.
As a pulmonary component of Predictive Studies V, designed to determine O2 tolerance of multiple organs and systems in humans at 3.0-1.5 ATA, pulmonary function was evaluated at 1.0 ATA in 13 healthy men before and after O2 exposure at 3.0 ATA for 3.5 h. Measurements included flow-volume loops, spirometry, and airway resistance (Raw) (n = 12); CO diffusing capacity (n = 11); closing volumes (n = 6); and air vs. HeO2 forced vital capacity maneuvers (n = 5). Chest discomfort, cough, and dyspnea were experienced during exposure in mild degree by most subjects. Mean forced expiratory volume in 1 s (FEV1) and forced expiratory flow at 25-75% of vital capacity (FEF25-75) were significantly reduced postexposure by 5.9 and 11.8%, respectively, whereas forced vital capacity was not significantly changed. The average difference in maximum midexpiratory flow rates at 50% vital capacity on air and HeO2 was significantly reduced postexposure by 18%. Raw and CO diffusing capacity were not changed postexposure. The relatively large change in FEF25-75 compared with FEV1, the reduction in density dependence of flow, and the normal Raw postexposure are all consistent with flow limitation in peripheral airways as a major cause of the observed reduction in expiratory flow. Postexposure pulmonary function changes in one subject who convulsed at 3.0 h of exposure are compared with corresponding average changes in 12 subjects who did not convulse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号