首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nm23/NDP kinases in hepatocellular carcinoma   总被引:3,自引:0,他引:3  
One of the most aggressive cancers is hepatocellular carcinoma, which is associated with a very poor patient outcome due to a high recurrence rate and metastatic spread. NM23, the first metastasis suppressor gene to be identified, has been widely studied in human cancers. However, conflicting results have been obtained depending on the tumor type and the evaluation protocol. The current knowledge of NM23 as a diagnostic and/or prognostic marker in hepatocellular carcinoma is reviewed herein. Most studies demonstrate an inverse association between the expression of NM23-H1 and the metastatic potential, which is not observed with the closely related NM23-H2 isoform. Transfection of metastatic hepatoma cells with NM23 reduced their metastatic potential, as for other tumor cell lines. The demonstration of a causative role of NM23 in metastatic dissemination in a mouse model of hepatocarcinoma suggests that hepatocarcinoma-derived cells could be good models for the analysis of the molecular mechanisms involved in NM23 action.  相似文献   

2.
NM23-H1 is a metastasis suppressor protein that exhibits 3′-5′ exonuclease activity in vitro. As 3′-5′ exonucleases are generally required for maintenance of genome integrity, this activity represents a plausible candidate mediator of the metastasis suppressor properties of the NM23-H1 molecule. Consistent with an antimutator function, ablation of the yeast NM23 homolog, YNK1, results in increased mutation rates following exposure to UV irradiation and exposure to the DNA damaging agents etoposide, cisplatin, and MMS. In human cells, a DNA repair function is further suggested by increased NM23-H1 expression and nuclear translocation following DNA damage. Also, forced expression of NM23-H1 in NM23-deficient and metastatic cell lines results in coordinate downregulation of multiple DNA repair genes, possibly reflecting genomic instability associated with the NM23-deficient state. To assess the relevance of the 3′-5′ exonuclease activity of NM23-H1 to its antimutator and metastasis suppressor functions, a panel of mutants harboring defects in the 3′-5′ exonuclease and other enzymatic activities of the molecule (NDPK, histidine kinase) have been expressed by stable transfection in the melanoma cell line, 1205Lu. Pilot in vivo metastasis assays indicate 1205Lu cells are highly responsive to the metastasis suppressor effects of NM23-H1, thus providing a valuable model for measuring the extent to which the nuclease function opposes metastasis and metastatic progression.  相似文献   

3.
Cancer metastasis is a significant contributor to breast cancer patient morbidity and mortality. In order to develop new anti-metastatic therapies, we need to understand the biological and biochemical mechanisms of metastasis. Toward these efforts, we and others have studied metastasis suppressor genes, which halt metastasis in vivo without affecting primary tumor growth. The first metastasis suppressor gene identified was nm23, also known as NDP kinase. Nm23 represents the most widely validated metastasis suppressor gene, based on transfection and knock-out mouse strategies. The biochemical mechanism of metastasis suppression via Nm23 is unknown and likely complex. Two potential mechanisms include binding proteins and a histidine kinase activity. Elevation of Nm23 expression in micrometastatic tumor cells may constitute a translational strategy for the limitation of metastatic colonization in high risk cancer patients. To date, medroxyprogesterone acetate (MPA) has been identified as a candidate compound for clinical testing.  相似文献   

4.
Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus associated with the development of both lymphoid and epithelial tumors. The EBV critical latent antigens EBNA1 and EBNA3C interact with Nm23-H1, a known suppressor of cell migration and tumor metastasis. This interaction is critical for the regulation of downstream cellular genes involved in tumorigenesis and cell migration. The significance of these interactions was determined in nude mice using cancer cells expressing both EBV antigens and Nm23-H1. The EBV antigens promoted the growth of transformed cells in vivo, but their expression was less critical during the later stage of tumor development. The expression of Nm23-H1 affected the growth of cancer cells and suppressed their metastatic potential. This effect was effectively rescued by the expression of both EBV antigens. Interestingly, the prometastatic potential of EBNA3C was greater than that of EBNA1, which triggered a dramatic immune response, as indicated by increased spleen size and development of ascites in the mice. These studies now bridge the expression of the EBV antigens with tumorigenesis and metastasis and widen the range of potential targets for development of therapies for EBV-associated malignancies.  相似文献   

5.
In humans, NM23-H1 is a metastasis suppressor whose expression is reduced in metastatic melanoma and breast carcinoma cells, and which possesses the ability to inhibit metastatic growth without significant impact on the transformed phenotype. NM23-H1 exhibits three enzymatic activities in vitro, each with potential to maintain genomic stability, a 3'-5' exonuclease and two kinases, nucleoside diphosphate kinase (NDPK), and protein histidine kinase. Herein we have investigated the potential contributions of NM23 proteins to DNA repair in the yeast, Saccharomyces cerevisiae, which contains a single NM23 homolog, YNK1. Ablation of YNK1 delayed repair of UV- and etoposide-induced nuclear DNA damage by 3-6h. However, YNK1 had no impact upon the kinetics of MMS-induced DNA repair. Furthermore, YNK1 was not required for repair of mitochondrial DNA damage. To determine whether the nuclear DNA repair deficit manifested as an increase in mutation frequency, the CAN1 forward assay was employed. An YNK1 deletion was associated with increased mutation rates following treatment with either UV (2.6x) or MMS (1.6 x). Mutation spectral analysis further revealed significantly increased rates of base substitution and frameshift mutations following UV treatment in the ynk1Delta strain. This study indicates a novel role for YNK1 in DNA repair in yeast, and suggests an anti-mutator function that may contribute to the metastasis suppressor function of NM23-H1 in humans.  相似文献   

6.
7.
8.
9.
Changes in the quantitative expression of certain genes or in the amounts of their products can quickly stimulate progression to the metastatic phenotype. This has been done experimentally by transferring dominantly acting oncogenes such as c-H-rasEJ into susceptible cells or more recently by interfering with metastasis suppressor genes. In vivo such rapid qualitative changes in dominantly acting oncogenes or suppressor genes occur only rarely, and progression to highly metastatic phenotypes is thought to occur through a process involving the slow stepwise progression of a subpopulation of neoplastic cells to more malignant states. Such slow changes can be reversible and need not involve known dominantly acting oncogenes or metastatic suppressor genes, consistent with clinical and experimental observations on naturally occurring, highly advanced metastatic tumors. An important element in the natural progression of tumors to more malignant states may be their ability to circumvent host environmental controls that regulate growth and cellular diversity. They also evolve into heterogeneous cellular phenotypes, a process that appears to mainly involve quantitative changes in gene expression but can be rapidly stimulated in cell culture by the introduction of a dominantly acting oncogene or inhibited by the introduction of a suppressor gene. The oncogenes and suppressor genes that affect malignancy may control important steps in the quantitative regulation of sets of genes that are ultimately responsible for the cellular alterations seen in adhesion receptors, cell motility responses, cell-cell communication components, degradative enzymes and their inhibitors, growth factor receptors, components that aid in escape from host surveillance mechanisms and others that are important in malignancy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Sine oculis homeobox homolog 1 (SIX1) has been supposed to be correlated with the metastasis and poor prognosis of several malignancies. However, the effect of SIX1 on the metastatic phenotype of tumor cells and the underlying mechanisms were still unclear to date. Here we report that SIX1 can promote α5β1-mediated metastatic capability of cervical cancer cells. SIX1 promoted the expression of α5β1 integrin to enhance the adhesion capacity of tumor cells in vitro and tumor cell arrest in circulation in vivo. Moreover, higher expression of SIX1 in tumor cells resulted in the increased production of active MMP-2 and MMP-9, up-regulation of anti-apoptotic genes (BCL-XL and BCL2) and down-regulation of pro-apoptotic genes (BIM and BAX), thus promoting the invasive migration and anoikis-resistance of tumor cells. Importantly, blocking α5β1 abrogated the regulatory effect of SIX1 on the expression of these genes, and also abolished the promotional effect of SIX1 on invasive capability of tumor cells. Furthermore, knock-down of α5 could abolish the promoting effect of SIX1 on the development of metastatic lesions in both experimental and spontaneous metastasis model. Therefore, by up-regulating α5β1 expression, SIX1 not only promoted the adhesion capacity, but also augmented ECM-α5β1-mediated regulation of gene expression to enhance the metastatic potential of cervical cancer cells. These results suggest that SIX1/α5β1 might be considered as valuable marker for metastatic potential of cervical cancer cells, or a therapeutic target in cervical cancer treatment.  相似文献   

11.
Imatinib mesylate (IM) is a compound that inhibits both BCR-ABL tyrosine kinase and c-kit receptors. Tyrosine kinases are important in cellular signaling and mediate major cellular processes such as proliferation, differentiation, apoptosis, attachment, and migration. Twenty-six albino rabbits were injected with 1 × 10(6) human uveal melanoma (UM) cells (92.1) into the suprachoroidal space. Animals were immunosuppressed (cyclosporin A) over the course of the 12-week experiment and divided into two groups (n = 13). The experimental group received IM once daily by gavage while the control group received a placebo. One animal per group was sacrificed every week after the 2nd week. Upon necropsy, organs were harvested for histopathological examination. Cells from the primary tumors were recultured and tested in proliferation and invasion assays. A PCR array was used to investigate the differences in expression of 84 genes related to tumor metastasis. In the treated group, 4 rabbits developed intraocular tumors, with an average largest tumor dimension (LTD) of 2.5 mm and 5 animals reported metastatic disease. Whereas 6 rabbits in the control group developed intraocular tumors, with an average LTD of 5.8 mm and 6 animals reported metastatic disease. The recultured cells from the treated group demonstrated lower proliferation rates and were less invasive (p < 0.001). The PCR array showed differences in expression of genes related to metastasis. Notably, there was 290-fold increase in SERPINB5, a tumor suppressor gene, and a 10-fold higher expression of KISS1, a metastasis suppressor gene, in the treated group. Proangiogenic genes such as VEGFA, PDGFA and PDGFB were downregulated in the treated group. To the best of our knowledge, this is the first report detailing the altered expression of specific genes in UM cells after treatment with IM.  相似文献   

12.
The nm23 gene has been described as a potential metastasis suppressor gene in certain rodent and human tumors. We previously demonstrated that tyrosine and phenylalanine restriction suppresses metastatic heterogeneity of B16-BL6 murine melanoma and selects for tumor variants with decreased metastatic potential. In this study, we investigated nm23 expression in the highly metastatic B16-BL6 (ND) melanoma, its nutritionally derived poorly metastatic (LT) variant, and the syngeneic non-tumorigenic Mel-ab melanocytes. No differences in nm23 expression were observed between ND and LT cells, and nm23 expression varied between different isolates. Previously, we showed that metastatic potential of 1-ND cells decreases and is not altered in 1-LT cells after prolonged in vitro cell passage; however, nm23 expression is equivalently increased by 2-fold. In 2-ND and 2-LT cells, expression of nm23 is not different at higher in vitro cell passage. Expression of nm23 decreased about 2-fold when phorbol 12-myristate 13-acetate (PMA) was removed from Mel-ab cells, which induces these cells to become quiescent. Although membrane-associated protein kinase C (PKC) activity decreased after prolonged PMA treatment in all cells, neither nm23 expression nor proliferation of ND and LT cells was affected by PMA. These data indicate that nm23 expression is related to proliferative activity rather than to the suppression of metastatic potential. © 1996 Wiley-Liss, Inc.  相似文献   

13.
Pancreatic ductal adenocarcinoma (PDAC) is an incurable, highly metastatic disease that is largely resistant to existing treatments. A better understanding of the genetic basis of PDAC metastasis should facilitate development of improved therapies. To that end, we developed a novel mouse xenograft model of PDAC metastasis to expedite testing of candidate genes associated with the disease. Human PDAC cell lines BxPC-3, MiaPaCa-2, and Panc-1 stably expressing luciferase were generated and introduced by intracardiac injections into immunodeficient mice to model hematogenous dissemination of cancer cells. Tumor development was monitored by bioluminescence imaging. Bioluminescent MiaPaCa-2 cells most effectively recapitulated PDAC tumor development and metastatic distribution in vivo. Tumors formed in nearly 90% of mice and in multiple tissues, including normal sites of PDAC metastasis. Effects of p14ARF, a known suppressor of PDAC, were tested to validate the model. In vitro, p14ARF acted through a CtBP2-dependent, p53-independent pathway to inhibit MiaPaCa-2-invasive phenotypes, which correlated with reduced tumor cell colonization in vivo. These findings establish a new bioluminescent mouse tumor model for rapidly assessing the biological significance of suspected PDAC metastasis genes. This system may also provide a valuable platform for testing innovative therapies.  相似文献   

14.
Loss of function of metastasis suppressor genes is an important step in the progression to a malignant tumor type. Studies in cell culture and animal models have suggested a role of Raf kinase inhibitor protein (RKIP) in suppressing the metastatic spread of prostate cancer, breast cancer, and melanoma cells. However, the function of RKIP in ovarian cancer (OVCA) has not been reported. To explore the potential role of RKIP in epithelial OVCA metastasis, we detected the expression levels of RKIP protein in tissue samples from patients with epithelial OVCA. Consequently, the expression of RKIP is reduced in the poorly differentiated OVCA than in the well-differentiated and moderately differentiated OVCA. In addition, in vitro cell invasion assay indicated that the RKIP expression was inversely associated with the invasiveness of five OVCA cell lines. Consistent with this result, the cell proliferation, anchorage-independent growth, cell adhesion, and invasion were decreased in RKIP overexpressed cells but increased in RKIP down-regulated cells. Further investigation indicated that RKIP inhibited OVCA cell proliferation by altering cell cycle progression rather than promoting apoptosis. Furthermore, the overexpression of RKIP suppressed the ability of human OVCA cells to metastasize when the tumor cells were transplanted into nude mice. Our data show the effect of RKIP on the proliferation, migration, or adhesion of OVCA cells. These results indicate that RKIP is also a metastasis suppressor gene of human epithelial OVCA.  相似文献   

15.
Nm23/Nucleoside Diphosphate Kinase in Human Cancers   总被引:21,自引:0,他引:21  
Tumor metastasis is the leading cause of death in cancer patients. From a series of tumorcohort studies, low expression of Nm23/NDP kinase has been correlated with poor patientprognosis and survival, lymph node infiltration, and histopathological indicators of highmetastatic potential in a number of cancer types, including mammary and ovarian carcinomas andmelanoma. In other tumor types, no correlation has been established. Transfection ofNm23/NDP kinase cDNA into highly metastatic breast, melanoma, prostrate and squamous cellcarcinomas, and colon adenocarcinoma cells significantly reduced the metastatic competencyof the cells in vivo. In culture, cell motility, invasion, and colonization were inhibited, whereastumorigenicity and cellular proliferation were not affected, indicating that Nm23/NDP kinaseacts as a metastasis suppressor.  相似文献   

16.
nm23-h1 is a well-documented metastasis suppressor gene whose mechanism(s) of action have yet to be fully elucidated. The purpose of this report is to discuss recent advances in investigating the potential role of a novel 3′–5′ exonuclease activity identified recently in our laboratory, a biochemical function associated, in general, with DNA repair and replication. We have employed a site-directed mutagenesis approach to demonstrate that the 3′–5′ exonuclease activity of NM23-H1 is required for its metastasis suppressor function. Consistent with a role in DNA repair, we also observe that the single yeast NM23 homolog (YNK1) is required for the maintenance of genomic integrity and normal kinetics of DNA repair in response to exposure to ultraviolet radiation. These results and their implications for understanding the molecular mechanisms underlying NM23-H1 functions in cancer are discussed.  相似文献   

17.
史忠诚  于旸  李钰  傅松滨 《遗传》2005,27(5):694-698
为研究rab5a基因在肿瘤转移机制中的作用,将该基因稳定转染至低转移肺腺癌细胞系AGZY83-a中,采用Superarray肿瘤转移相关基因微芯片分析rab5a对肿瘤转移相关基因的表达影响,共获得了5个差异表达基因,rab5a基因促进s100a4的表达,同时抑制了nm23a、rac1、cst3、col4a2等基因的表达,并分别在RNA及蛋白水平进行验证,确认rab5a基因影响了肿瘤转移的多个途径,促进了肿瘤细胞转移能力增强。  相似文献   

18.
19.
20.
Metastasis is a complex process divided into a number of steps including detachment of tumor cells from the primary tumor, invasion, migration, intravasation, survival in the vasculature, extravasation, and colonization of the secondary site. Proteins that block metastasis without inhibiting primary tumor formation are known as metastasis suppressors; examples are NM23, Maspin, KAI1, KISS1, and MKK4. Breast cancer metastasis suppressor 1 (BRMS1) was identified as a suppressor of breast cancer metastasis in the late 1990s. In vitro and in vivo studies have confirmed that BRMS1 is a potent metastasis suppressor not limited to breast cancer. However, conflicting clinical observations regarding its role as a metastasis suppressor and its validity as a diagnostic biomarker warrant more in-depth clinical study. In this review, the authors provide an overview of its biology, function, action mechanism and pathological significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号