首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We used variation in a portion of the mitochondrial DNA control region to examine phylogeography of Tamiasciurus hudsonicus, a boreal-adapted small mammal in the central Rocky Mountain region. AMOVA revealed that 65.66% of genetic diversity was attributable to variation within populations, 16.93% to variation among populations on different mountain ranges, and 17.41% to variation among populations within mountain ranges. Nested clade analysis revealed two major clades that likely diverged in allopatry during the Pleistocene: a southern clade from southern Colorado and a northern clade comprising northern Colorado, Wyoming, eastern Utah, and eastern Idaho. Historically restricted gene flow as a result of geographic barriers was indicated between populations on opposite sides of the Green River and Wyoming Basin and among populations in eastern Wyoming. In some instances genetic structure indicated isolation by distance.  相似文献   

2.
Shaw AJ 《Molecular ecology》2000,9(5):595-608
Nucleotide sequence variation in the ITS1-5.8S-ITS2 region of nuclear ribosomal DNA (nrDNA) from 70 populations of Mielichhoferia elongata and M. mielichhoferiana, plus two outgroup species, was analysed using maximum parsimony and maximum likelihood methods. High levels of nucleotide substitution and numerous insertion-deletion events were detected within and between the two species. M. elongata is monophyletic with regard to nrDNA variation, but M. mielichhoferiana is paraphyletic. (M. elongata is nested within it.) A clade within M. mielichhoferiana provides evidence of vicariance, with North American and Scandinavian sister groups of populations. Two major clades are resolved in M. elongata by sequence data that are completely congruent with previous isozyme work. One clade includes populations from both North America and Europe whereas the other is strictly North American. These two clades, resolved by multiple independent loci, clearly represent cryptic species within the morphologically uniform M. elongata. Certain geographical areas, most notably southwestern Colorado in Ouray and San Juan Counties, harbour diverse populations of M. elongata with distinct phylogenetic and phylogeographical histories. Morphologically indistinguishable but phylogenetically distant populations were detected a few metres apart at one site. In contrast, all populations collected over hundreds of kilometres in California belong to a single clade. Arctic North American populations belong to a clade that includes disjunct populations in Alaska, northern Ellesmere Island, and the northeastern USA, but not subarctic Swedish populations, which are more closely related to plants from the Rocky Mountains. Morphological uniformity belies complex infraspecific phylogenetic patterns within M. elongata and M. mielichhoferiana.  相似文献   

3.
We describe range-wide phylogeographic variation in gray jays (Perisoreus canadensis), a boreal Nearctic corvid that occurs today primarily in recently glaciated regions. Phylogenetic analysis of mitochondrial DNA (1041 base pairs ND2 gene; N=205, 50 localities) revealed four reciprocally monophyletic groups. One widespread clade occurs across the North American boreal zone, from Newfoundland to Alaska and southwest into Utah. Three other clades occur at lower latitudes in the montane West in Colorado, the northern Rocky Mountains, and the Pacific Northwest respectively. The geographic distribution of clades in gray jays corresponds with a general pattern that is emerging for boreal taxa, having one widespread northern clade and one or more geographically restricted southwestern clades. Population genetic analyses indicate that the larger boreal clade is genetically structured and harbors significantly more genetic diversity than those clades occurring at lower latitudes. Species distribution modeling (SDM) revealed multiple putative Pleistocene refugia including several occurring at higher latitudes. We suggest that multiple post-glacial colonization routes, some of which originate from these northern refugia, are responsible for the relatively high genetic diversity at high latitudes. Conversely, lower latitude clades show little variation, probably as a result of historical restriction to smaller geographical areas with smaller long-term population sizes. This 'upside-down' pattern of genetic diversity contrasts with the conventional view that populations of north-temperate species occupying previously glaciated habitats should possess lower levels of diversity than their southern counterparts.  相似文献   

4.
The Columbia spotted frog (Rana luteiventris) has a widespread distribution in western Canada and the western US, although the southern reach of its range is highly fragmented into several isolated populations. Threats from various factors have raised concerns regarding the long-term survival of many small, isolated populations. Here, we report a study designed to determine the phylogeographic and conservation genetic parameters of R. luteiventris in the western US. Mitochondrial DNA (mtDNA) sequences were examined for phylogeographic structuring using phylogenetic reconstruction methods, coupled with networking and nested clade analyses. These methods permitted a distinction to be made between historic and demographic forces acting to generate geographical patterning of genetic variation. Phylogenetic analysis revealed four geographically correlated monophyletic clades. Three of these clades correspond to well-defined, nonoverlapping geographical locations in the fragmented portion of the range. The other is comprised of all samples collected from the contiguous range and includes one isolate from northern Wyoming. Networking and nested clade analyses confirmed these results and revealed that historical processes, such as range expansion and vicariance, rather than recurrent gene flow are likely responsible for observed patterns of genetic variation. A measure of genetic variation (theta = 4N(e)mu) revealed that R. luteiventris populations in Utah have a relatively low amount of genetic variation compared with populations in the continuous portion of the range.  相似文献   

5.
We studied phylogenetic relationships among populations and species in the California closed-cone pines (Pinus radiata D. Don, P. attenuata Lemm., and P. muricata D. Don) via chloroplast DNA restriction site analysis. Data on genetic polymorphism within and among 19 populations in the three species were collected using9 to 20 restriction enzymes and 38 to 384 trees. Because only five clades and extremely low intraclade diversity were found, additional phylogenetic data were collected using a single representative per clade and two outgroup species, P. oocarpa Schiede and P. jeffreyi Loud. In total, 25 restriction enzymes were employed and approximately 2.7 kb surveyed (2.3% of genome). The five clades recognized were Monterey pine, knob-cone pine, and the southern, intermediate, and northern races of bishop pine. On the basis of bootstrapping, both Wagner and Dollo parsimony analyses strongly separated the northern and intermediate races of bishop pine from the southern race; knobcone pine from Monterey and bishop pines; and the closed-cone pines from the two outgroups. Approximate divergence times were estimated for the lineages leading to knob-cone pine and to the intermediate and northern populations of bishop pine. The position of Monterey pine relative to bishop pine within their monophyletic clade was unresolved. Surprisingly, Montery pine and the southern race of bishop pine were much more similar to one another than was the southern race of bishop pine to its conspecific intermediate and northern races. Both the Monterey and southern bishop pine lineages also evolved severalfold more slowly than did the knobcone pine and intermediate-northern bishop pine lineages. These results differ significantly from a recent allozyme study, corroborating previous observations that chloroplast genome phylogeny can depart substantially from that of nuclear genes.  相似文献   

6.
Nishi H  Sota T 《Zoological science》2007,24(5):475-485
We studied genetic variation within the Japanese land snail Euhadra herklotsi, which occurs on Kyushu and the surrounding islands, using partial sequences of the mitochondrial COI gene and nuclear ITS2 genes. The phylogenetic analysis revealed the existence of two major clades: clade N in the north and clade S in the south. These clades were parapatric and overlapped in southern Kyushu. Genetic divergence was high in clade N, whereas it was much lower in clade S. In addition, isolation-by-distance within each clade was implied. Since no current geographical barriers separate these clades, the genetic structure of clade S might have been influenced by historical events, such as volcanic activity, and a resulting population bottleneck followed by range expansion. The genital characteristics of clade-S snails were distinct from those of clade-N snails, and snails in both clades were sympatric at one locality. The shells of clade-N snails were generally larger than those of clade-S snails, but the shell-size variation within each clade could not be explained simply by environmental variables. Our study suggests that E. herklotsi likely consists of two sibling species. The taxonomic status of the previously proposed subspecies of E. herklotsi and related species requires reassessment.  相似文献   

7.
We infer the phylogeography of the Western Rattlesnake (Crotalus viridis) using phylogenetic analysis of mitochondrial DNA sequences from 1345 bp of the genes for cytochrome b and NADH dehydrogenase subunit 4. Two main clades are revealed: one includes populations from east and south of the Rocky Mountains (conventionally referred to as Crotalus viridis viridis and C. v. nuntius), and the other consists of populations west of the Rocky Mountains. Within the western clade, a population from southern Arizona (C. v. cerberus) represents the sister taxon to the remaining western populations. The conventional subspecies recognized in this species do not fully correspond to the phylogenetic pattern, and a review of the systematic status of several populations is needed. Our data allow the inferences that small body size evolved twice and that the ability of one population (C. v. concolor) to secrete highly lethal toxins related to Mojave toxin arose within the complex. Our phylogeny should represent the basis for further studies on the causes of geographical variation in this complex.  相似文献   

8.
Aim Long‐term climatic variation has generated historical expansions and contractions of species ranges, with accompanying fragmentation and population bottlenecks, which are evidenced by spatial variation in genetic structure of populations. We examine here hypotheses concerning dispersal and vicariance in response to historical geoclimatic change and potential isolation produced by mountains and water barriers. Location The temperate rain forest of southern South America, which is distributed from coastal Chile, including the large continental island of Chiloé, across the Andes into Argentina. Methods We investigated our hypotheses in the phylogenetically and biogeographically relictual marsupial Dromiciops gliroides. We examined 56 specimens, which resulted from field samples and museum study skins from 21 localities. We evaluated the influence of two major barriers, the Andean cordillera and the waterway between the mainland and the large island of Chiloé, by performing Bayesian and maximum‐likelihood phylogenetic analyses on sequences of 877 base pairs of mitochondrial DNA. We further tested the contribution of the proposed geographical barriers using analysis of molecular variance (amova ). We also evaluated the responses of populations to historical north–south shifts of habitat associated with glacial history and sea‐level change. Results Our analyses revealed a phylogeny with three clades, two of which are widespread and contain nearly all the haplotypes: a northern clade (36–39° S) and a southern clade (40–43° S). These two clades contain forms from both sides of the Andes. Within the southern clade, island and mainland forms were not significantly differentiated. Tests of recent demographic change revealed that southern populations have experienced recent expansion, whereas northern populations exhibit long‐term stability. The direction of recent gene flow and range expansion is predominantly from Chile to Argentina, with a modest reciprocal exchange across the Andes. Recent gene flow from the island of Chiloé to the mainland is also supported. Main conclusions The genetic structure of contemporary D. gliroides populations suggests recent gene flow across the Andes and between the mainland and the island of Chiloé. Differences in demographic history that we detected between northern and southern populations have resulted from historical southward shifts of habitat associated with glacial recession in South America. Our results add to a growing literature that demonstrates the value of genetic data to illuminate how environmental history shapes species range and population structure.  相似文献   

9.
We analysed mitochondrial (cytochrome  b ) nucleotide sequences, nuclear allozyme markers, and morphometric characters to investigate species boundaries and phylogenetic relationships among dusky salamanders ( Desmognathus ) in the southern Blue Ridge and adjacent Piedmont Physiographic Provinces of Virginia and North Carolina. Our results revealed four distinct mitochondrial DNA clades that are also characterized by distinct allozyme markers. One clade consists of sequences derived from populations distributed from New England to south-western Virginia that are referable to Desmognathus fuscus Rafinesque, 1820, although there is considerable sequence and allozyme divergence within this clade. A second clade consists of sequences derived from populations referable to Desmognathus planiceps Newman, 1955, a form that we resurrect from its long synonymy under D. fuscus . Desmognathus planiceps and D. fuscus also differ in mandibular tooth shape. Two other cytochrome  b sequences recovered from populations along the Blue Ridge escarpment in southern Virginia are quite divergent from those of the previous two clades, and these populations may represent yet another distinct species. Sequences from a population in the Brushy Mountains in the Piedmont of northern North Carolina are similar to those of Desmognathus carolinensis . Population groupings indicated by allozyme data generally correspond to the cytochrome  b clades. Cryptic diversity in Appalachian desmognathan salamanders clearly requires further study. © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society , 2008, 152 , 115–130.  相似文献   

10.
The genetic structure and morphometric differentiation of mangrove crab Perisesarma guttatum populations were examined among shelf connected locations along a latitudinal gradient on the East African coast. Over 2200 specimens were sampled from 23 mangrove sites for geometric morphometrics analysis. Population genetic analyses of mitochondrial cytochrome c oxidase subunit I (COI) DNA sequences were used to evaluate connectivity among populations. A total of 73 haplotypes were detected, and almost no haplotypes were found in common between two highly supported phylogeographic clades: southern Mozambique (Inhaca Island and Maputo Bay) and a northern clade that included north Mozambique, Tanzania and Kenya. These two clades were identified based on the species' populations pairwise genetic differentiation and geographical location. ΦST values were considerably high between the two clades, indicating the presence of significant population genetic structure between Kenya and South Mozambique. However, each clade was composed of genetically similar populations along the latitudinal gradient, and no significant population structure was found within each clade because the Φst values were not significant. The morphometric analysis corroborated the division into two clades (i.e. Inhaca Island/Maputo Bay and northern populations) and also detected less shape variation among populations that were few kilometres apart. The significant spatial genetic structuring between the southern and the northern populations of P. guttatum along the geographic gradient under study, combined with morphological differences, suggests that these populations may be considered as cryptic species. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 28–46.  相似文献   

11.
A phylogeographic analysis of mitochondrial DNA variation was performed in order to test the hypothesis that north-eastern North America has been postglacially recolonized by two races of rainbow smelt Osmerus mordax . This was accomplished by documenting the geographical distribution of two major mtDNA phylogenetic clades among 1290 smelt from 49 lacustrine and anadromous populations covering most of the species' native range. The data set was built by combining previously published results with those generated in this study. The two mtDNA clades showed a geographical dichotomy, independent of life-history types, whereby the more eastern populations were either fixed or largely dominated by one clade and western populations for the other. Such geographical pattern implying a phylogenetic discontinuity provided strong evidence for the persistence of smelt in two distinct glacial refugia as well as their differential postglacial dispersal. The most likely refugium for the so-called Atlantic race was the Atlantic coastal plains, whereas that of the so-called Acadian race was the exundated Grand Banks area. Patterns of postglacial dispersal interpreted from palaeogeographic events suggested that the Atlantic race recolonized northern regions about 5000 years prior the Acadian race. Both races came into contact in the St Lawrence River estuary. While gene flow has been possible, the sympatric occurrence in the estuary of anadromous populations alternatively dominated by one mtDNA clade or the other indicated that reproductive isolation mechanisms between the two races developed within this contact zone. This represents the first evidence of secondary intergradation among distinct races of aquatic organisms in an estuarine environment.  相似文献   

12.
Biogeographic studies are important for understanding the natural history of faunas. To comprehend the geographical patterns of genetic variation in anurans in Taiwan, we investigated the genetic structure of Sylvirana latouchii (Anura, Ranidae) from 31 populations by using mitochondrial DNA (mtDNA) cytochrome b sequences. A neighbor-joining tree of 38 haplotypes revealed three major divergences in Taiwanese S. latouchii: the northern, western, and eastern-and-southern clades. Each clade was restricted to a single geographical district and showed obvious differentiation. The patterns of geographical divergence in this species reflect common historical events experienced by other native animals distributed in Taiwan. The order of divergence times between clades was inferred using a molecular clock test. The population relationship of S. latouchii between Taiwan and mainland China is discussed. Further study employing more populations of S. latouchii from mainland China is necessary to clarify the original geographical patterns and migratory history of this species.  相似文献   

13.
Complete ND2 and partial ND4 and cytochrome b mitochondrial DNA (mtDNA) sequences were analysed to evaluate the phylogeographic patterns of common garter snakes (Thamnophis sirtalis) in western North America. This species is widely distributed throughout North America, and exhibits extensive phenotypic variation in the westernmost part of its range. The overall phylogeographic pattern based on mtDNA sequences is concordant with results from studies of other species in this region, implicating historical vicariant processes during the Pleistocene and indicating bottleneck effects of recent dispersal into postglacial habitat. Indeed, the topology is statistically consistent with the hypothesis of both southern (Great Basin and California) and northern (Haida Gwaii) refugia. Specifically, we identified genetic breaks among three major clades: Northwest Coastal populations, Intermountain populations, and all California populations. The California clade contained the only other well-supported branching patterns detected; relationships among populations within the two northern clades were indistinguishable. These molecular splits contrast sharply with all prior geographical analyses of phenotypic variation in T. sirtalis in this region. Our results suggest that the extensive phenotypic variation in western T. sirtalis has been shaped more by local evolutionary forces than by shared common ancestry. Consequently, we consider all morphologically based subspecies designations of T. sirtalis in this region invalid because they do not reflect reciprocal monophyly of the mtDNA sequences.  相似文献   

14.
Sequence variation of a fragment of the mitochondrial DNA encoding for the cytochrome b gene was used to reconstruct the phylogeography of the two species of bleaks occurring in Italy: the alborella Alburnus arborella in northern Italy and the vulturino Alburnus albidus in southern Italy. The study includes four populations of the alborella and 14 populations of the vulturino. A total of 57 haplotypes were identified; these could not be sorted into two reciprocally monophyletic clusters. Multiple phylogenetic methods and nested clade phylogeographical analysis consistently retrieved three well-supported clades, two of which contained both Northern and Southern Italian haplotypes. A third clade is limited to southern Italy. This clade is tentatively assigned to the vulturino. The placement in the same clade of northern and southern Italian haplotypes is explained in light of the introductions of fishes operated from northern to central and southern Italy. The origin of the vulturino dates back to the last two million years. This divergence time estimate identifies the Pleistocene confluences between adjacent river basins along the Adriatic slope of the Italian peninsula and their subsequent isolation as the cause that triggered the diversification of the genus in the area. The existence of a clade endemic to southern Italy supports the recognition of the area as a new peri-Mediterranean ichthyogeographic district, the borders of which correspond to the northern and southern edges of the vulturino range.  相似文献   

15.
We analysed phylogeography and population genetic variation across the range of the western pond turtle (Emys marmorata) using rapidly evolving mitochondrial and nuclear DNA sequence data. Nuclear DNA sequences from two unlinked introns displayed extremely low levels of variation, but phylogenetic analyses based on mtDNA recovered four well-supported and geographically coherent clades. These included a large Northern clade composed of populations from Washington south to San Luis Obispo County, California, west of the Coast Ranges; a San Joaquin Valley clade from the southern Great Central Valley; a geographically restricted Santa Barbara clade from a limited region in Santa Barbara and Ventura counties; and a Southern clade that occurs south of the Tehachapi Mountains and west of the Transverse Range south to Baja California, Mexico. An analysis of molecular variance (amova) based on regional hydrographic units revealed that populations from the Sacramento Valley north to Washington were virtually invariant, with no evidence of population substructure among northern river drainage basins. In other areas, E. marmorata contains considerable unrecognized variation, particularly in central and southern California and in northern Baja California, Mexico. Our northern clade is congruent with the distribution of the subspecies Emys marmorata marmorata (Washington-central California). However, no clade is congruent with the distribution of the southern subspecies Emys marmorata pallida from central California-Baja. Thus, recognition of the current subspecies split is not warranted, based on the available genetic evidence. Our amova and phylogenetic results, in conjunction with a growing comparative database for other codistributed aquatic taxa, confirm the occurrence of genetic breaks across the Tehachapi Mountains and Transverse Range bounding the southern end of the Great Central Valley, and point to southern California as a rich source of cryptic genetic variation.  相似文献   

16.
The geographical distribution of the limpet family Patellidae is essentially antitropical, with 18 species in southern Africa, 10 in the northeastern Atlantic, and only 11 species elsewhere (although 4 of these do occur in the tropics). One possible explanation for this distribution is the suggestion of a recent, perhaps Early Pliocene, migration from southern Africa northward. We tested this hypothesis by constructing a molecular phylogeny, derived from partial sequences of the 12S and 16S mitochondrial genes, obtained from 34 of the 38 patellid species. Five species of Nacellidae and 3 of Lottiidae were included as potential outgroups. Analysis revealed that two patellid clades are represented in the northeastern Atlantic. The typical European patellids (Patella sensu stricto) form a single clade within which there is little molecular divergence, but are distant from all other patellids, thus refuting the idea of recent southern ancestry. From the limited fossil record and estimated rates of molecular divergence, we suggest that Patella s.s. may have originated at least as early as the Upper Cretaceous and that its northern distribution may have been achieved at the same time. The second patellid clade present in the northeastern Atlantic is the genus Cymbula, of which the single species Cymbula safiana extends from West Africa to the Mediterranean. In contrast to Patella s.s., C. safiana is indeed a member of an otherwise southern African clade and may have attained its present distribution more recently, during the Miocene. The geographical origin of the family remains unclear, but a Mesozoic radiation in southern Gondwana is possible. By optimizing morphological characters on our molecular tree, we consider the evolution of shell mineralogy and sperm ultrastructure. We also discuss the phylogenetic classification of the patellids and present some evidence that the family may not be monophyletic.  相似文献   

17.
Liolaemus monticola is a mountain lizard species, with a widespread distribution from central Chile that displays several highly polymorphic chromosomal races. Our study determined the phylogeographic structuring and relationships among three chromosomal races of L. monticola in Chile. Mitochondrial DNA (mtDNA) sequences of the cytochrome b gene were examined using the following phylogenetic methods: maximum parsimony, maximum likelihood, Bayesian inference and nested clade phylogeographic analyses (NCPAs). These methods revealed two major monophyletic clades (north and south) in the L. monticola species, with non-overlapping geographical locations separated by the Maipo and Yeso rivers (except one hybrid, from a zone of secondary contact). The NCPA showed that a past fragmentation process likely resulted in the separation of the two clades. The southern clade includes all samples of the 'Southern, 2 n  = 34' race; the northern clade is comprised of all remaining derived chromosomal races: the 'Northern, 2 n  = 38–40 and the Multiple Fission, 2 n  = 42–44' races. Our results support the hypothesis of a geographical and genetic split resulting from allopatric processes caused by riparian barriers acting over a long time period. The inferred biogeographical scenario shows that populations have moved from the south to the north using the Andean mountains as the primary corridor for dispersal.  相似文献   

18.
Fomitiporia cupressicola sp. nov., found in living Cupressus arizonica, is described on the basis of several collections originating from a high altitude forest in the northern Sierra Madre Occidental, Mexico. The species forms a monophyletic clade, basal to a larger lineage comprising species originating mainly from temperate to Mediterranean areas of the northern hemisphere. The phylogenetic approach in Fomitiporia also revealed multiple unnamed clades within the F. robusta complex in the southern USA and northern Mexico, representing potential species. The status of the F. robusta complex in North America is discussed briefly.  相似文献   

19.
We examined the genetic structures of 13 Japanese populations of an ambrosia beetle, Xylosandrus germanus (Curculionidae: Scolytinae), to understand the effects of geographical barriers on the colonization dynamics of this species. The genetic structure was studied using portions of the mitochondrial cytochrome oxidase I (COI) gene. A phylogenetic analysis revealed three distinct lineages (clades A, B and C) within X. germanus. Clade A contained 21 haplotypes from all 13 populations; whereas clade B contained eight haplotypes from Hokkaido (Sapporo and Furano), Iwate and Nagano populations; and clade C contained only a single a haplotype from the Hokkaido (Furano) population. In the analysis of molecular variance (amova ), the greatest amount of genetic variation was detected between populations in Hokkaido and those in Honshu and other southern islands. Between these two groups of populations, all the values of the coefficient of gene differentiation were significantly larger than zero, except for the Hokkaido (Sapporo) versus Nagano comparison. Our results confirm that for X. germanus, gene flow has been interrupted between Hokkaido and Honshu since the last glacial maximum.  相似文献   

20.
The phylogeography of the California mountain kingsnake, Lampropeltis zonata, was studied using mitochondrial DNA sequences from specimens belonging to the seven recognized subspecies and collected throughout the range of the species. Maximum parsimony and maximum likelihood methods identified a basal split within L. zonata that corresponds to southern and northern segments of its distribution. The southern clade is composed of populations from southern California (USA) and northern Baja California, Mexico. The northern clade is divided into two subclades, a 'coastal' subclade, consisting of populations from the central coast of California and the southern Sierra Nevada Mountains of eastern California, and a 'northeastern' subclade, mainly comprised of populations north of the San Francisco Bay and from the majority of the Sierra Nevada. We suggest that past inland seaways in southwestern California and the embayment of central California constituted barriers to gene flow that resulted in the two deepest divergences within L. zonata. Throughout its evolutionary history, the northern clade apparently has undergone instances of range contraction, isolation, differentiation, and then expansion and secondary contact. Examination of colour pattern variation in 321 living and preserved specimens indicated that the two main colour pattern characters used to define the subspecies of L. zonata are so variable that they cannot be reliably used to differentiate taxonomic units within this complex, which calls into question the recognition of seven geographical races of this snake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号