首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bovine adenovirus type 3 (BAV3) was purified and its properties were studied. On productive infection of CKT1 cells (a cell line derived from calf kidney) with BAV3, it was observed that viral DNA synthesis was initiated after about 24 h and its rate was maximal after about 40 h. Maturation of the virus occurred several hours after this. Purified BAV3 was separated into four discrete bands by CsCl density gradient centrifugation (complete, incomplete, empty, and degraded viruses). The complete BAV3 was similar in size and structure to human and avian adenoviruses. Polyacrylamide gel electrophoresis showed that the complete BAV3 virion contained at least 10 polypeptides. The total structural proteins of the virion had a similar amino acid composition to those of human adenoviruses. DNA of the complete virus was a linear duplex and its contour length was 12.3 +/- 0.9 mum. The So20,w value of the DNA was 32.9S and its buoyant density in CsCl was 1.717 g/ml. There was about 25% homology between the DNAs of BAV3 and human adenovirus type 5 by filter hybridization. It was also noted that BAV3 produced incomplete virus. The incomplete virus was similar in morphology to the complete virus and contained almost all the structural polypeptides of the latter, but lacked infectivity. However, its DNA had a deletion(s) (13%) which seemed to locate near a terminal.  相似文献   

2.
Cleavage of bovine adenovirus type 3 (BAV3) DNA by restriction endonucleases EcoRI, BamHI, and HindIII yielded 7 (A to G), 5 (A to E), and 12 (A to L) fragments, respectively. The order of these fragments has been determined to be GDACBFE for EcoRI fragments, AEBDC for BamHI fragments, and JEBKACDHFGIL for HindIII fragments, and cleavage sites of these enzymes have been mapped on the genome of BAV3. BAV3 preparation contains incomplete virus whose genome has a deletion of about 13% of complete virus genome. Restriction endonuclease digestion of the incomplete virus DNA revealed that EcoRI E and F, BamHI C and HindIII G, I, and L fragments were deleted. Therefore, the deleted region of incomplete virus DNA is located near the right-hand end of the BAV3 DNA molecule, a result consistent with our previous electron-microscopic observations on heteroduplex molecules formed between complete and incomplete BAV3 DNA.  相似文献   

3.
Human isolates of dengue (DEN) type 1 viruses FGA/89 and BR/90 differ in their membrane fusion properties in mosquito cell lines (P. Desprès et al., Virology 196:209-216, 1993). FGA/89 and BR/90 were assayed for their neurovirulence in newborn mice, and neurons were the major target cells for both DEN-1 virus strains within the central nervous system. To study the susceptibility of neurons to DEN virus infection, DEN virus replication was analyzed in the murine neuroblastoma cell line Neuro 2a. Infection of Neuro 2a cells with FGA/89 or BR/90 induced apoptotic DNA degradation after 25 h of infection. Studies of DEN protein synthesis revealed that accumulation of viral proteins leads to apoptotic cell death. The apoptotic process progressed more rapidly following BR/90 infection than it did after FGA/89 infection. The higher cytotoxicity of BR/90 for Neuro 2a cells was linked to an incomplete maturation of the envelope proteins, resulting in abortive virus assembly. Accumulation of viral proteins in the endoplasmic reticulum may induce stress and thereby activate the apoptotic pathway in mouse neuroblastoma cells.  相似文献   

4.
5.
The relationship between viral DNA and protein synthesis during herpes simplex virus type 1 (HSV-1) replication in HeLa cells was examined. Treatment of infected cells with cytosine arabinoside (ara-C), which inhibited the synthesis of HSV-1 DNA beyond the level of detection, markedly affected the types and amounts of viral proteins made in the infected cell. Although early HSV-1 proteins were synthesized normally, there was a rapid decline in total viral protein synthesis beginning 3 to 4 h after infection. This is the time that viral DNA synthesis would normally have been initiated. ara-C also prevented the normal shift from early to late viral protein synthesis. Finally, it was shown that the effect of ara-C on late protein synthesis was dependent upon the time after infection that the drug was added. These results suggest that inhibition of progeny viral DNA synthesis by ara-C prevents the "turning on" of late HSV-1 protein synthesis but allows early translation to be "switched off."  相似文献   

6.
The maturation of pseudorabies virus DNA from the replicative concatemeric form to molecules of genome length was examined using nine DNA+ temperature-sensitive mutants of pseudorabies virus, each belonging to a different complementation group. At the nonpermissive temperature, cells infected with each of the mutants synthesized concatemeric DNA. Cleavage of the concatemeric DNA to genome-length viral DNA was defective in all the DNA+ ts mutants tested, indicating that several viral gene products are involved in the DNA maturation process. In none of the ts mutant-infected cells were capsids with electron-dense cores (containing DNA) formed. Empty capsids with electron-translucent cores were, however, formed in cells infected with six of the nine temperature-sensitive mutants; in cells infected with three of the mutants, no capsid assembly occurred. Because these three mutants are deficient both in maturation of DNA and in the assembly of viral capsids, we conclude that maturation of viral DNA is dependent upon the assembly of capsids. In cells infected with two of the mutants (tsN and tsIE13), normal maturation of viral DNA occurred after shiftdown of the cells to the permissive temperature in the presence of cycloheximide, indicating that the temperature-sensitive proteins involved in DNA maturation became functional after shiftdown. Furthermore, because cycloheximide reduces maturation of DNA in wild-type-infected cells but not in cells infected with these two mutants, we conclude that a protein(s) necessary for the maturation of concatemeric DNA, which is present in limiting amounts during the normal course of infection, accumulated in the mutant-infected cells at the nonpermissive temperature. Concomitant with cleavage of concatemeric DNA, full capsids with electron-dense cores appeared after shiftdown of tsN-infected cells to the permissive temperature, indicating that there may be a correlation between maturation of DNA and formation of full capsids. The number of empty and full capsids (containing electron-dense cores) present in tsN-infected cells incubated at the nonpermissive temperature, as well as after shiftdown to the permissive temperature in the presence of cycloheximide, was determined by electron microscopy and by sedimentation analysis in sucrose gradients. After shiftdown to the permissive temperature in the presence of cycloheximide, the number of empty capsids present in tsN-infected cells decreased with a concomitant accumulation of full capsids, indicating that empty capsids are precursors to full capsids.  相似文献   

7.
Earlier studies have shown that the U(L)31 protein is homogeneously distributed throughout the nucleus and cofractionates with nuclear matrix. We report the construction from an appropriate cosmid library a deletion mutant which replicates in rabbit skin cells carrying the U(L)31 gene under a late (gamma1) viral promoter. The mutant virus exhibits cytopathic effects and yields 0.01 to 0.1% of the yield of wild-type parent virus in noncomplementing cells but amounts of virus 10- to 1,000-fold higher than those recovered from the same cells 3 h after infection. Electron microscopic studies indicate the presence of small numbers of full capsids but a lack of enveloped virions. Viral DNA extracted from the cytoplasm of infected cells exhibits free termini indicating cleavage/packaging of viral DNA from concatemers for packaging into virions, but analyses of viral DNAs by pulsed-field electrophoresis indicate that at 16 h after infection, both the yields of viral DNA and cleavage of viral DNA for packaging are decreased. The repaired virus cannot be differentiated from the wild-type parent. These results suggest the possibility that U(L)31 protein forms a network to enable the anchorage of viral products for the synthesis and/or packaging of viral DNA into virions.  相似文献   

8.
The Chinese hamster ovary (CHO) cell line is nonpermissive for vaccinia virus, and translation of viral intermediate genes was reported to be blocked (A. Ramsey-Ewing and B. Moss, Virology 206:984-993, 1995). However, cells are readily killed by vaccinia virus. A vaccinia virus-resistant CHO mutant, VV5-4, was isolated by retroviral insertional mutagenesis. Parental CHO cells, upon infection with vaccinia virus, die within 2 to 3 days, whereas VV5-4 cells preferentially survive this cytotoxic effect. The survival phenotype of VV5-4 is partial and in inverse correlation with the multiplicity of infection used. In addition, viral infection fails to shut off host protein synthesis in VV5-4. VV5-4 was used to study the relationship of progression of the virus life cycle and cell fate. We found that in parental CHO cells, vaccinia virus proceeds through expression of viral early genes, uncoating, viral DNA replication, and expression of intermediate and late promoters. In contrast, we detect only expression of early genes and uncoating in VV5-4 cells, whereas viral DNA replication appears to be blocked. Consistent with the cascade regulation model of viral gene expression, we detect little intermediate- and late-gene expression in VV5-4 cells. Since vaccinia virus is known to be cytolytic, isolation of this mutant therefore demonstrates a new mode of the cellular microenvironment that affects progression of the virus life cycle, resulting in a different cell fate. This process appears to be mediated by a general mechanism, since VV5-4 is also resistant to Shope fibroma virus and myxoma virus killing. On the other hand, VV5-4 remains sensitive to cowpox virus killing. To examine the mechanism of VV5-4 survival, we investigated whether apoptosis is involved. DNA laddering and staining of apoptotic nuclei with Hoechst 33258 were observed in both CHO and VV5-4 cells infected with vaccinia virus. We concluded that the cellular pathway, which blocks viral DNA replication and allows VV5-4 to survive, is independent of apoptosis. This mutant also provides evidence that an inductive signal for apoptosis upon vaccinia virus infection occurs prior to viral DNA replication.  相似文献   

9.
10.
Infection of exponential-phase suspension cultures of mouse fibroblast cells (L-M) with equine abortion virus (EAV) resulted in inhibition of cell growth and marked alterations in host metabolic processes. The synthesis of deoxyribonucleic acid (DNA) and ribonucleic acid was inhibited within 4 hr after infection and was suppressed by more than 90% by the time of maximal virus replication (14 to 18 hr). The overall rate of protein synthesis, however, was similar in uninfected and virus-producing cells as determined by measurements of net protein and isotope incorporation. The time course of viral DNA and protein synthesis and assembly into mature virus was determined with the inhibitors 5-fluorodeoxyuridine (FUdR) and cycloheximide, respectively. Thus, viral DNA synthesis was essentially completed at 14 hr, and viral protein and infectious virus synthesis was completed at 18 hr. Although the number of plaque-forming units (PFU) produced by FUdR-treated cells (10(3) to 10(4) PFU/ml) was at least 3 logs less than that produced by untreated cells, the yield of physical particles (as determined by electron microscopy) was approximately the same at 30 hr after infection. Besides being relatively non-infective, the particles produced in FUdR-treated cells appeared morphologically incomplete as they contained little or no nucleoid material.  相似文献   

11.
12.
Here we analyzed the dependence of African swine fever virus (ASFV) infection on the integrity of the endosomal pathway. Using confocal immunofluorescence with antibodies against viral capsid proteins, we found colocalization of incoming viral particles with early endosomes (EE) during the first minutes of infection. Conversely, viral capsid protein was not detected in acidic late endosomal compartments, multivesicular bodies (MVBs), late endosomes (LEs) or lysosomes (LY). Using an antibody against a viral inner core protein, we found colocalization of viral cores with late compartments from 30 to 60 minutes postinfection. The absence of capsid protein staining in LEs and LYs suggested that virus desencapsidation would take place at the acid pH of these organelles. In fact, inhibitors of intraluminal acidification of endosomes caused retention of viral capsid staining virions in Rab7 expressing endosomes and more importantly, severely impaired subsequent viral protein production. Endosomal acidification in the first hour after virus entry was essential for successful infection but not thereafter. In addition, altering the balance of phosphoinositides (PIs) which are responsible of the maintenance of the endocytic pathway impaired ASFV infection. Early infection steps were dependent on the production of phosphatidylinositol 3-phosphate (PtdIns3P) which is involved in EE maturation and multivesicular body (MVB) biogenesis and on the interconversion of PtdIns3P to phosphatidylinositol 3, 5-biphosphate (PtdIns(3,5)P2). Likewise, GTPase Rab7 activity should remain intact, as well as processes related to LE compartment physiology, which are crucial during early infection. Our data demonstrate that the EE and LE compartments and the integrity of the endosomal maturation pathway orchestrated by Rab proteins and PIs play a central role during early stages of ASFV infection.  相似文献   

13.
14.
Two different viral DNA-defective temperature-sensitive mutants of adenovirus 12 (H 12) were defective in their ability to induce the synthesis of various molecular weight classes of nuclear acidic proteins, both virion and nonvirion components, after lytic infection of human embryo kidney (HEK) cells at the restrictive temperature. This finding indicates that the induction of nuclear acidic protein synthesis is an adenovirus gene function(s). Treatment of infected cells with actinomycin D at an early stage of virus maturation suppressed the synthesis of an acidic virion protein (hexon), but allowed the synthesis of other classes of nuclear nonvirion acidic proteins during the subsequent late maturation period, suggesting that different mechanisms control virion and nonvirion polypeptide synthesis. The interaction of the nuclear acidic proteins isolated from H 12-infected cells with native-labeled H 12 DNA was studied using the membrane filter technique. Measurements of the ability of different DNA preparations to inhibit the H 12 DNA-acidic protein complex formation suggest that the nuclear acidic proteins bound to native H 12 or HEK cell DNA with much higher affinity than to native calf thymus DNA. Moreover, native H 12 DNA was able to bind the acidic proteins more efficiently than did denatured H 12 DNA. The acidic proteins isolated from the cytoplasm of H 12-infected cells bound approximately 100-fold less to native H 12 DNA than did the nuclear proteins. Furthermore, the H 12 DNA binding affinity of the nuclear acidic proteins from uninfected cells, or from H 12-infected and 1-beta-D-arabinofuranosylcytosine-treated cells, was somewhat lower than that of the nuclear proteins from infected (untreated) cells.  相似文献   

15.
16.
17.
Cloned BglII fragment N (map units 0.58 to 0.625) of herpes simplex virus type 2 DNA has been shown to transform rodent cells to an oncogenic phenotype (Galloway and McDougall, J. Virol. 38: 749-760, 1981). RNA homologous to this fragment directs the synthesis of five polypeptides in a cell-free translation system. The approximate molecular weights of these proteins are 140,000, 61,000, 56,000, 35,000, and 23,500. The 35,000-dalton protein is the major species late in infection and is the only species detected before the onset of viral DNA replication. The arrangement of the sequences encoding these proteins along the herpes simplex virus type 2 genome was determined by hybridization of the RNA to cloned PstI fragment of BglII-N and to single-stranded DNA segments cloned into M13mp7. Both the hybridization experiments and immunoprecipitation with monoclonal antibodies suggested that the 140,000- and 35,000-dalton proteins are at least partially colinear and share antigenic determinants.  相似文献   

18.
Vaccinia Virus Replication I. Requirement for the Host-Cell Nucleus   总被引:34,自引:26,他引:8       下载免费PDF全文
Using cytochalasin B-induced enucleation techniques, we examined the ability of vaccinia virus to replicate in the absence of the host-cell nucleus in several mammalian cell lines. It was found that virus-infected enucleated cells (cytoplasts) prepared from BSC-40, CVC, and L cells were incapable of producing infectious progeny virus. The nature of this apparent nuclear involvement was studied in detail in BSC-40 cells. Modulations designed to maximize cytoplast integrity and longevity, such as reduction of the growth temperature and initial multiplicity of infection, did not improve virus growth in cytoplasts. Sodium dodecyl sulfate-polyacrylamide gel analysis of the [(35)S]methionine pulse-labeled proteins synthesized in vaccinia virus-infected cytoplasts demonstrated that both early and late viral gene products were being expressed at high levels and with the proper temporal sequence. Vaccinia virus cytoplasmic DNA synthesis, as measured by [(3)H]thymidine incorporation, peaked at 3 h postinfection and was 70 to 90% of control levels in cytoplasts. However, in the cytoplasts this DNA was not converted to a DNase-resistant form late in infection, which was consistent with the failure to isolate physical particles from infected cytoplasts. Treatment of vaccinia virus-infected cells with 100 mug of rifampin/ml from 0 to 8 h to increase the pools of viral precursors, followed by subsequent removal of the drug, resulted in a threefold increase virus yield. This treatment had no effect on virus-infected cytoplasts. Finally, vaccinia virus morphogenesis was studied under an electron microscope in thin sections of virus-infected cells and cytoplasts which had been prepared at various times during a single-step growth cycle. It was apparent that, although early virus morphogenetic forms appeared, there was no subsequent DNA condensation or particle maturation in the cytoplasts. These results suggest that vaccinia virus requires some factor or function from the host-cell nucleus in order to mature properly and produce infectious progeny virus.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号