首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To examine if the cultivation process has reduced the genetic variation of modern cultivars of the traditional Chinese medicinal plant, Coptis chinensis, the levels and distribution of genetic variation was investigated using ISSR markers. A total of 214 C. chinensis individuals from seven wild and three cultivated populations were included in the study. Seven ISSR primers were used and a total of 91 DNA fragments were scored. The levels of genetic diversity in cultivated populations were similar as those in wild populations (mean PPL = 65.2% versus PPL = 52.4%, mean H = 0.159 versus H = 0.153 and mean I = 0.255 versus I = 0.237), suggesting that cultivation did not seriously influence genetic variation of present-day cultivated populations. Neighbour-joining cluster analysis showed that wild populations and cultivated populations were not separated into two groups. The coefficient of genetic differentiation between a cultivar and its wild progenitor was 0.066 (G(st)), which was in good accordance with the result by amova analysis (10.9% of total genetic variation resided on the two groups), indicating that cultivated populations were not genetically differentiated from wild progenitors. For the seven wild populations, a significant genetic differentiation among populations was found using amova analysis (45.9% of total genetic variation resided among populations). A number of causes, including genetic drift and inbreeding in the small and isolated wild populations, the relative limited gene flow between wild populations (N(m) = 0.590), and high gene flow between cultivars and their wild progenitors (N(m) = 7.116), might have led to the observed genetic profiles of C. chinensis.  相似文献   

2.
Domestication occurs as humans select and cultivate wild plants in agricultural habitats. The amount and structure of variation in contemporary cultivated populations has been shaped, in part, by how genetic material was transferred from one cultivated generation to the next. In some cultivated tree species, domestication involved a shift from sexually reproducing wild populations to vegetatively propagated cultivated populations; however, little is known about how domestication has impacted variation in these species. We employed AFLP data to explore the amount, structure, and distribution of variation in clonally propagated domesticated populations and sexually reproducing wild populations of the Neotropical fruit tree, Spondias purpurea (Anacardiaceae). Cultivated populations from three different agricultural habitats were included: living fences, backyards, and orchards. AFLP data were analysed using measures of genetic diversity (% polymorphic loci, Shannon's diversity index, Nei's gene diversity, panmictic heterozygosity), population structure (F(ST) analogues), and principal components analyses. Levels of genetic variation in cultivated S. purpurea populations are significantly less than variation found in wild populations, although the amount of diversity varies in different agricultural habitats. Cultivated populations have a greater proportion of their genetic variability distributed among populations than wild populations. The genetic structure of backyard populations resembles that of wild populations, but living fence and orchard populations have 1/3 more variability distributed among populations, most likely a reflection of relative levels of vegetative reproduction. Finally, these results suggest that S. purpurea was domesticated in two distinct regions within Mesoamerica.  相似文献   

3.
Wild sunflower Helianthus annuus originates from North America and has naturalised in Argentina where it is considered invasive. The present study attempts to assess the genetic diversity using two different molecular marker systems to study the wild genetic patterns and to provide data applicable to conservation and breeding uses. Ten natural populations sampled throughout the wild range and six inbred lines were studied using inter‐simple sequence repeat (ISSR) and simple sequence repeats (SSR) markers. A total of 64 ISSR bands and 29 SSR alleles were produced from 106 wild and cultivated plants. We found 9 ISSR private bands and 21 SSR private alleles in wild accessions, but no private bands/alleles were found in cultivated sunflowers. Molecular variability in wild populations was approximately 60% higher than in inbred lines. Local wild sunflowers kept considerable diversity levels in comparison with populations in the centre of origin (approximately 70%) and therefore they might possess a potential for adaptive evolutionary change. Analysis of molecular variance (AMOVA) indicated population structure with nearly 20% of genetic variability attributable to between‐population differentiation. Principal coordinate analyses (PCO) grouped wild populations from different geographic locations, and a Mantel test showed low congruence between genetic distance (GD) and geographic distances (GGD); hence, molecular data could not rule out multiple wild introduction events. Low correlations were found between ISSR and SSR GD at individual and population levels; thus, divergent evolutionary groups were not evident in local wild sunflowers. Several genetic diversity criteria were utilised to assign conservation value and certain wild populations emerged as interesting sites for more extensive sampling.  相似文献   

4.
Switchgrass (Panicum virgatum L.) is a dominant, perennial C4 grass of North American tallgrass prairies with cultivars that are widely used in grassland restoration, pastures, and landscaping. However, these cultivars may be genetically dissimilar to small, remnant populations, raising concerns about altered genetic composition of native populations through gene flow. To address this issue on a local scale in Ohio and Illinois, we used microsatellite markers to characterize genetic diversity and differentiation of 10 remnant prairie populations (5 in each state) and 8 common cultivars. The bulk of genetic variation was found to reside within rather than among wild populations, consistent with the outcrossing breeding system of switchgrass. Genetic diversity was similar among the remnant populations despite large differences in area (approximately 2–2,590 ha), highlighting the importance of small native populations as reservoirs of variation and potential seed sources for prairie restoration. Cultivars generally had similar levels of variation to the wild populations, but we found clear genetic dissimilarity between wild and cultivated gene pools (especially for Kanlow, but also Trailblazer, Blackwell, Dacotah, Summer, and Sunburst cultivars). This suggests that using cultivars in local prairie restoration efforts may alter the genetic composition of wild populations. Whether such changes are deemed as negative depends on the cultivar under consideration and specific conservation goals for preserving native switchgrass populations. Patterns of genetic variation in remnant prairie populations and potential cultivar sources can be used to develop guidelines for restoration as well as future planting of cultivars for biofuels.  相似文献   

5.
The wild grapevine, Vitis vinifera L. ssp. sylvestris (Gmelin) Hegi, considered as the ancestor of the cultivated grapevine, is native from Eurasia. In Spain, natural populations of V. vinifera ssp. sylvestris can still be found along river banks. In this work, we have performed a wide search of wild grapevine populations in Spain and characterized the amount and distribution of their genetic diversity using 25 nuclear SSR loci. We have also analysed the possible coexistence in the natural habitat of wild grapevines with naturalized grapevine cultivars and rootstocks. In this way, phenotypic and genetic analyses identified 19% of the collected samples as derived from cultivated genotypes, being either naturalized cultivars or hybrid genotypes derived from spontaneous crosses between wild and cultivated grapevines. The genetic diversity of wild grapevine populations was similar than that observed in the cultivated group. The molecular analysis showed that cultivated germplasm and wild germplasm are genetically divergent with low level of introgression. Using a model‐based approach implemented in the software structure , we identified four genetic groups, with two of them fundamentally represented among cultivated genotypes and two among wild accessions. The analyses of genetic relationships between wild and cultivated grapevines could suggest a genetic contribution of wild accessions from Spain to current Western cultivars.  相似文献   

6.
 Genetic variation and structure of ten wild, three domesticated and one wild-cultivated populations of pepper (Capsicum annuum) from northwestern Mexico were studied in order to find out if the domestication process has reduced the genetic variation of the modern cultivars of this species. The analysis was based on 12 polymorphic loci from nine isozymes. Wild populations were sampled in different habitats along a latitudinal gradient of ca. 500 km. All populations had high genetic variation (i.e. wild: A = 2.72, P = 90.8%, He = 0.445; wild-cultivated: A = 2.50, P = 92.3%, He = 0.461; domesticated: A = 2.60, P = 84.6%, He = 0.408), indicating little genetic erosion in modern cultivars of pepper. Genetic diversity estimated by Nei's method showed that most genetic variation is found within, rather than among populations. However, genetic differentiation is greater among cultivated (G ST=0.167) than among wild (G ST=0.056) populations. Wild populations had an average genetic identity (I) of 0.952, indicating little differentiation and high gene flow (Nm=4.21) among these populations. Average genetic identity between wild and domesticated populations was of I=0.818, revealing that the domestication process has modified the genetic composition of commercial varieties of pepper. Changes in genetic composition among commercial varieties seem to have occurred in different directions, as indicated by the average value of I = 0.817 among these populations. The high level of diversity found in wild populations of C. annuum suggests that the wild relatives of cultivated peppers are a valuable genetic resource which must be conserved. Received May 5, 1999 Accepted October 30, 2000  相似文献   

7.
Genetic variation within and among five Danish populations of wild carrot and five cultivated varieties was investigated using amplified fragment length polymorphism (AFLP). Ten AFLP primer combinations produced 116 polymorphic bands. Based on the marker data an UPGMA-cluster analysis and principal component analysis (PCA) separated the Daucus collections into three groups, consisting of the wild populations, the old varieties, and the recently bred varieties. The genetic distance between the wild populations reflected the physical distance between collection sites. Analysis of genetic diversity showed that the old varieties released between 1974 and 1976 were more heterogeneous than the newly developed F1 hybrid varieties. The analysis of molecular variation (AMOVA) showed that the major part of the genetic variation in the plant material was found within populations/varieties. The presence of markers specific to the cultivated carrot makes it possible to detect introgression from cultivated to wild types. Received: 6 October 1999 / Accepted: 4 November 1999  相似文献   

8.
Paris polyphylla var. yunnanensis is one of the original plants used to make the traditional medicine Paridis Rhizoma. Wild individuals have been excessively collected in recent decades, and thus, it has become increasingly endangered. Cultivation is a major method for the conservation and sustainable utilization of its wild resources. In this study, amplified fragment length polymorphism markers were used in the genetic analysis of 15 wild and 17 cultivated populations of P. polyphylla var. yunnanensis. This study revealed that cultivated populations possessed higher genetic diversity than wild ones at the species level (H = 0.2636 vs. 0.2616, respectively). However, most of the genetic variation was found within populations for both of these groups (ΦST = 18.83% vs. 19.39%). In the dendrogram produced using UPGMA, the 32 populations were divided into three groups (I, II, and III). In group II, both wild and cultivated populations were included, but remained in distinct clusters within this group, which showed the significant separation between the cultivated and wild populations. Furthermore, wild populations were also clustered into three subgroups (W‐I, W‐II, and W‐III), with an obvious geographic structure. In contrast, although cultivated populations were similarly placed in three subgroups (C‐I, C‐II, and C‐III), the latter two of these were not separated based on geography. Finally, the wild populations in Guizhou, China (W‐I), possessed higher genetic diversity than those in Yunnan (W‐II and W‐III). As P. polyphylla var. yunnanensis is an endangered medicinal plant, the fact that it showed richer genetic diversity in its wild populations in Guizhou means that these should be regarded as priority areas for protection and used for provenance selection. Moreover, cultivated populations also showed high genetic variation, which might be attributed to them having originated from mixed provenances, indicating that screening for superior provenances should be carried out as soon as possible.  相似文献   

9.
Kalopanax pictus (Araliaceae) is a long-lived woody species primarily distributed throughout East Asia. This species is regarded as medically and ecologically important in Korea. We used starch gel electrophoresis to investigate its allozyme variation and genetic structure in samples from Korean populations (both natural and cultivated). Our analysis of 10 enzymes revealed 18 loci, of which 10 were polymorphic (35.6%). Genetic diversity at the species and population levels were 0.200 and 0.149, respectively, with the mean for cultivated populations (0.124) being lower than for natural (wild) populations (0.181). Asexual and sexual reproduction modes, perennial habitat, and longevity all were possible factors contributing to such high diversity. An indirect estimate of the number of migrants per generation (N m = 1.08) indicated that gene flow was not extensive among these Korean populations. Therefore, we suggest that geographical distance as well as reproductive isolation between wild and cultivated plants may play roles in shaping the population structure of this species.  相似文献   

10.
This work presents a statistical and numerical analysis of the patterns of morphological variation of the cultivated variants of henequén (Agave fourcroydes Lem.) presently found in the Mexican state of Yucatan and of the wild populations of A. angustifolia Haw., its putative progenitor. This is the first step in the study of the intrageneric genetic diversity and evolutionary relationships. The study indicated that: (1) There exists a significant discontinuation in morphological variation corresponding to the cultivated variants of traditionally recognized henequén: Sac Ki, Yaax Ki, and Kitam Ki, and to three possible ecotypes of A. angustifolia Haw.: Coastal Dunes, Tropical Deciduous Forest, and Tropical Subdeciduous Forest. (2) Sac Ki and Yaax Ki differ from wild populations in four syndromes of domestication: gigantism, greater fibrosity, less thorniness, and less reproductive capacity. The lower coefficient of variation of their characteristics compared with the wild populations suggests less genetic diversity. This fact, and the disappearance of four out of the seven variants existing early in this century, indicate a dramatic genetic erosion of this crop. (3) Kitam Ki is the cultivated variant more similar to wild ones. Differences with them suggest recent introduction and an artificial selection process with different direction and intensity than the other cultivated variants. (4) A tendency from more to less is observed for characteristics indicating degree of domestication: Sac Ki, Yaax Ki, and Kitam Ki. (5) The differences among the possible wild ecotypes may be associated with the soil conditions and precipitation.  相似文献   

11.
Recent decades have witnessed growing interests in exploring the population genetics and phylogeography of crop plants and their wild relatives because of their important value as genetic resources. In this study, sequence variation of the nuclear Adh1a gene was used to investigate the genetic diversity and phylogeographic pattern of the wild and cultivated Zizania latifolia Turcz. Sequence data were obtained from 126 individuals representing 21 wild populations in China and 65 varieties of the cultivated Zizania latifolia. Low to medium level nucleotide diversity was found in the wild populations, with northeastern populations being the most variable. We detected significant population subdivision (F ST = 0.481) but no significant phylogeogaphical structure, suggesting limited gene flow and dispersal among populations. The current pattern of genetic variation in the wild populations might be explained by a fragmentation of ancient populations due to habitat destruction and degradation during recent decades. The heterogeneous levels and spatial apportionment of genetic diversity among wild populations also suggested a history of gradual colonization of Zizania latifolia populations from the northeast to the south of China. Interestingly, all 65 varieties of the cultivated Zizania latifolia possessed a single identical genotype, implying a single domestication associated with very few initial individuals. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
He J  Chen L  Si Y  Huang B  Ban X  Wang Y 《Genetica》2009,135(2):233-243
Magnolia officinalis subsp. biloba, a traditional Chinese medicinal plant, experienced severe declines in the number of populations and the number of individuals in the late 20th century due to the widespread harvest of the subspecies. A large-scale cultivation program was initiated and cultivated populations rapidly recovered the loss in individual plant numbers, but wild populations remained small as a consequence of cutting. In this study, the levels of genetic variation and genetic structure of seven wild populations and five domestic populations of M. officinalis subsp. biloba were estimated employing an AFLP methodology. The plant exhibited a relatively high level of intra-population genetic diversity (h = 0.208 and H j = 0.268). The cultivated populations maintained approximately 95% of the variation exhibited in wild populations, indicating a slight genetic bottleneck in the cultivated populations. The analysis of genetic differentiation revealed that most of the AFLP diversity resided within populations both for the wild group (78.22%) and the cultivated group (85.92%). Genetic differentiation among populations in the wild group was significant (F ST = 0.1092, P < 0.005), suggesting wild population level genetic structure. Principal coordinates analysis (PCO) did not discern among wild and cultivated populations, indicating that alleles from the wild population were maintained in the cultivated gene pool. Results from the present study provide important baseline data for effectively conserving the genetic resources of this medicinal subspecies.  相似文献   

13.
新疆桑属植物栽培居群的遗传多样性研究   总被引:3,自引:2,他引:1  
应用RAPD分子标记对新疆不同地区栽培的桑属植物2种3个分类群共11个居群进行了遗传多样性研究。结果表明,新疆桑属栽培植物中虽然存在较为丰富的遗传多样性,多态位点比率(PPB)为87.39%,Shannon多样性指数为0.3997,但在栽培居群内的遗传变异水平相对较低;在不同居群间遗传变异水平仔住很人差异,各居群的多态位点比率(PPB)为4.5%至45.95%,Shannon多样性指数为0.0312至0.2339;白桑(Morus alba L.)及其变种鞑靼桑(Morus alba L.var.tatarica)居群内的遗传变异水平远高于黑桑种(Morus nigra)。新疆桑属植物栽培居群内较低的遗传变异水平与其采用扦插等无性繁殖方式有关。分析全部的遗传变异显示,11个栽培居群之间的基因分化系数(Gst)为0.3541,其中桑及其变种9个居群间的基因分化系数为0.4597,黑桑种2个居群问的基因分化系数为0.4728。AMOVA分析表明,在全部遗传变异中,黑桑种和白桑种2个物种之间的遗传变异占59.16%,居群间遗传变异为17.46%。遗传距离和聚类分析也表明,黑桑种和白桑种及其变种鞑靼桑之间存在很大的遗传分化。  相似文献   

14.
The genetic diversity and population structure of 25 natural populations of Thymus capitatus, from five ecological areas, were analysed using eight isozymes. For all populations, 11 polymorphic loci were detected, and several of them showed rare alleles. A high genetic diversity within populations (Ap = 1.82; P = 62.88%; Ho = 0.116) and an excess of heterozygosity were observed. A high level of inbreeding within populations was observed (FIS = 0.471). High differentiation and low gene flow (Nm = 0.821) were detected among populations (FST = 0.219). The genetic variation within and among ecological groups varied according to the bioclimate. Population structuration depends on geographic distance between sites rather than on bioclimate (Mantel’s test; r = 0.251; P = 0.004). Nei’s genetic distances (D) values calculated between pairs of populations were globally low with a mean of 0.047. The unweighted pairwise groups method using arithmetic average dendrogram showed fourth sub‐clusters. Population groupings occur with evident relationship to geographic location. The substantial differentiation and the high genetic similarities between populations indicate that populations have been recently isolated as a result of anthropic pressure. In situ conservation must first focus on populations with a high level of genetic diversity and rare alleles. Ex situ preservation should be elaborated by collecting seeds within populations that showed a high level of genetic diversity in each ecological group.  相似文献   

15.
To examine whether cultivation reduced genetic variation in the important Chinese medicinal plant Rheum tanguticum, the levels and distribution of genetic variation were investigated using ISSR markers. Fifty-eight R. tanguticum individuals from five cultivated populations were studied. Thirteen primers were used and a total of 320 DNA bands were scored. High levels of genetic diversity were detected in cultivated R. tanguticum (PPB = 82.19, H = 0.2498, HB = 0.3231, I = 0.3812) and could be explained by the outcrossing system, as well as long-lived and human-mediated seed exchanges. Analysis of molecular variance (AMOVA) showed that more genetic variation was found within populations (76.1%) than among them (23.9%). This was supported by the coefficient of gene differentiation (Gst = 0.2742) and Bayesian analysis (θB = 0.1963). The Mantel test revealed no significant correlation between genetic and geographic distances among populations (r = 0.1176, p = 0.3686). UPGMA showed that the five cultivated populations were separated into three clusters, which was in good accordance with the results provided by the Bayesian software STRUCTURE (K = 3). A short domestication history and no artificial selection may be an effective way of maintaining and conserving the gene pools of wild R. tanguticum.  相似文献   

16.
We used 13 microsatellite marker loci to determine the genetic diversity of cassava (Manihot esculenta Crantz) grown in home gardens in two Chibchan Amerindian reserves in Costa Rica. We compared the levels of genetic diversity in the reserves with that of commercial varieties typically cultivated in Costa Rica. We found high levels of genetic diversity among cassava plants. Overall, 12 of the 13 loci examined were polymorphic in each Amerindian reserve (P = 92.3). Moreover, we found 36 alleles in the Coto Brus Reserve and 33 in the Talamanca Reserve. In the commercial varieties only nine loci were polymorphic (P = 69.2), and we only found 23 alleles. Heterozygosity was high for all groups of cassava (Coto Brus, Talamanca, and commercial varieties), but it was higher among the commercial varieties. The levels of heterozygosity and allele diversity indicate that there is significant genetic diversity in the home gardens that we examined. Another indication of the high diversity found in these gardens is the number of distinct multilocus genotypes, 28 at Coto Brus and 19 at Talamanca. There was also more than one distinct multilocus genotype found within the commercial varieties, as three were found in Valencia and four in Manyi. Our data also revealed low levels of genetic differentiation between the three groups of cassava (Fst = 0.03), and Nei’s genetic distances ranged from 0.0167 to 0.0343. In addition, F estimates (Fis and Fit) indicate excess heterozygotes, both at the subpopulation and the population level. A hierarchical analysis of the genetic variation revealed that variation between sampling locations within each of the three groups of cassava was larger than that between groups (Theta S = 0.0775 and Theta P = 0.0204, respectively). The variety Manyi was the group genetically most distant from all others. We discuss the consequences of these findings for in situ conservation of genetic resources.  相似文献   

17.
采用扩增片段长度多态性分子标记技术对陕西省分布的6个野生唐棣居群的96个个体进行了遗传多样性分析, 以明确野生唐棣资源的亲缘关系,为唐棣资源的保护、良种选育和开发利用提供理论依据。结果显示:(1)从64对引物组合中筛选出8对扩增条带清晰、多态性高的引物组合,共扩增出277条清晰条带,其中多态性条带116条,多态性位点百分率为42.86%。(2)UPGMA聚类、主坐标分析(PCoA)和遗传结构分析结果相似,将6个陕西野生唐棣居群分成2大支,秦岭南北居群间遗传分化明显,且群体间存在一定基因流。(3)分子方差分析(AMOVA)结果显示遗传变异主要存在于居群内(63%),居群间遗传变异为37%。Mantel检验表明陕西唐棣居群地理距离与遗传距离之间无明显相关性(r = 0.192,P = 0.220)。研究表明,AFLP分子标记可以准确、有效地用于唐棣遗传多样性分析;唐棣遗传变异主要来源于居群内,居群间的基因交流有限;陕西野生唐棣遗传多样性水平较低,但部分居群的遗传多样性较高。该研究结果可为野生唐棣资源的保护、良种选育和开发利用提供理论依据。  相似文献   

18.
Impact of selection and breeding on the genetic diversity in Douglas-fir   总被引:3,自引:0,他引:3  
Genetic changes following domestication of Douglas-fir were studied using isozyme data derived from two generations of seed orchards and their 49 wild progenitor populations. In addition, the breeding, production, and infusion populations used in the seed orchards were compared to their wild counterparts. Several parameters of gene diversity were measured (number of alleles per locus N a, per cent of polymorphic loci PLP, and expected heterozygosity H, and population divergence D). These measures were similar or higher in the domesticated populations compared to their natural progenitors, indicating that early selection and breeding of a highly polymorphic species does not significantly reduce genetic variation. The two generations of seed orchards also did not differ, indicating that genetic variation may remain stable over future generations of forest plantations. Interestingly, compared to the natural populations, heterozygosity was higher in the seed orchards, probably due to pooling of widely distributed natural populations; however, rare localized or private alleles seemed to be less frequent in the domesticated populations. Differentiation values were not significant between the first generation orchards and the natural populations, but significant differences were observed between the second generation orchards and the wild progenitor populations, probably due to the interbreeding that forms the advanced generation seed orchards.  相似文献   

19.
Abstract Plant genetic resources play an important role in the improvement of cultivated plants. To characterize and evaluate the ecological and reproductive features of wild soybean ( Glycine soja Sieb. et Zucc.), which is the most probable ancestor of cultivated soybean ( G. max (L) Merr.), the breeding system and genetic diversity of G. soja were investigated. The extent of natural cross-pollination of G. soja was estimated in four populations along the Omono River in Akita Prefecture, Japan by examining allozyme variation. Although it has been previously believed that G. soja is autogamous, as is cultivated soybean, the mean multilocus outcrossing rate ( t m) estimate was 13%. These values are much higher than the outcrossing rate previously reported for both G. soja and G. max . Frequent visits by honeybees and carpenter bees to flowers were also observed, which supported this conjecture. Furthermore, to evaluate the genetic variation of G. soja as a genetic resource, the genetic structure of 447 populations over Japan were analyzed. Wild soybean populations had a higher degree of variation of isozyme loci. The G ST coefficient of gene differentian values among the sites within the district were particularly high, revealing that the isozyme genotype was greatly different among site populations and homogeneous within the sites. The genetic differentiation among nine districts was observed in the allele frequencies of a few loci, indicating that geographic isolation in the wild soybean population was effectively created through the distance between the districts. The difference in the allele frequency among the districts may be produced under genetic drift. Finally, the importance of the preservation of natural plant populations and the habitats of wild progenitors (i.e. the in situ conservation of plant genetic resources) was emphasized.  相似文献   

20.
Aim We used microsatellite markers to determine the range‐wide genetic structure of Picea jezoensis and to test the hypothesis that the past population history of this widespread cold‐temperate spruce has resulted in a low level of genetic variation and in imprints of inbreeding and bottlenecks in isolated marginal populations. Location The natural range of the three infraspecific taxa of P. jezoensis throughout north‐east Asia, including isolated marginal populations. Methods We analysed a total of 990 individuals across 33 natural populations using four nuclear microsatellite loci. Population genetic structure was assessed by analysing genetic diversity indices for each population, examining clustering (model‐based and distance‐based) among populations, evaluating signals of recent bottlenecks, and testing for isolation by distance (IBD). Results The 33 populations were clustered into five groups. The isolated marginal groups of populations (in Kamchatka, Kii in Japan and South Korea) exhibited low levels of allelic richness and gene diversity and a complete or almost complete loss of rare alleles. A recent bottleneck was detected in the populations in Hokkaido across to mid‐Sakhalin. The IBD analysis revealed that genetic divergence between populations was higher for populations separated by straits. Main conclusions Picea jezoensis showed a higher level of genetic differentiation among populations (FST = 0.101) than that observed in the genus Picea in general. This might be attributable to the fact that historically the straits around Japan acted as barriers to the movement of seeds and pollen. The low levels of genetic diversity in the isolated marginal population groups may reflect genetic drift that has occurred after isolation. Evidence of a significant bottleneck between the Hokkaido and mid‐Sakhalin populations implies that the cold, dry climate in the late Pleistocene resulted in the decline and contraction of populations, and that there was a subsequent expansion followed by a founder effect when conditions improved. The high polymorphism observed in P. jezoensis nuclear microsatellites revealed cryptic genetic structure that organellar DNA markers failed to identify in a previous study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号