首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Three species of anoxygenic phototrophic heliobacteria, Heliobacterium chlorum, Heliobacterium gestii, and Heliobacillus mobilis, were studied for comparative nitrogen-fixing abilities and regulation of nitrogenase. Significant nitrogenase activity (acetylene reduction) was detected in all species grown photoheterotrophically on N2, although cells of H. mobilis consistently had higher nitrogenase activity than did cells of either H. chlorum or H. gestii. Nitrogen-fixing cultures of all three species of heliobacteria were subject to switch-off of nitrogenase activity by ammonia; glutamine also served to switch-off nitrogenase activity but only in cells of H. mobilis and H. gestii. Placing photosynthetically grown heliobacterial cultures in darkness also served to switch-off nitrogenase activity. Dark-mediated switch-off was complete in lactate-grown heliobacteria but in pyruvate-grown cells substantial rates of nitrogenase activity continued in darkness. In all heliobacteria examined ammonia was assimilated primarily through the glutamine synthetase/glutamate synthase (GS/GOGAT) pathway although significant levels of alanine dehydrogenase were present in extracts of cells of H. gestii, but not in the other species. The results suggest that heliobacteria, like phototrophic purple bacteria, are active N2-fixing bacteria and that despite their gram-positive phylogenetic roots, heliobacteria retain the capacity to control nitrogenase activity by a switch-off type of mechanism. Because of their ability to fix N2 both photosynthetically and in darkness, it is possible that heliobacteria are significant contributors of fixed nitrogen in their paddy soil habitat.  相似文献   

2.
A novel alkaliphilic heliobacterium was isolated from microbial mats of a low-salt alkaline Siberian soda lake. Cells of the new organism were tightly coiled when grown in coculture with a rod-shaped bacterium, but grew as short filaments when finally obtained in pure culture. The new phototroph, designated strain BT-H1, produced bacteriochlorophyll g and a neurosporene-like pigment, and lacked internal photosynthetic membranes. Similar to other heliobacteria, strain BT-H1 grew photoheterotrophically on a limited range of organic compounds including acetate and pyruvate. Sulfide was oxidized to elemental sulfur and polysulfides under photoheterotrophic conditions; however, photoautotrophic growth was not observed. Cultures of strain BT-H1 were alkaliphilic, growing optimally at pH 9, and unlike other heliobacteria, they grew optimally at a temperature of 25 °C rather than at 40 °C or above. Analysis of the 16S rRNA gene sequence of the new organism showed that it groups within the heliobacterial clade. However, its branching order was phylogenetically basal to all previously investigated species of heliobacteria. The G+C content of the DNA of strain BT-H1 (44.9 mol%) was also quite distinct from that of other heliobacteria. This unique assemblage of properties implicates strain BT-H1 as a new genus and species of the heliobacteria, Heliorestis daurensis, named for its unusual morphology (“restis” is Latin for “rope”) and for the Daur Steppe in Russia in which these soda lakes are located. Received: 15 March 1999 / Accepted: 25 June 1999  相似文献   

3.
Two new taxa of phototrophic heliobacteria are described: Heliobacterium gestii sp. nov. and Heliophilum fasciatum gen. nov. sp. nov. Both organisms were isolated from dry paddy soils. Cells of H. gestii were motile spirilla; cells of H. fasciatum formed cell bundles that were motile as units. Both organisms produced endospores; H. gestii endospores contained dipicolinic acid and elevated levels of calcium. As with other heliobacteria, bacteriochlorophyll g was produced in both organisms and no intracytoplasmic photosynthetic membranes were observed. Growth of H. gestii and H. fasciatum occurred under both photoheterotrophic and chemotrophic conditions; nitrogen fixation also occurred in both organisms. H. gestii and H. fasciatum showed a phylogenetic relationship to the "low GC" line of gram-positive Bacteria, but H. fasciatum was distinct from H. gestii and all other heliobacteria. The ability of H. gestii and H. fasciatum to form endospores might be a significant ecological advantage for survival in their rice soil habitat. Received: 16 October 1995 / Accepted: 10 January 1996  相似文献   

4.
Thirteen new isolates of bacteriochlorophyll b-containing purple nonsulfur bacteria were isolated from four freshwater habitats using specific enrichment methods including the use of long wavelength filters and extincting dilution of the inoculum. The new isolates were compared with the type strain of Blastochloris viridis, strain DSM 133(T), as regards pigments, morphology, carbon nutrition, and phylogeny. All new isolates were budding bacteria, and phototrophic mass cultures were green, brown, or brown-green in color. The pattern of carbon sources photocatabolized were similar in all strains; however, sugars, both mono- and disaccharides, were widely used by the new isolates while they did not support growth of strain DSM 133(T). Phylogenetic analysis showed all new strains to cluster tightly with the type strain with the exception of one brown-colored strain and a mildly thermophilic strain. The results suggest that in contrast to purple nonsulfur bacteria containing bacteriochlorophyll a, those containing bacteriochlorophyll b may not be morphologically or phylogenetically diverse, and group into a tight phylogenetic clade distinct from all other anoxygenic phototrophs.  相似文献   

5.
【背景】不产氧光合细菌(Anoxygenicphototrophicbacteria,APB)作为一类重要的微生物资源,在水产养殖水体氮污染的修复方面已有广泛研究与应用。养殖水体环境复杂,含多种有机物,尤其是有机氮显著影响菌体除氮功效。【目的】在高浓度无机三态氮(氨氮、硝氮和亚硝氮)共存体系中,阐明小分子有机碳、有机氮和盐度对固氮红细菌(Rhodobacter azotoformans) YLK20去除无机三态氮的影响规律及机制,挖掘针对性强和适应性广的高效除氮菌株。【方法】采用RAST和KEGG方法分析YLK20基因组碳氮代谢途径及耐盐机制;采用次溴酸钠氧化法、紫外和N-(1-萘基)-乙二胺分光光度法分别测定氨氮、硝氮和亚硝氮含量。【结果】基因组显示,YLK20拥有EMP、HMP、TCA、固氮、氨化、氨同化和反硝化碳氮代谢途径,含有soh B、nha C、bet B和gbs A等多种耐盐基因。丙酮酸钠、乙酸钠、柠檬酸钠、乙醇和甘露醇是YLK20生长和去除无机三态氮的良好有机碳,葡萄糖和果糖的存在降低了无机三态氮去除能力,蔗糖体系中硝氮和亚硝氮能被良好去除,但氨氮去除能力较低。在高浓度蛋白胨(3.21 g/L)和尿素(1.43 g/L)体系中,YLK20仍能高效去除无机三态氮。YLK20能在3%盐度内生长良好,低盐度时该菌株能良好去除无机三态氮,高盐度时亚硝氮去除能力受到严重抑制。YLK20对海水和淡水实际养殖水体中的无机三态氮有良好去除效果。【结论】YLK20主要通过氨同化和反硝化途径去除无机三态氮,尤其在高浓度有机氮环境中也能高效去除;该菌株适应盐度范围广,兼可适用于淡水和海水养殖水体;该菌株生长和无机三态氮去除影响因素、规律及除氮机制的阐明,可为APB微生物制剂的合理应用提供指导。  相似文献   

6.
Enrichment cultures for heliobacteria at 50°C yielded several strains of a thermophilic heliobacterium species from Yellowstone hot spring microbial mats and volcanic soils from Iceland. The novel organisms grew optimally above 50°C, contained bacteriochlorophyll g, and lacked intracytoplasmic membranes. All isolates were strict anaerobes and grew best as photoheterotrophs, although chemotrophic dark growth on pyruvate was also possible. These thermophilic heliobacteria were diazotrophic and fixed N2 up to their growth temperature limit of 56°C. Phylogenetic studies showed the new isolates to be specific relatives of Heliobacterium gestii and, as has been found in H. gestii, they produce heat-resistant endospores. The unique assemblage of properties found in these thermophilic heliobacteria implicate them as a new species of this group, and we describe them herein as a new species of the genus Heliobacterium, Heliobacterium modesticaldum.  相似文献   

7.
A morphologically distinct heliobacterium, strain HH, was isolated from Lake El Hamra, a soda lake in the Wadi El Natroun region of northwest Egypt. Strain HH consisted of ring-shaped cells that remained attached after cell division to yield coils of various lengths. Strain HH showed several of the physiological properties of known heliobacteria and grouped in the Heliorestis clade by virtue of its phylogeny and alkaliphily. The closest relative of strain HH was the filamentous alkaliphilic heliobacterium Heliorestis daurensis. However, genomic DNA:DNA hybridization results clearly indicated that strain HH was a distinct species of Heliorestis. Based on its unique phenotypic and genetic properties we describe strain HH here as a new species of the genus Heliorestis, H. convoluta sp. nov.Dedicated to Prof. Dr. Norbert Pfennig on the occasion of his 80th birthday.  相似文献   

8.
This research aimed to study the diversity of purple nonsulfur bacteria (PNSB) and to investigate the effect of Hg concentrations in shrimp ponds on PNSB diversity. Amplification of the pufM gene was detected in 13 and 10 samples of water and sediment collected from 16 shrimp ponds in Southern Thailand. In addition to PNSB, other anoxygenic phototrophic bacteria (APB) were also observed; purple sulfur bacteria (PSB) and aerobic anoxygenic phototrophic bacteria (AAPB) although most of them could not be identified. Among identified groups; AAPB, PSB and PNSB in the samples of water and sediment were 25.71, 11.43 and 8.57%; and 27.78, 11.11 and 22.22%, respectively. In both sample types, Roseobacter denitrificans (AAPB) was the most dominant species followed by Halorhodospira halophila (PSB). In addition two genera, observed most frequently in the sediment samples were a group of PNSB (Rhodovulum kholense, Rhodospirillum centenum and Rhodobium marinum). The UPGMA dendrograms showed 7 and 6 clustered groups in the water and sediment samples, respectively. There was no relationship between the clustered groups and the total Hg (HgT) concentrations in the water and sediment samples used (<0.002–0.03 μg/L and 35.40–391.60 μg/kg dry weight) for studying the biodiversity. It can be concluded that there was no effect of the various Hg levels on the diversity of detected APB species; particularly the PNSB in the shrimp ponds.  相似文献   

9.
A novel selective enrichment method is described for phototrophic green sulfur bacteria even in the presence of purple sulfur and purple nonsulfur bacteria using sulfanilate, which was discovered during efforts to selectively isolate sulfanilate-metabolizing anoxygenic phototrophic bacteria from marine habitats. Samples for these experiments were obtained from beaches, saltpans, subsurface mangrove soils, fish and prawn aquaculture ponds and backwaters of the East and West coasts of India. Photoorganoheterotrophic and photolithoautotrophic enrichments in the absence of sulfanilate predominantly yielded purple bacterial enrichments. In contrast, photolithoautotrophic enrichments in the presence of sulfanilate yielded green-colored enrichments from the same samples. Whole cell absorption spectra of the enrichment cultures revealed the presence of bacteriochlorophyll c and thus green phototrophic bacteria. Microscopic observation demonstrated the presence of sulfur globules outside the bacterial cells and the presence of non-motile cells, some of which had prosthecae. 16S rDNA sequences obtained from green sulfur bacterial strains isolated from enrichment cultures confirmed the presence of representatives of the green sulfur bacterial genera Prosthecochloris and Chlorobaculum. The selective pressure of sulfanilate exerted through inhibition of phototrophic purple sulfur bacteria was demonstrated by inhibition studies using the purple sulfur bacteria Marichromatium indicum JA100 and Marichromatium sp. JA120 (JCM 13533) and the green sulfur bacterium Prosthecochloris sp. JAGS6 (JCM 13299).  相似文献   

10.
【目的】探求光对不产氧光合细菌类胡萝卜素(Car)和细菌叶绿素a(BChl a)稳定性的影响规律。【方法】以沼泽红假单胞菌CQV97为材料,采用硅胶柱层析和HPLC方法进行Car和BChl a组分的纯化和成分分析,采用吸收光谱法研究Car和BChl a组分的光稳定性。【结果】在Car和BChl a组分分离过程中,Car组分回收率高且稳定,而BChl a回收率波动性较大。Car组分中含有6种螺菌黄质系Car和极少量(0.25%)的细菌脱镁叶绿素a。BChl a组分中包含BChl aGG、BChl aDHGG、BChl aTHGG和BChl aP4种成分。Car和BChl a组分在黑暗条件下非常稳定。2 000 lx白炽灯、日光灯和自然光照射时,Car在70 min内非常稳定,但对紫外光敏感,半衰期为11.15 min,BChl a组分对白炽灯、日光灯、自然光和紫外灯的光降解速率常数(min–1)分别为0.169 8、0.028 9、0.213 9和0.026 4,半衰期(min)分别为4.47、29.68、4.20和26.19。【结论】一步硅胶柱层析可同时得到Car和BChl a纯组分。Car对白光相对稳定,对紫外光不稳定。BChl光稳定性很差,分离过程中短期见光是导致BChl a回收率波动性较大的原因,光降解过程中产生了相对稳定的中间产物。该研究结果为光合色素的精制、功能研究和应用提供了理论依据。  相似文献   

11.
The photosynthetic nonsulfur purple bacterium Rhodopseudomonas capsulata strain E1F1 assimilated nitrate or nitrite only in illuminated cultures under anaerobic conditions. The bacterial cells grew aerobically in the dark only when ammonia or other forms of reduced nitrogen were present in the medium. However, nitrate reductase was detected either in light-anaerobic or in dark-aerobic conditions upon addition of nitrate to the media. Changes from light-anaerobic to dark-aerobic conditions and vice versa markedly influenced growth, nitrate uptake and the nitrate reductase levels. Growth on nitrate in the light and nitrate reductase activity were dependent on the presence of molybdenum in the medium whereas the addition of tungstate inhibited both growth and enzyme activity.  相似文献   

12.
Heliobacteria are a group of anoxygenic phototrophs that can grow photoheterotrophically in defined minimal media on only a limited range of organic substrates as carbon sources. In this study the mechanisms which operate to assimilate carbon and the routes employed for the biosynthesis of cellular intermediates were investigated in a newHeliobacterium strain, HY-3. This was achieved using two approaches (1) by measuring the activities of key enzymes in cell-free extracts and (2) by the use of13C nuclear magnetic resonance (NMR) spectroscopy to analyze in detail the labelling pattern of amino-acids of cells grown on [13C] pyruvate and [13C] acetate.Heliobacterium strain HY-3 was unable to grow autotrophically on CO2/H2 and neither (ATP)-citrate lyase nor ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBPcase) were detectable in cell-free extracts. The enzyme profile of pyruvate grown cells indicated the presence of a pyruvate:acceptor oxidoreductase at high specific activity which could convert pyruvate to acetyl-Coenzyme A. No pyridine nucleotide dependent pyruvate dehydrogenase complex activity was detected. Of the citric-acid cycle enzymes, malate dehydrogenase, fumarase, fumarate reductase and an NADP-specific isocitrate dehydrogenase were readily detectable but no aconitase or citrate synthase activity was found. However, the labelling pattern of glutamate in long-term 2-[13C] acetate incorporation experiments indicated that a mechanism exists for the conversion of carbon from acetyl-CoA into 2-oxoglutarate. A 2-oxoglutarate:acceptor oxidoreductase activity was present which was also assayable by isotope exchange, but no 2-oxoglutarate dehydrogenase complex activity could be detected. Heliobacteria appear to use a type of incomplete reductive carboxylic acid pathway for the conversion of pyruvate to 2-oxoglutarate but are unable to grow autotrophically using this metabolic route due to the absence of ATP-citrate lyase.  相似文献   

13.
Two new species of heliobacteria isolated from cyanobacterial mats of two alkaline sulfidic hot springs are formally described. Strains BR4 and BG29 are assigned to anoxygenic phototrophic bacteria of the familyHeliobacteriaceae, since they possess the unique properties of this taxon: strict anaerobiosis, formation of bacteriochlorophyllg, the lack of extensive intracytoplasmic membranes and chlorosomes, an unusual cell wall structure, and phylogenetic relatedness to the low G+C gram-positive eubacteria. Based on the 16S rDNA sequence similarity, strains BR4 and BG29 are assigned to the genusHeliobacterium and described as two new species of this genus:Heliobacterium sulfidophilum sp. nov. andHeliobacterium undosum sp. nov. The G+C content of the DNA is 51.3 mol % inHbt. sulfidophilum and 57.2-57.7 mol % inHbt. undosum. The cells ofHbt. sulfidophilum are rods, and the cells ofHbt. undosum are slightly twisted spirilla or short rods. Both new bacteria are motile by peritrichous flagella.Hbt. sulfidophilum produces endospores. The new bacteria are strict anaerobes growing photoheterotrophically on a limited range of organic compounds. In the dark, they can switch from photosynthesis to the slow fermentation of pyruvate. Biotin is required as a growth factor. Both species are highly tolerant to sulfide (up to 2 mM at pH 7.5) and oxidize it photoheterotrophically to elemental sulfur; photoautotrophic growth was not observed. The temperature optimal for growth ofHbt. sulfidophilum andHbt undosum is 30–35‡C, and the optimal pH is 7–8.  相似文献   

14.
Microbial communities of stratified phototrophic bacteria in laminated intertidal sediments north of Estuary El Puente, near San Carlos, Baja California Sur, Mexico,‐were studied. This study describes the macroscopic and microscopic characteristics of the mats, including their annual growth. The mats were located in and along meandering mangrove‐lined tidal channels. Their thickness ranged from 0.5 to 25 cm. Square‐meter areas of polygonal mats were detected in several ponds infiltrated by sea water. The principal microbial community of the upper surface of various morphotypes of microbial mats was identified as cyanobacteria belonging to the genera Microcoleus, Lyngbya, Phormidium, and Oscillatoria. Other cyanobacte‐rial genera such as Pseudanabaena, Spirulina, Synechococcus, and Gloeocapsa, as well as many unidentified diatoms, were also present but at lower population densities. The second inward reddish layers of the microbial mats contained similar cyano‐bacterial genera plus anoxygenic phototrophic bacteria belonging to the genera Chloroflexus, Thiocapsa, Chromatium, Prosthecochloris, Rhodopseudomonas, and Chlorobium, as well as several unidentified bacteria. In situ measurements on the growth of the mats, from intermittent tide sites, showed an annual buildup of two layers: green and reddish. These layers corresponded to a vertical growth of 1.4 ± 0.27 mm/year. Permanently submerged mats did not show vertical growth during the same period of time.  相似文献   

15.
Seasonal studies of the anoxygenic phototrophic bacterial community of the water column of the saline eutrophic meromictic Lake Shunet (Khakassia) were performed in 2002 (June) and 2003 (February–March and August). From the redox zone down, the lake water was of dark green color. Green sulfur bacteria predominated in every season. The maximum number of green sulfur bacteria was 107 cells/ml in summer and 106 cells/ml in winter. A multi-syringe stratification sampler was applied for the study of the fine vertical distribution of phototrophs in August 2003; the sampling was performed every 5 cm. A 5-cm-thick pink-colored water layer inhabited by purple sulfur bacteria was shown to be located above the layer of green bacteria. The species composition and ratio of purple bacterial species depended on the sampling depth and on the season. In summer, the number of purple sulfur bacteria in the layer of pink water was 1.6 × 108 cells/ml. Their number in winter was 3 × 105 cells/ml. In the upper oxygen-containing layer of the chemocline the cells of purple nonsulfur bacteria were detected in summer. The maximum number of nonsulfur purple bacteria, 5 × 102 cells/ml, was recorded in August 2003. According to the results of the phylogenetic analysis of pure cultures of the isolated phototrophic bacteria, which were based on 16S rDNA sequencing, green sulfur bacteria were close to Prosthecochloris vibrioformis, purple sulfur bacteria, to Thiocapsa and Halochromatium species, and purple nonsulfur bacteria, to Rhodovulum euryhalinum and Pinkicyclus mahoneyensis.  相似文献   

16.
Some yeasts, such as Saccharomyces cerevisiae, produce ethanol at fully aerobic conditions, whereas other yeasts, such as Kluyveromyces lactis, do not. In this study we investigated the occurrence of aerobic alcoholic fermentation in the petite-negative yeast Saccharomyces kluyveri that is only distantly related to S. cerevisiae. In aerobic glucose-limited continuous cultures of S. kluyveri, two growth regimens were observed: at dilution rates below 0.5 h(-1) the metabolism was purely respiratory, and at dilution rates above 0.5 h(-1) the metabolism was respiro-fermentative. The dilution rate at which the switch in metabolism occurred, i.e. the critical dilution rate, was 66% higher than the typical critical dilution rate of S. cerevisiae. The maximum specific oxygen consumption rate around the critical dilution rate was found to 13.6 mmol (g dry weight)(-1) h(-1) and the capacity of the pyruvate dehydrogenase-bypass pathway was estimated to be high from in vitro enzyme activities; especially the specific activity of acetyl-CoA synthetase was much higher than in S. cerevisiae at all tested conditions. Addition of glucose to respiring cells of S. kluyveri led to ethanol formation after a delay of 20-50 min (depending on culture conditions prior to the pulse), which is in contrast to S. cerevisiae that ferments immediately after glucose addition.  相似文献   

17.
A new species of halophilic anoxygenic purple bacteria of the genus Rhodospirillum is described. The new organism, isolated from water/sediment of the Dead Sea, was vibrio-shaped and an obligate halophile. Growth was best at 12% NaCl, with only weak growth occurring at 6% or 21% NaCl. Growth occurred at Mg2+ concentrations up to 1 M but optimal growth was obtained at 0.05–0.1 M Mg2+. Bromide was well tolerated as an alternative anion to chloride. The new organism is an obligate phototroph, growing photoheterotrophically in media containing yeast extract and acetate or a few other organic compounds. Growth of the Dead Sea Rhodospirillum species under optimal culture conditions was slow (minimum td 20 h). Cells contained bacteriochlorophyll a and carotenoids of the spirilloxanthin series and mass cultures were pink in color. Absorption spectra revealed the presence of a B875 (light-harvesting I) but no B800/B850 (light-harvesting II) photopigment complex. The new organism shares a number of properties with the previously described halophilic phototrophic bacterium Rhodospirillum salinarum and was shown to be related to this phototroph by 16S rRNA sequencing. However, because of its salinity requirements, photosynthetic properties, and isolation from the Dead Sea, the new phototroph is proposed as a new species of the genus Rhodospirillum, R. sodomense.  相似文献   

18.
The high biodiversity observed in coastal lagoons can often be related to a very high degree of environmental heterogeneity (β-biodiversity). In this article, I describe many physical factors that contribute to create environmental heterogeneity and different habitats within the Bassin d’Arcachon, a mesotidal lagoon in S.W. France. The microbial biodiversity has been studied in this coastal lagoon by culture-dependent and culture-independent techniques. The sediments of the meadows of the seagrass Zostera noltii have received a specific focus. During the last 15 years, several novel bacterial species have been isolated from these sediments and obtained in culture. Among these, five different species have been fully described as novel species according the Bacteriological Code and two of them represent also the type strain for a novel genus. The bacterial biodiversity has also been studied by molecular ecology techniques. An early study was focused on water column bacteria and a comparison has been made with the same community from the more eutrophic Prévost lagoon (France, Mediterranean coast). A clone library was also constructed for 16-S rRNA genes isolated and amplified from the 1–2 cm depth layer of the Z. noltii sediment. These studies showed a high degree of biodiversity and the importance of sulfate-reducing bacteria in the sediment, pointing to species that have not been obtained in culture. Collectively, these data show that there is still a large discrepancy between culture-dependent and culture-independent prokaryotic biodiversity. It is important to link the functional biogeochemical approach with the biodiversity approach. For the Bassin d’Arcachon studies, the biogeochemical approach has successfully nurtured the biodiversity studies, while the reverse has not yet been the case as the biogeochemical studies have lumped prokaryotes in functional groups. Guest editors: A. Razinkovas, Z. R. Gasiūnaitė, J. M. Zaldivar & P. Viaroli European Lagoons and their Watersheds: Function and Biodiversity  相似文献   

19.
Engineering photosynthetic bacteria to utilize a heterologous reaction center that contains a different (bacterio) chlorophyll could improve solar energy conversion efficiency by allowing cells to absorb a broader range of the solar spectrum. One promising candidate is the homodimeric type I reaction center from Heliobacterium modesticaldum. It is the simplest known reaction center and uses bacteriochlorophyll (BChl) g, which absorbs in the near-infrared region of the spectrum. Like the more common BChls a and b, BChl g is a true bacteriochlorin. It carries characteristic C3-vinyl and C8-ethylidene groups, the latter shared with BChl b. The purple phototrophic bacterium Rhodobacter (Rba.) sphaeroides was chosen as the platform into which the engineered production of BChl gF, where F is farnesyl, was attempted. Using a strain of Rba. sphaeroides that produces BChl bP, where P is phytyl, rather than the native BChl aP, we deleted bchF, a gene that encodes an enzyme responsible for the hydration of the C3-vinyl group of a precursor of BChls. This led to the production of BChl gP. Next, the crtE gene was deleted, thereby producing BChl g carrying a THF (tetrahydrofarnesol) moiety. Additionally, the bchGRs gene from Rba. sphaeroides was replaced with bchGHm from Hba. modesticaldum. To prevent reduction of the tail, bchP was deleted, which yielded BChl gF. The construction of a strain producing BChl gF validates the biosynthetic pathway established for its synthesis and satisfies a precondition for assembling the simplest reaction center in a heterologous organism, namely the biosynthesis of its native pigment, BChl gF.  相似文献   

20.
The carbon metabolism of representatives of the family Oscillochloridaceae (Oscillochloris trichoides DG6 and the recent isolates Oscillochloris sp. R, KR, and BM) has been studied. Based on data from an inhibitory analysis of autotrophic CO2 assimilation and measurements of the activities of the enzymes involved in this process, it is concluded that, in all Oscillochloris strains, CO2 fixation occurs via the operation of the Calvin cycle. Phosphoenolpyruvate (PEP), which is formed in this cycle, can be involved in the metabolism via the following reaction sequence: PEP (+CO2) å oxalacetate å malate å fumarate å succinate å succinyl-CoA (+CO2) å 2-oxoglutarate. Acetate, utilized as an additional carbon source, can be carboxylated to pyruvate by pyruvate synthase and further involved in the metabolism via the above reaction sequence. Propionyl-CoA synthase and malonyl-CoA reductase, the key enzymes of the 3-hydroxypropionate cycle, have not been detected in Oscillochloris representatives.__________Translated from Mikrobiologiya, Vol. 74, No. 3, 2005, pp. 305–312.Original Russian Text Copyright © 2005 by Berg, Keppen, Krasil’nikova, Ugol’kova, Ivanovsky.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号