首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Excess zinc ions are a competitive inhibitor for carboxypeptidase A   总被引:2,自引:0,他引:2  
J Hirose  S Ando  Y Kidani 《Biochemistry》1987,26(20):6561-6565
The mechanism for inhibition of enzyme activity by excess zinc ions has been studied by kinetic and equilibrium dialysis methods at pH 8.2, I = 0.5 M. With carboxypeptidase A (bovine pancreas), peptide (carbobenzoxyglycyl-L-phenylalanine and hippuryl-L-phenylalanine) and ester (hippuryl-L-phenyl lactate) substrates were inhibited competitively by excess zinc ions. The Ki values for excess zinc ions with carboxypeptidase A at pH 8.2 are all similar [Ki = (5.2-2.6) X 10(-5) M]. The apparent constant for dissociation of excess zinc ions from carboxypeptidase A was also obtained by equilibrium dialysis at pH 8.2 and was 2.4 X 10(-5) M, very close to the Ki values above. With arsanilazotyrosine-248 carboxypeptidase A ([(Azo-CPD)Zn]), hippuryl-L-phenylalanine, carbobenzoxyglycyl-L-phenylalanine, and hippuryl-L-phenyl lactate were also inhibited with a competitive pattern by excess zinc ions, and the Ki values were (3.0-3.5) X 10(-5) M. The apparent constant for dissociation of excess zinc ions from arsanilazotyrosine-248 carboxypeptidase A, which was obtained from absorption changes at 510 nm, was 3.2 X 10(-5) M and is similar to the Ki values for [(Azo-CPD)Zn]. The apparent dissociation and inhibition constants, which were obtained by inhibition of enzyme activity and spectrophotometric and equilibrium dialysis methods with native carboxypeptidase A and arsanilazotyrosine-248 carboxypeptidase A, were almost the same. This agreement between the apparent dissociation and inhibition constants indicates that the zinc binding to the enzymes directly relates to the inhibition of enzyme activity by excess zinc ions. Excess zinc ions were competitive inhibitors for both peptide and ester substrates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Inhibition studies of crystallized rat liver argininosuccinate synthetase [EC 6.3.4.5] are described. 1. L-Argininosuccinate, L-histidine, and L-tryptophan inhibited the enzyme activity at saturating amounts of the substrates. 2. L-Norvaline, L-argininosuccinate, L-arginine, L-isoleucine, and L-valine competitively inhibited the enzyme activity at a low concentration of L-citrulline, with Ki values of 1.3 x 10(4) M, 2.5 X 10(-4) M, 6.7 X 10(-4) M, 6.3 X 10(-4) M, and 6.0 x 10(-4) M, respectively. 3. L-Argininosuccinate and L-arginine competitively inhibited the enzyme activity at a low concentration of L-aspartate, with Ki values of 9.5 x 10(-4) M and 1.2 x 10(-3) M, respectively. 4. The modes of inhibition by L-histidine were mixed-noncompetitive, uncompetitive, and noncompetitive types with respect to L-citrulline, L-aspartate, and ATP, respectively. 5. When the enzyme was preincubated with L-citrulline, the enzyme activity was slightly increased in the presence of a low concentration of L-histidine in the assay mixture. 6. The conformation of the enzyme was markedly changed by the addition of L-histidine as judged from the CD spectrum. This change was partially reversed by incubation with L-citrulline.  相似文献   

3.
Guanine aminohydrolase (E.C. 3.5.4.3) has been purified 11-fold from the supernatant fraction of guinea-pig liver homogenates in 0.25 M sucrose (centrifuged at 50,000 X g) through thermic denaturation at 60 degrees C and ammonium sulphate fractionation (30--60% saturation). The enzyme in the homogenates and purified preparations exhibited two Km values. In both preparations four enzymatic electrophoretic bands have been detected. Purified guanine aminohydrolase is chromatographically resolved on DEAE-sephadex in three components whose active forms appeared separately on their pherograms. The enzymatic form eluted at lower ionic strength has the least anodic mobility, is inhibited by guanine (4 X 10(-5) M) and presents only one Km value (1.5 X 10(-5) M). The enzymatic form eluted at greater ionic strength exhibits the highest anodic mobility, is also inhibited by guanine (7 X 10(-5) M) and its Km value seems to be 6.3 X 10(-6) M. Molecular weight of enzymatics forms determined by Sephadex G-200 chromatography, is 120,000 +/- 5,000. The preceding results, correlated with the chromatographic homogeneity of guanine aminohydrolase, purified in Sephadex G-100, suggests that the four molecular forms of the native enzyme may be considered as isozymes.  相似文献   

4.
Carbamate kinase has been prepared from Lactobacillus buchneri NCDO110. An approximately 91-fold increase in the specific activity of the enzyme was achieved. The purified extract exhibited a single band following polyacrylamide gel electrophoresis. The apparent molecular weight as determined by gel electrophoresis was about 97,000. The enzyme is stable for 2 weeks at -20 degrees C. Maximum enzymatic activity was observed at 30 degrees C and pH 5.4 in 0.1 M acetate buffer. L. buchneri carbamate kinase requires Mg2+ or Mn2+; its activity is higher with Mn2+. The activation energy of the reaction was 4078 cal mol-1 for the reaction with Mn2+ and 3059 cal mol-1 for the reaction with Mg2+. From a Dixon plot a pK value of 4.8 was calculated. The apparent Km values for ADP with Mg2+ or Mn2+ were 0.71 X 10(-3) and 1.17 X 10(-3) M, respectively, and the apparent Km values for carbamyl phosphate with Mg2+ or Mn2+ were 1.63 X 10(-3) and 1.53 X 10(-3) M, respectively. ATP and CTP acted as inhibitors of this reaction and the following values were obtained: Ki (ATP)Mg2+ = 9.4 mM, Ki (ATP)Mn2+ = 6.2 mM, and Ki (CTP)Mg2+ = 4.4 mM.  相似文献   

5.
A S Lewis  M D Glantz 《Biochemistry》1976,15(20):4451-4457
Bovine brain purine-nucleoside phosphorylase (purine-nucleoside:orthophosphate ribosyltransferase, EC 2.4.2.1) was purified to homogeneity at a specific activity of 78 mumol min-1 mg of protein-1. A molecular weight of 78 000-80 000 was calculated for the native enzyme by fel filtration on Sephadex. Gel electrophoresis in the presence of sodium dodecyl sulfate indicated subunits of molecular weight of 38 000. Chemical and kinetic studies strongly implicated histidine and cysteine as catalytic groups at the active site of the enzyme. The pKa's determined for ionizable groups at the active site of the free enzyme were 5.8 and 8.2. Enzyme completely inactivated by p-chloromercuribenzoate was partially reactivated enzyme. A strong susceptibility to photooxidation in presence of methylene blue was observed. Photoinactivation was pH dependent, implicating histidine as the susceptible group at the active site. A rapid loss of catalytic activity upon incubation at 55 degrees C suggested heat lability. An activation energy of 9.6 kcal/mol was calculated. The nature of the catalytic mechanism of the enzyme was investigated, and initial velocity studies showed linear converging patterns of double-reciprocal plots of the data, consistent with a sequential catalytic mechanism. The product inhibition pattern was at variance with both the ordered Bi-Bi and random mechanisms. The observed competition between purine and nucleoside, and between inorganic orthophosphate and ribose 1-phosphate for this ordered mechanism, suggest a Theorell-Chance mechanism. Michaelis constants determined for substrates of the enzyme were 4.35 X 10(-5) M for guanosine, 3.00 X 10(-5) M for guanine, and 2.15 X 10(-2) M for inorganic orthophosphate.  相似文献   

6.
Guanine deaminase (guanine aminohydrolase, EC 3.5.4.3) catalyzes the hydrolytic deamination of guanine to xanthine. A rapid procedure for the partial purification of guanine deaminase fromTrypanosoma cruzi using granulated bed electrofocusing was developed. Supernatants of cell sonicates (40,000 g) were subjected to electrofocusing with a broad range ampholyte (pH 4–9). Sections of the gel were eluted and assayed for xanthine production. Active fractions were pooled, concentrated, and again subjected to electrofocusing with a pH 5–7 range ampholyte. This procedure resulted in over 240-fold purification. The compounds 4-amino-5-imidazolecarboxamide andN 6-methyladenine were found to be potent competitive inhibitors of the enzyme. Their respective Ki values were 3.5×10–6 M and 9.5×10–6 M. Irreversible inactivation of the enzyme was observed upon incubation withp-chloromercurophenylsulfonic acid andN-ethyl-maleamide at 5.0×10–4 M. The enzyme was labile to heat; a substantial loss of activity occurred upon incubation at 55°C for 5 min. A broad pH range of activity (pH 7.5–8.5) was observed in Tris, citrate, and phosphate buffers.  相似文献   

7.
A new p-coumaric acid (4-hydroxycinnamic acid) hydroxylase was detected in mung bean seedlings treated with tentoxin, a fungal toxin, in which polyphenol oxidase that hydroxylates a wide variety of monophenols in vitro was completely eliminated. The enzyme required molecular oxygen and showed a pH optimum of 5.0. The enzyme acted only on p-coumaric acid (Km, 3.0 X 10(-5) M), while its specificity for the electron donor was rather broad. The Km value for NADPH (1.5 X 10(-4) M) was much lower than that for L-ascorbic acid (1.0 X 10(-2) M), although the Vmax value was almost the same with both electron donors. The enzyme was potently inhibited by beta-mercaptoethanol (Ki, 3.5 X 10(-6) M) and diethyldithiocarbamate (Ki, 2.3 X 10(-4) M), but was insensitive to p-chloromercuribenzoate. The enzyme was localized in the cell organelles which sedimented between mitochondria and endplasmic reticulum on sucrose density gradient centrifugation. The enzyme activity in the seedling was changed in response to induction by light in a manner suggesting its involvement in biosynthesis of phenolic compounds in mung bean seedlings.  相似文献   

8.
Rabbit liver purine nucleoside phosphorylase (purine nucleoside: orthophosphate ribosyltransferase EC 2.4.2.1.) was purified to homogeneity by column chromatography and ammonium sulfate fractionation. Homogeneity was established by disc gel electrophoresis in presence and absence of sodium dodecyl sulfate, and isoelectric focusing. Molecular weights of 46,000 and 39,000 were determined, respectively, by gel filtration and by sodium dodecyl sulfate-polyacrylamide disc gel electrophoresis. Product inhibition was observed with guanine and hypoxanthine as strong competitive inhibitors for the enzymatic phosphorolysis of guanosine. Respective Kis calculated were 1.25 x 10(-5) M for guanine and 2.5 x 10(-5) M for hypoxanthine. Ribose 1-phosphate, another product of the reaction, gave noncompetitive inhibition with guanosine as variable substrate, and an inhibition constant of 3.61 x 10(-4) M was calculated. The protection of essential --SH groups on the enzyme, by 2-mercaptoethanol or dithiothreitol, was necessary for the maintenance of enzyme activity. Noncompetitive inhibition was observed for p-chloromercuribenzoate with an inhibition constant of 5.68 x 10(-6)M. Complete reversal of this inhibition by an excess of 2-mercaptoethanol or dithiothreitol was demonstrated. In the presence of methylene blue, the enzyme showed a high sensitivity to photooxidation and a dependence of photoinactivation on pH, strongly implicating histidine as the susceptible group at the active site of the enzyme. The pKa values determined for ionizable groups of the active site of the enzyme were near pH 5.5 and pH 8.5 The chemical and kinetic evidences suggest that histidine and cysteine may be essential for catalysis. Inorganic orthophosphate (Km 1.54 x 10(-2) M) was an obligatory anion requirement, and arsenate substituted for phosphate with comparable results. Guanosine (Km 5.00 x 10(-5) M), deoxyguanosine (Km 1.00 x 10(-4)M) and inosine (Km 1.33 x 10(-4)M), were substrates for enzymatic phosphorolysis. Xanthosine was an extremely poor substrate, and adenosine was not phosphorylyzed at 20-fold excess of the homogeneous enzyme. Guanine (Km 1.82 x 10(-5)M),ribose 1-phosphate (Km 1.34 x 10(-4) M) and hypoxanthine were substrates for the reverse reaction, namely, the enzymatic synthesis of nucleosides. The initial velocity studies of the saturation of the enzyme with guanosine, at various fixed concentrations of inorganic orthophosphate, suggest a sequential bireactant catalytic mechanism for the enzyme.  相似文献   

9.
The enzymatic properties of purified preparations of chicken liver and chicken skeletal muscle fructose bisphosphatases (D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) were compared. Both enzymes have an absolute requirement for Mg2+ or Mn2+. The apparent Km for MgCl2 at pH 7.5 was 0.5 mM for the muscle enzyme and 5 mM for the liver enzyme. Fructose bisphosphate inhibited both enzymes. At pH 7.5, the inhibitor constants (Ki) were 0.18 and 1.3 mM for muscle and liver fructose bisphosphatases, respectively. The muscle enzyme was considerably more sensitive to AMP inhibition than the liver enzyme. At pH 7.5 and in the presence of 1 mM MgCl2, 50% inhibition of muscle and liver fructose bisphosphatases occurred at AMP concentrations of 7 X 10(-9) and 1 X 10(-6) M, respectively. EDTA activated both enzymes. The degree of activation was time and concentration dependent. The degree of EDTA activation of both enzymes decreased with increasing MgCl2 concentration. Ca2+ was a potent inhibitor of both liver (Ki, 1 X 10(-4) M) and muscle (Ki, 1 X 10(-5) M) fructose bisphosphatase. This inhibition was reversed by the presence of EDTA. Ca2+ appears to be a competitive inhibitor with regard to Mg2+. There is, however, a positive homeotropic interaction among Mg2+ sites of both enzymes in the presence of Ca2+.  相似文献   

10.
Protein extracts from roots of chickpea (Cicer arietinum L.) plants contained high esterase activity hydrolyzing malonate hemiesters of isoflavone 7-O-glucosides. Using 5,7-dihydroxy-4'-methoxyisoflavone (biochanin A) 7-O-glucoside-6"-malonate as a substrate, a specific malonylesterase was purified about 700-fold to near homogeneity. The purified enzyme possesses an extremely low enzyme activity with synthetic esterase substrates. Various putative nonspecific esterases, as tested with alpha-naphthylacetate, were removed during enzyme purification. The malonylesterase demonstrated a very high molecular mass in gel chromatography and in sedimentation analyses with sucrose gradients (greater than or equal to 2 X 10(6)). Analytical sodium dodecyl sulfate-polyacrylamide gel electrophoresis pointed to a single subunit of 32,000. The catalyzed reaction showed a pH optimum at 7.5 and a temperature optimum between 30 and 35 degrees C. The apparent Km for biochanin A 7-O-glucoside-6"-malonate was (4.2 +/- 1.2) X 10(-4) M. The malonylesterase was insensitive to the esterase inhibitors eserine and neostigmine (10(-3) M) as well as phenylmethylsulfonyl fluoride, paraoxon, and diisopropylfluorophosphate (10(-4) M). On the other hand enzyme activity was totally inhibited by Hg2+ ions (10(-5) M) and p-hydroxymercuribenzoate (10(-4) M), whereas iodoacetamide (10(-6)-10(-4) M) inhibited only partially. Di- and tricarboxylic acids strongly stimulated enzyme activity at 10(-2) M. These properties indicate that the malonylesterase from chickpea roots greatly differs from other known esterases. The possible biological function of the specific malonylesterase is discussed in relation to isoflavone conjugate metabolism in chickpea.  相似文献   

11.
Purified bovine hepatic fructose-1,6-diphosphatase, which exhibits maximal activity at neutral pH, is competitively inhibited by several analogs of its substrate, fructose 1,6-diphosphate. These include glucose 1,6-diphosphate (Ki = 9.4 X 10(-5) M), hexitol 1,6-diphosphate (Ki = 2.3 X 10(-4) M), and 2,5-anhydro-D-mannitol 1,6-diphosphate (Ki = 3.3 X 10(-8) M), and 2,5-anhydro-D-glucitol 1,6-diphosphate (Ki = 5.5 X 10(-7) M). The Ki values for both 2,5-anhydro-D-mannitol 1,6-diphosphate and 2,5-anhydro-D-glucitol 1,6-diphosphate are lower than the Km of 1.4 X 10(-6) M for fructose 1,6-diphosphate. Since 2,5-anhydro-D-mannitol 1,6-diphosphate is an analog of the beta anomer of fructose 1,6-diphosphate and 2,5-anhydro-D-glucitol 1,6-diphosphate is an analog of the alpha anomer, the lower Ki for the mannitol analog may indicate that the beta anomer of fructose 1,6-diphosphate, which predominates in solution, is the true substrate. The substrate analog 1,5-pentanediol diphosphate inhibits slightly (K0.5 = 5 X 10(-3) M), but 1,4-cyclohexyldiol diphosphate does not. The Ki for product inhibition by sodium phosphate is 9.4 X 10(-3) M. 2,5-Anhydro-D-mannitol 1,6-diphosphate and alpha-D-glucose 1,6-diphosphate are substrates at pH 9.0, but not at pH 6.5.  相似文献   

12.
3-Deoxy-D-manno-octulosonate (KDO)-8-phosphate synthetase has been purified 450-fold from frozen Escherichia coli B cells. The purified enzyme catalyzed the stoichiometric formation of KDO-8-phosphate and Pi from phosphoenolpyruvate (PEP) and D-arabinose-5-phosphate. The enzyme showed no metal requirement for activity and was inhibited by 1 mM Cd2+, Cu2+, Zn2+, and Hg2+. The inhibition by Hg2+ could be reversed by dithiothreitol. The optimum temperature for enzyme activity was determined to be 45 degrees C, and the energy of activation calculated by the Arrhenius equation was 15,000 calories (ca. 3,585 J) per mol. The enzyme activity was shown to be pH and buffer dependent, showing two pH optima, one at pH 4.0 to 6.0 in succinate buffer and one at pH 9.0 in glycine buffer. The isoelectric point of the enzyme was 5.1. KDO-8-phosphate synthetase had a molecular weight of 90,000 +/- 6,000 as determined by molecular sieving through G-200 Sephadex and by Ferguson analysis using polyacrylamide gels. Based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the 90,000-molecular-weight native enzyme was composed of three identical subunits, each with an apparent molecular weight of 32,000 +/- 4,000. The enzyme had an apparent Km for D-arabinose-5-phosphate of 2 X 10(-5) M and an apparent Km for PEP of 6 X 10(-6) M. No other sugar or sugar-phosphate could substitute for D-arabinose-5-phosphate. D-Ribose-5-phosphate was a competitive inhibitor of D-arabinose-5-phosphate, with an apparent Ki of 1 X 10(-3) M. The purified enzyme has been utilized to synthesize millimole quantities of pure KDO-8-phosphate.  相似文献   

13.
In recent investigations we were able to demonstrate that the NADP-dependent aldehyde dehydrogenase of Acinetobacter calcoaceticus is an inducible enzyme localized in intracytoplasmic membranes limiting alkane inclusions. Long-chain aliphatic hydrocarbons and alkanols are inducers of the enzyme. It was purified by us and now kinetically characterized using the enzyme-micelle form, which contains bacterial phospholipids and a detergent (sodium cholate), too. The pH optimum of aldehyde dehydrogenase was determined to be at pH 10. The enzyme showed substrate inhibition (by aldehyde excess). The Ks and Km values of the leading substrate NADP+ were found to be 8.6 X 10(-5) and 10.3 X 10(-5)M independent of the chain-length of the aldehydes. The Km values of the aldehydes decreased depending on increasing chain-length (butanal: 1.6 X 10(-3), decanal: 1.5 X 10(-6)M). The Ki values (for inhibition by aldehyde excess) showed a similar behaviour (butanal: 7.5 X 10(-3), decanal: 3.5 X 10(-5)M) as well as the optimal aldehyde concentrations inducing the "maximal" reaction velocity (butanal: 5mM, decanal: 6 microM). The number of inhibiting aldehyde molecules per enzyme-substrate complex was determined to be n = 1. NADPH showed product inhibition kinetics (Ki(NADPH) = 2.2 X 10(-4)M), fatty acids did not. We were unable to measure a reverse reaction. The following ions and organic compounds were non-competitive inhibitors of the enzyme: Sn2+, Fe2+, Cu2+, BO3(3-), CN-, EDTA, o-phenanthroline, p-chloromercuri-benzoate, mercaptoethanol, phenylmethylsulfonyl fluoride, and diisopropylfluorophosphate; iodoacetate did not influence enzyme activity. Chloral hydrate was a competitive inhibitor of the aldehydes. Ethyl butyrate activates the enzyme, dependent on the chain-length of the aldehyde substrates.  相似文献   

14.
S W King  V R Lum  T H Fife 《Biochemistry》1987,26(8):2294-2300
The carbamate ester N-(phenoxycarbonyl)-L-phenylalanine binds well to carboxypeptidase A in the manner of peptide substrates. The ester exhibits linear competitive inhibition toward carboxypeptidase A catalyzed hydrolysis of the amide hippuryl-L-phenylalanine (Ki = 1.0 X 10(-3) M at pH 7.5) and linear noncompetitive inhibition toward hydrolysis of the specific ester substrate O-hippuryl-L-beta-phenyllactate (Ki = 1.4 X 10(-3) M at pH 7.5). Linear inhibition shows that only one molecule of inhibitor is bound per active site at pH 7.5. The hydrolysis of the carbamate ester is not affected by the presence of 10(-8)-10(-9) M enzyme (the concentrations employed in inhibition experiments), but at an enzyme concentration of 3 X 10(-6) M catalysis can be detected. The value of kcat at 30 degrees C, mu = 0.5 M, and pH 7.45 is 0.25 s-1, and Km is 1.5 X 10(-3) M. The near identity of Km and Ki shows that Km is a dissociation constant. Substrate inhibition can be detected at pH less than 7 but not at pH values above 7, which suggests that a conformational change is occurring near that pH. The analogous carbonate ester O-(phenoxycarbonyl)-L-beta-phenyllactic acid is also a substrate for the enzyme. The Km is pH independent from pH 6.5 to 9 and has the value of 7.6 X 10(-5) M in that pH region. The rate constant kcat is pH independent from pH 8 to 10 at 30 degrees C (mu = 0.5 M) with a limiting value of 1.60 s-1. Modification of the carboxyl group of glutamic acid-270 to the methoxyamide strongly inhibits the hydrolysis of O-(phenoxycarbonyl)-L-beta-phenyllactic acid. Binding of beta-phenyllactate esters and phenylalanine amides must occur in different subsites, but the ratios of kcat and kcat/Km for the structural change from hippuryl to phenoxy in each series are closely similar, which suggests that the rate-determining steps are mechanistically similar.  相似文献   

15.
The anticholinesterase activity of a new carbamate, heptylphysostigmine, was studied in vitro. This compound is a competitive inhibitor of acetylcholinesterase (or true cholinesterase) having Ki = (1 +/- 0.5) X 10(-7) M. The inhibition was instantaneous at the onset and did not diminish with prolonged incubation of the drug and enzyme.  相似文献   

16.
A neuraminidase activity in myelin isolated from adult rat brains was examined. The enzyme activity in myelin was first compared with that in microsomes using N-acetylneuramin(alpha 2----3)lactitol (NL) as a substrate. In contrast to the microsomal neuraminidase which exhibited a sharp pH dependency for its activity, the myelin enzyme gave a very shallow pH activity curve over a range between 3.6 and 5.9. The myelin enzyme was more stable to heat denaturation (65 degrees C) than the microsomal enzyme. Inhibition studies with a competitive inhibitor, 2,3-dehydro-2-deoxy-N-acetylneuraminic acid, showed the Ki value for the myelin neuraminidase to be about one-fifth of that for the microsomal enzyme (1.3 X 10(-6) M versus 6.3 X 10(-6) M). The apparent Km values for the myelin and the microsomal enzyme were 1.3 X 10(-4) M and 4.3 X 10(-4) M, respectively. An enzyme preparation that was practically devoid of myelin lipids was then prepared and its substrate specificity examined. The "delipidated enzyme" could hydrolyze fetuin, NL, and ganglioside substrates, including GM1 and GM2. When the delipidated enzyme was exposed to high temperature (55 degrees C) or low pH (pH 2.54), the neuraminidase activities toward NL and GM3 decreased at nearly the same rate. Both fetuin and 2,3-dehydro-2-deoxy-N-acetylneuraminic acid inhibited NL and GM3 hydrolysis. With 2,3-dehydro-2-deoxy-N-acetylneuraminic acid, inhibition of NL was greater than that of GM3; however, the Ki values for each substrate were almost identical. GM3 and GM1 also competitively inhibited the hydrolysis of NL and NL similarly inhibited GM3 hydrolysis by the enzyme. These results indicate that rat brain myelin has intrinsic neuraminidase activities toward nonganglioside as well as ganglioside substrates, and that these two enzyme activities are likely catalyzed by a single enzyme entity.  相似文献   

17.
The inhibition of highly purified herpes simplex virus (HSV)-induced and host cell DNA polymerases by the triphosphate form of 9-(2-hydroxyethoxymethyl)guanine (acyclovir; acycloguanosine) was examined. Acyclovir triphosphate (acyclo-GTP) competitively inhibited the incorporation of dGMP into DNA, catalyzed by HSV DNA polymerase; apparent Km and Ki values of dGTP and acyclo-GTP were 0.15 microM and 0.003 microM, respectively. HeLa DNA polymerase alpha was also competitively inhibited; Km and Ki values of dGTP and acyclo-GTP were 1.2 microM and 0.18 microM, respectively. In contrast, HeLa DNA polymerase beta was insensitive to the analogue. The "limited" DNA synthesis observed when dGTP was omitted from HSV or alpha DNA polymerase reactions was inhibited by acyclo-GTP in a concentration-dependent manner. Prior incubation of activated DNA, acyclo-GTP, and DNA polymerase (alpha or HSV resulted in a marked decrease in the utilization of the primer-template in subsequent DNA polymerase reactions. This decreased ability of preincubated primer-templates to support DNA synthesis was dependent on acyclo-GTP, enzyme concentration, and the time of prior incubation. Acyclo-GMP-terminated DNA was found to inhibit HSV DNA polymerase-catalyzed DNA synthesis. Kinetic experiments with variable concentrations of activated DNA and fixed concentrations of acyclo-GMP-terminated DNA revealed a noncompetitive inhibition of HSV-1 DNA polymerase. The apparent Km of 3'-hydroxyl termini was 1.1 X 10(-7) M, the Kii and Kis of acyclo-GMP termini in activated DNA were 8.8 X 10(-8) M and 2.1 X 10(-9) M, respectively. Finally, 14C-labeled acyclo-GMP residues incorporated into activated DNA by HSV-1 DNA polymerase could not be excised by the polymerase-associated 3',5'-exonuclease activity.  相似文献   

18.
1. The activity of fructose 1,6-bisphosphatase (EC 3.1.3.11) in the fatty endosperm of castor bean (Ricinus communis) increases 25-fold during germination and then declines. The developmental pattern follows that of catalase, a marker enzyme for gluconeogenesis in this tissue. 2. The enzyme at its peak of development was partially purified, and its properties were studied. It has an optimal activity at neutral pH (7.0-8.0). The apparent Km value for fructose 1,6-bisphosphate is 3.8 X 10(-5) M. The activity is inhibited by AMP allosterically with an apparent Ki value of 2.2 X 10(-4) M. The enzyme hydrolyses fructose 1,6-bisphosphate and not ribulose 1,5-bisphosphate or sedoehptulose 1,7-bisphosphate. 3. Treatment of the partially purified enzyme with acid leads to an 80% decrease in activity. The remaining activity is insensitive to AMP and has optimal activity at pH 6.7 and a high apparent Km value (2.5 X 10(-4) M) for fructose 1.6-bisphosphate. Enzyme extracted from the tissue with water instead of buffer has a similar modification. The effect of acid explains the discrepancies between this report and previous ones on the properties of the enzyme in this tissue. 4. The storage tissues of various fatty seedlings all contain a 'neutral' fructose 1,6-bisphosphatase. The activities of the enzyme from some of the tissues are inhibited by AMP. 5. The properties of the enzyme in fatty seedlings and in green leaves are discussed in comparison with that in animal tissues.  相似文献   

19.
Acid alpha-glucosidase [EC 3.2.1.3] was purified from pig liver by a procedure including Sephadex G-100 affinity chromatography. Electrophoresis on SDS-polyacrylamide gel of the purified enzyme indicated the presence of two components with molecular weights of 73K and 64K. The two components of the enzyme were completely separated, in reasonable yield, by chromatography on a DEAE-5PW column. Both components catalyzed the hydrolysis of the alpha-1,4 and alpha-1,6 linkages of glycogen, maltose, isomaltose, dextrin, and a synthetic glucoside at acid pH. The pH optima of both components were 4.3 for maltase and glucoamylase, and 4.8 for isomaltase and dextrinase. But as to the activity on 4MU-alpha-Glc, the pH optimum of the larger component was 4.8 and that of the smaller component 5.3. The Km values of both components for 4MU-alpha-Glc, maltose, glycogen, isomaltose, and dextrin were 1.0 X 10(-4) M, 9.1 X 10(-3) M, 16.7 mg/ml, 6.7 X 10(-2) M, and 12.5 mg/ml, respectively. Erythritol, Tris, and turanose inhibited the two components competitively. The Ki values of the larger component were 5.0 X 10(-2) M, 13.3 X 10(-3) M, and 3.2 X 10(-3) M, and those of the smaller component were 2.5 X 10(-2) M, 6.1 X 10(-3) M, and 4.7 X 10(-3) M, for erythritol, Tris, and turanose, respectively.  相似文献   

20.
The specific activity of K+-dependent p-NPPase (paranitrophenylphosphatase) from frog (Rana ridibunda) epidermis microsomal preparation was determined. The activity was proportional to time of incubation and protein concentrations under our assays conditions. Optimal phosphatase activity was at pH from 8 to 9 and over 35 degrees C. 10(-3) M ouabain inhibited 100% of the activity and the Ki was estimated about 5 X 10(-5) M. The Km for p-NPP was 3.8 mM and 2.1 for K+. The lectins GSI and GSII produced 80-90% of non-competitive inhibition of the activity. 50% of inhibition by GSI was obtained at 2 micrograms/ml. The Km for p-NPP did not change but the Vmax of activity was clearly reduced for both GSI and GSII lectins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号